sha512-avx-asm.S 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427
  1. ########################################################################
  2. # Implement fast SHA-512 with AVX instructions. (x86_64)
  3. #
  4. # Copyright (C) 2013 Intel Corporation.
  5. #
  6. # Authors:
  7. # James Guilford <james.guilford@intel.com>
  8. # Kirk Yap <kirk.s.yap@intel.com>
  9. # David Cote <david.m.cote@intel.com>
  10. # Tim Chen <tim.c.chen@linux.intel.com>
  11. #
  12. # This software is available to you under a choice of one of two
  13. # licenses. You may choose to be licensed under the terms of the GNU
  14. # General Public License (GPL) Version 2, available from the file
  15. # COPYING in the main directory of this source tree, or the
  16. # OpenIB.org BSD license below:
  17. #
  18. # Redistribution and use in source and binary forms, with or
  19. # without modification, are permitted provided that the following
  20. # conditions are met:
  21. #
  22. # - Redistributions of source code must retain the above
  23. # copyright notice, this list of conditions and the following
  24. # disclaimer.
  25. #
  26. # - Redistributions in binary form must reproduce the above
  27. # copyright notice, this list of conditions and the following
  28. # disclaimer in the documentation and/or other materials
  29. # provided with the distribution.
  30. #
  31. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  32. # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  33. # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  34. # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  35. # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  36. # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  37. # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  38. # SOFTWARE.
  39. #
  40. ########################################################################
  41. #
  42. # This code is described in an Intel White-Paper:
  43. # "Fast SHA-512 Implementations on Intel Architecture Processors"
  44. #
  45. # To find it, surf to http://www.intel.com/p/en_US/embedded
  46. # and search for that title.
  47. #
  48. ########################################################################
  49. #ifdef CONFIG_AS_AVX
  50. #include <linux/linkage.h>
  51. .text
  52. # Virtual Registers
  53. # ARG1
  54. digest = %rdi
  55. # ARG2
  56. msg = %rsi
  57. # ARG3
  58. msglen = %rdx
  59. T1 = %rcx
  60. T2 = %r8
  61. a_64 = %r9
  62. b_64 = %r10
  63. c_64 = %r11
  64. d_64 = %r12
  65. e_64 = %r13
  66. f_64 = %r14
  67. g_64 = %r15
  68. h_64 = %rbx
  69. tmp0 = %rax
  70. # Local variables (stack frame)
  71. # Message Schedule
  72. W_SIZE = 80*8
  73. # W[t] + K[t] | W[t+1] + K[t+1]
  74. WK_SIZE = 2*8
  75. RSPSAVE_SIZE = 1*8
  76. GPRSAVE_SIZE = 5*8
  77. frame_W = 0
  78. frame_WK = frame_W + W_SIZE
  79. frame_RSPSAVE = frame_WK + WK_SIZE
  80. frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
  81. frame_size = frame_GPRSAVE + GPRSAVE_SIZE
  82. # Useful QWORD "arrays" for simpler memory references
  83. # MSG, DIGEST, K_t, W_t are arrays
  84. # WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
  85. # Input message (arg1)
  86. #define MSG(i) 8*i(msg)
  87. # Output Digest (arg2)
  88. #define DIGEST(i) 8*i(digest)
  89. # SHA Constants (static mem)
  90. #define K_t(i) 8*i+K512(%rip)
  91. # Message Schedule (stack frame)
  92. #define W_t(i) 8*i+frame_W(%rsp)
  93. # W[t]+K[t] (stack frame)
  94. #define WK_2(i) 8*((i%2))+frame_WK(%rsp)
  95. .macro RotateState
  96. # Rotate symbols a..h right
  97. TMP = h_64
  98. h_64 = g_64
  99. g_64 = f_64
  100. f_64 = e_64
  101. e_64 = d_64
  102. d_64 = c_64
  103. c_64 = b_64
  104. b_64 = a_64
  105. a_64 = TMP
  106. .endm
  107. .macro RORQ p1 p2
  108. # shld is faster than ror on Sandybridge
  109. shld $(64-\p2), \p1, \p1
  110. .endm
  111. .macro SHA512_Round rnd
  112. # Compute Round %%t
  113. mov f_64, T1 # T1 = f
  114. mov e_64, tmp0 # tmp = e
  115. xor g_64, T1 # T1 = f ^ g
  116. RORQ tmp0, 23 # 41 # tmp = e ror 23
  117. and e_64, T1 # T1 = (f ^ g) & e
  118. xor e_64, tmp0 # tmp = (e ror 23) ^ e
  119. xor g_64, T1 # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
  120. idx = \rnd
  121. add WK_2(idx), T1 # W[t] + K[t] from message scheduler
  122. RORQ tmp0, 4 # 18 # tmp = ((e ror 23) ^ e) ror 4
  123. xor e_64, tmp0 # tmp = (((e ror 23) ^ e) ror 4) ^ e
  124. mov a_64, T2 # T2 = a
  125. add h_64, T1 # T1 = CH(e,f,g) + W[t] + K[t] + h
  126. RORQ tmp0, 14 # 14 # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
  127. add tmp0, T1 # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
  128. mov a_64, tmp0 # tmp = a
  129. xor c_64, T2 # T2 = a ^ c
  130. and c_64, tmp0 # tmp = a & c
  131. and b_64, T2 # T2 = (a ^ c) & b
  132. xor tmp0, T2 # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
  133. mov a_64, tmp0 # tmp = a
  134. RORQ tmp0, 5 # 39 # tmp = a ror 5
  135. xor a_64, tmp0 # tmp = (a ror 5) ^ a
  136. add T1, d_64 # e(next_state) = d + T1
  137. RORQ tmp0, 6 # 34 # tmp = ((a ror 5) ^ a) ror 6
  138. xor a_64, tmp0 # tmp = (((a ror 5) ^ a) ror 6) ^ a
  139. lea (T1, T2), h_64 # a(next_state) = T1 + Maj(a,b,c)
  140. RORQ tmp0, 28 # 28 # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
  141. add tmp0, h_64 # a(next_state) = T1 + Maj(a,b,c) S0(a)
  142. RotateState
  143. .endm
  144. .macro SHA512_2Sched_2Round_avx rnd
  145. # Compute rounds t-2 and t-1
  146. # Compute message schedule QWORDS t and t+1
  147. # Two rounds are computed based on the values for K[t-2]+W[t-2] and
  148. # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
  149. # scheduler.
  150. # The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
  151. # They are then added to their respective SHA512 constants at
  152. # [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
  153. # For brievity, the comments following vectored instructions only refer to
  154. # the first of a pair of QWORDS.
  155. # Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
  156. # The computation of the message schedule and the rounds are tightly
  157. # stitched to take advantage of instruction-level parallelism.
  158. idx = \rnd - 2
  159. vmovdqa W_t(idx), %xmm4 # XMM4 = W[t-2]
  160. idx = \rnd - 15
  161. vmovdqu W_t(idx), %xmm5 # XMM5 = W[t-15]
  162. mov f_64, T1
  163. vpsrlq $61, %xmm4, %xmm0 # XMM0 = W[t-2]>>61
  164. mov e_64, tmp0
  165. vpsrlq $1, %xmm5, %xmm6 # XMM6 = W[t-15]>>1
  166. xor g_64, T1
  167. RORQ tmp0, 23 # 41
  168. vpsrlq $19, %xmm4, %xmm1 # XMM1 = W[t-2]>>19
  169. and e_64, T1
  170. xor e_64, tmp0
  171. vpxor %xmm1, %xmm0, %xmm0 # XMM0 = W[t-2]>>61 ^ W[t-2]>>19
  172. xor g_64, T1
  173. idx = \rnd
  174. add WK_2(idx), T1#
  175. vpsrlq $8, %xmm5, %xmm7 # XMM7 = W[t-15]>>8
  176. RORQ tmp0, 4 # 18
  177. vpsrlq $6, %xmm4, %xmm2 # XMM2 = W[t-2]>>6
  178. xor e_64, tmp0
  179. mov a_64, T2
  180. add h_64, T1
  181. vpxor %xmm7, %xmm6, %xmm6 # XMM6 = W[t-15]>>1 ^ W[t-15]>>8
  182. RORQ tmp0, 14 # 14
  183. add tmp0, T1
  184. vpsrlq $7, %xmm5, %xmm8 # XMM8 = W[t-15]>>7
  185. mov a_64, tmp0
  186. xor c_64, T2
  187. vpsllq $(64-61), %xmm4, %xmm3 # XMM3 = W[t-2]<<3
  188. and c_64, tmp0
  189. and b_64, T2
  190. vpxor %xmm3, %xmm2, %xmm2 # XMM2 = W[t-2]>>6 ^ W[t-2]<<3
  191. xor tmp0, T2
  192. mov a_64, tmp0
  193. vpsllq $(64-1), %xmm5, %xmm9 # XMM9 = W[t-15]<<63
  194. RORQ tmp0, 5 # 39
  195. vpxor %xmm9, %xmm8, %xmm8 # XMM8 = W[t-15]>>7 ^ W[t-15]<<63
  196. xor a_64, tmp0
  197. add T1, d_64
  198. RORQ tmp0, 6 # 34
  199. xor a_64, tmp0
  200. vpxor %xmm8, %xmm6, %xmm6 # XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
  201. # W[t-15]>>7 ^ W[t-15]<<63
  202. lea (T1, T2), h_64
  203. RORQ tmp0, 28 # 28
  204. vpsllq $(64-19), %xmm4, %xmm4 # XMM4 = W[t-2]<<25
  205. add tmp0, h_64
  206. RotateState
  207. vpxor %xmm4, %xmm0, %xmm0 # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
  208. # W[t-2]<<25
  209. mov f_64, T1
  210. vpxor %xmm2, %xmm0, %xmm0 # XMM0 = s1(W[t-2])
  211. mov e_64, tmp0
  212. xor g_64, T1
  213. idx = \rnd - 16
  214. vpaddq W_t(idx), %xmm0, %xmm0 # XMM0 = s1(W[t-2]) + W[t-16]
  215. idx = \rnd - 7
  216. vmovdqu W_t(idx), %xmm1 # XMM1 = W[t-7]
  217. RORQ tmp0, 23 # 41
  218. and e_64, T1
  219. xor e_64, tmp0
  220. xor g_64, T1
  221. vpsllq $(64-8), %xmm5, %xmm5 # XMM5 = W[t-15]<<56
  222. idx = \rnd + 1
  223. add WK_2(idx), T1
  224. vpxor %xmm5, %xmm6, %xmm6 # XMM6 = s0(W[t-15])
  225. RORQ tmp0, 4 # 18
  226. vpaddq %xmm6, %xmm0, %xmm0 # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
  227. xor e_64, tmp0
  228. vpaddq %xmm1, %xmm0, %xmm0 # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
  229. # s0(W[t-15]) + W[t-16]
  230. mov a_64, T2
  231. add h_64, T1
  232. RORQ tmp0, 14 # 14
  233. add tmp0, T1
  234. idx = \rnd
  235. vmovdqa %xmm0, W_t(idx) # Store W[t]
  236. vpaddq K_t(idx), %xmm0, %xmm0 # Compute W[t]+K[t]
  237. vmovdqa %xmm0, WK_2(idx) # Store W[t]+K[t] for next rounds
  238. mov a_64, tmp0
  239. xor c_64, T2
  240. and c_64, tmp0
  241. and b_64, T2
  242. xor tmp0, T2
  243. mov a_64, tmp0
  244. RORQ tmp0, 5 # 39
  245. xor a_64, tmp0
  246. add T1, d_64
  247. RORQ tmp0, 6 # 34
  248. xor a_64, tmp0
  249. lea (T1, T2), h_64
  250. RORQ tmp0, 28 # 28
  251. add tmp0, h_64
  252. RotateState
  253. .endm
  254. ########################################################################
  255. # void sha512_transform_avx(void* D, const void* M, u64 L)
  256. # Purpose: Updates the SHA512 digest stored at D with the message stored in M.
  257. # The size of the message pointed to by M must be an integer multiple of SHA512
  258. # message blocks.
  259. # L is the message length in SHA512 blocks
  260. ########################################################################
  261. ENTRY(sha512_transform_avx)
  262. cmp $0, msglen
  263. je nowork
  264. # Allocate Stack Space
  265. mov %rsp, %rax
  266. sub $frame_size, %rsp
  267. and $~(0x20 - 1), %rsp
  268. mov %rax, frame_RSPSAVE(%rsp)
  269. # Save GPRs
  270. mov %rbx, frame_GPRSAVE(%rsp)
  271. mov %r12, frame_GPRSAVE +8*1(%rsp)
  272. mov %r13, frame_GPRSAVE +8*2(%rsp)
  273. mov %r14, frame_GPRSAVE +8*3(%rsp)
  274. mov %r15, frame_GPRSAVE +8*4(%rsp)
  275. updateblock:
  276. # Load state variables
  277. mov DIGEST(0), a_64
  278. mov DIGEST(1), b_64
  279. mov DIGEST(2), c_64
  280. mov DIGEST(3), d_64
  281. mov DIGEST(4), e_64
  282. mov DIGEST(5), f_64
  283. mov DIGEST(6), g_64
  284. mov DIGEST(7), h_64
  285. t = 0
  286. .rept 80/2 + 1
  287. # (80 rounds) / (2 rounds/iteration) + (1 iteration)
  288. # +1 iteration because the scheduler leads hashing by 1 iteration
  289. .if t < 2
  290. # BSWAP 2 QWORDS
  291. vmovdqa XMM_QWORD_BSWAP(%rip), %xmm1
  292. vmovdqu MSG(t), %xmm0
  293. vpshufb %xmm1, %xmm0, %xmm0 # BSWAP
  294. vmovdqa %xmm0, W_t(t) # Store Scheduled Pair
  295. vpaddq K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
  296. vmovdqa %xmm0, WK_2(t) # Store into WK for rounds
  297. .elseif t < 16
  298. # BSWAP 2 QWORDS# Compute 2 Rounds
  299. vmovdqu MSG(t), %xmm0
  300. vpshufb %xmm1, %xmm0, %xmm0 # BSWAP
  301. SHA512_Round t-2 # Round t-2
  302. vmovdqa %xmm0, W_t(t) # Store Scheduled Pair
  303. vpaddq K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
  304. SHA512_Round t-1 # Round t-1
  305. vmovdqa %xmm0, WK_2(t)# Store W[t]+K[t] into WK
  306. .elseif t < 79
  307. # Schedule 2 QWORDS# Compute 2 Rounds
  308. SHA512_2Sched_2Round_avx t
  309. .else
  310. # Compute 2 Rounds
  311. SHA512_Round t-2
  312. SHA512_Round t-1
  313. .endif
  314. t = t+2
  315. .endr
  316. # Update digest
  317. add a_64, DIGEST(0)
  318. add b_64, DIGEST(1)
  319. add c_64, DIGEST(2)
  320. add d_64, DIGEST(3)
  321. add e_64, DIGEST(4)
  322. add f_64, DIGEST(5)
  323. add g_64, DIGEST(6)
  324. add h_64, DIGEST(7)
  325. # Advance to next message block
  326. add $16*8, msg
  327. dec msglen
  328. jnz updateblock
  329. # Restore GPRs
  330. mov frame_GPRSAVE(%rsp), %rbx
  331. mov frame_GPRSAVE +8*1(%rsp), %r12
  332. mov frame_GPRSAVE +8*2(%rsp), %r13
  333. mov frame_GPRSAVE +8*3(%rsp), %r14
  334. mov frame_GPRSAVE +8*4(%rsp), %r15
  335. # Restore Stack Pointer
  336. mov frame_RSPSAVE(%rsp), %rsp
  337. nowork:
  338. ret
  339. ENDPROC(sha512_transform_avx)
  340. ########################################################################
  341. ### Binary Data
  342. .section .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
  343. .align 16
  344. # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
  345. XMM_QWORD_BSWAP:
  346. .octa 0x08090a0b0c0d0e0f0001020304050607
  347. # Mergeable 640-byte rodata section. This allows linker to merge the table
  348. # with other, exactly the same 640-byte fragment of another rodata section
  349. # (if such section exists).
  350. .section .rodata.cst640.K512, "aM", @progbits, 640
  351. .align 64
  352. # K[t] used in SHA512 hashing
  353. K512:
  354. .quad 0x428a2f98d728ae22,0x7137449123ef65cd
  355. .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
  356. .quad 0x3956c25bf348b538,0x59f111f1b605d019
  357. .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
  358. .quad 0xd807aa98a3030242,0x12835b0145706fbe
  359. .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
  360. .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
  361. .quad 0x9bdc06a725c71235,0xc19bf174cf692694
  362. .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
  363. .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
  364. .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
  365. .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
  366. .quad 0x983e5152ee66dfab,0xa831c66d2db43210
  367. .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
  368. .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
  369. .quad 0x06ca6351e003826f,0x142929670a0e6e70
  370. .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
  371. .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
  372. .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
  373. .quad 0x81c2c92e47edaee6,0x92722c851482353b
  374. .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
  375. .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
  376. .quad 0xd192e819d6ef5218,0xd69906245565a910
  377. .quad 0xf40e35855771202a,0x106aa07032bbd1b8
  378. .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
  379. .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
  380. .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
  381. .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
  382. .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
  383. .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
  384. .quad 0x90befffa23631e28,0xa4506cebde82bde9
  385. .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
  386. .quad 0xca273eceea26619c,0xd186b8c721c0c207
  387. .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
  388. .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
  389. .quad 0x113f9804bef90dae,0x1b710b35131c471b
  390. .quad 0x28db77f523047d84,0x32caab7b40c72493
  391. .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
  392. .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
  393. .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
  394. #endif