123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- /*
- * Copyright (C) 2012 Regents of the University of California
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation, version 2.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- */
- #ifndef _ASM_RISCV_BITOPS_H
- #define _ASM_RISCV_BITOPS_H
- #ifndef _LINUX_BITOPS_H
- #error "Only <linux/bitops.h> can be included directly"
- #endif /* _LINUX_BITOPS_H */
- #include <linux/compiler.h>
- #include <linux/irqflags.h>
- #include <asm/barrier.h>
- #include <asm/bitsperlong.h>
- #ifndef smp_mb__before_clear_bit
- #define smp_mb__before_clear_bit() smp_mb()
- #define smp_mb__after_clear_bit() smp_mb()
- #endif /* smp_mb__before_clear_bit */
- #include <asm-generic/bitops/__ffs.h>
- #include <asm-generic/bitops/ffz.h>
- #include <asm-generic/bitops/fls.h>
- #include <asm-generic/bitops/__fls.h>
- #include <asm-generic/bitops/fls64.h>
- #include <asm-generic/bitops/find.h>
- #include <asm-generic/bitops/sched.h>
- #include <asm-generic/bitops/ffs.h>
- #include <asm-generic/bitops/hweight.h>
- #if (BITS_PER_LONG == 64)
- #define __AMO(op) "amo" #op ".d"
- #elif (BITS_PER_LONG == 32)
- #define __AMO(op) "amo" #op ".w"
- #else
- #error "Unexpected BITS_PER_LONG"
- #endif
- #define __test_and_op_bit_ord(op, mod, nr, addr, ord) \
- ({ \
- unsigned long __res, __mask; \
- __mask = BIT_MASK(nr); \
- __asm__ __volatile__ ( \
- __AMO(op) #ord " %0, %2, %1" \
- : "=r" (__res), "+A" (addr[BIT_WORD(nr)]) \
- : "r" (mod(__mask)) \
- : "memory"); \
- ((__res & __mask) != 0); \
- })
- #define __op_bit_ord(op, mod, nr, addr, ord) \
- __asm__ __volatile__ ( \
- __AMO(op) #ord " zero, %1, %0" \
- : "+A" (addr[BIT_WORD(nr)]) \
- : "r" (mod(BIT_MASK(nr))) \
- : "memory");
- #define __test_and_op_bit(op, mod, nr, addr) \
- __test_and_op_bit_ord(op, mod, nr, addr, .aqrl)
- #define __op_bit(op, mod, nr, addr) \
- __op_bit_ord(op, mod, nr, addr, )
- /* Bitmask modifiers */
- #define __NOP(x) (x)
- #define __NOT(x) (~(x))
- /**
- * test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation may be reordered on other architectures than x86.
- */
- static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
- {
- return __test_and_op_bit(or, __NOP, nr, addr);
- }
- /**
- * test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to clear
- * @addr: Address to count from
- *
- * This operation can be reordered on other architectures other than x86.
- */
- static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
- {
- return __test_and_op_bit(and, __NOT, nr, addr);
- }
- /**
- * test_and_change_bit - Change a bit and return its old value
- * @nr: Bit to change
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
- static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
- {
- return __test_and_op_bit(xor, __NOP, nr, addr);
- }
- /**
- * set_bit - Atomically set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Note: there are no guarantees that this function will not be reordered
- * on non x86 architectures, so if you are writing portable code,
- * make sure not to rely on its reordering guarantees.
- *
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
- static inline void set_bit(int nr, volatile unsigned long *addr)
- {
- __op_bit(or, __NOP, nr, addr);
- }
- /**
- * clear_bit - Clears a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * Note: there are no guarantees that this function will not be reordered
- * on non x86 architectures, so if you are writing portable code,
- * make sure not to rely on its reordering guarantees.
- */
- static inline void clear_bit(int nr, volatile unsigned long *addr)
- {
- __op_bit(and, __NOT, nr, addr);
- }
- /**
- * change_bit - Toggle a bit in memory
- * @nr: Bit to change
- * @addr: Address to start counting from
- *
- * change_bit() may be reordered on other architectures than x86.
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
- static inline void change_bit(int nr, volatile unsigned long *addr)
- {
- __op_bit(xor, __NOP, nr, addr);
- }
- /**
- * test_and_set_bit_lock - Set a bit and return its old value, for lock
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and provides acquire barrier semantics.
- * It can be used to implement bit locks.
- */
- static inline int test_and_set_bit_lock(
- unsigned long nr, volatile unsigned long *addr)
- {
- return __test_and_op_bit_ord(or, __NOP, nr, addr, .aq);
- }
- /**
- * clear_bit_unlock - Clear a bit in memory, for unlock
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * This operation is atomic and provides release barrier semantics.
- */
- static inline void clear_bit_unlock(
- unsigned long nr, volatile unsigned long *addr)
- {
- __op_bit_ord(and, __NOT, nr, addr, .rl);
- }
- /**
- * __clear_bit_unlock - Clear a bit in memory, for unlock
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * This operation is like clear_bit_unlock, however it is not atomic.
- * It does provide release barrier semantics so it can be used to unlock
- * a bit lock, however it would only be used if no other CPU can modify
- * any bits in the memory until the lock is released (a good example is
- * if the bit lock itself protects access to the other bits in the word).
- *
- * On RISC-V systems there seems to be no benefit to taking advantage of the
- * non-atomic property here: it's a lot more instructions and we still have to
- * provide release semantics anyway.
- */
- static inline void __clear_bit_unlock(
- unsigned long nr, volatile unsigned long *addr)
- {
- clear_bit_unlock(nr, addr);
- }
- #undef __test_and_op_bit
- #undef __op_bit
- #undef __NOP
- #undef __NOT
- #undef __AMO
- #include <asm-generic/bitops/non-atomic.h>
- #include <asm-generic/bitops/le.h>
- #include <asm-generic/bitops/ext2-atomic.h>
- #endif /* _ASM_RISCV_BITOPS_H */
|