123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Initialize MMU support.
- *
- * Copyright (C) 1998-2003 Hewlett-Packard Co
- * David Mosberger-Tang <davidm@hpl.hp.com>
- */
- #include <linux/kernel.h>
- #include <linux/init.h>
- #include <linux/bootmem.h>
- #include <linux/efi.h>
- #include <linux/elf.h>
- #include <linux/memblock.h>
- #include <linux/mm.h>
- #include <linux/sched/signal.h>
- #include <linux/mmzone.h>
- #include <linux/module.h>
- #include <linux/personality.h>
- #include <linux/reboot.h>
- #include <linux/slab.h>
- #include <linux/swap.h>
- #include <linux/proc_fs.h>
- #include <linux/bitops.h>
- #include <linux/kexec.h>
- #include <asm/dma.h>
- #include <asm/io.h>
- #include <asm/machvec.h>
- #include <asm/numa.h>
- #include <asm/patch.h>
- #include <asm/pgalloc.h>
- #include <asm/sal.h>
- #include <asm/sections.h>
- #include <asm/tlb.h>
- #include <linux/uaccess.h>
- #include <asm/unistd.h>
- #include <asm/mca.h>
- extern void ia64_tlb_init (void);
- unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
- #ifdef CONFIG_VIRTUAL_MEM_MAP
- unsigned long VMALLOC_END = VMALLOC_END_INIT;
- EXPORT_SYMBOL(VMALLOC_END);
- struct page *vmem_map;
- EXPORT_SYMBOL(vmem_map);
- #endif
- struct page *zero_page_memmap_ptr; /* map entry for zero page */
- EXPORT_SYMBOL(zero_page_memmap_ptr);
- void
- __ia64_sync_icache_dcache (pte_t pte)
- {
- unsigned long addr;
- struct page *page;
- page = pte_page(pte);
- addr = (unsigned long) page_address(page);
- if (test_bit(PG_arch_1, &page->flags))
- return; /* i-cache is already coherent with d-cache */
- flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
- set_bit(PG_arch_1, &page->flags); /* mark page as clean */
- }
- /*
- * Since DMA is i-cache coherent, any (complete) pages that were written via
- * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
- * flush them when they get mapped into an executable vm-area.
- */
- void
- dma_mark_clean(void *addr, size_t size)
- {
- unsigned long pg_addr, end;
- pg_addr = PAGE_ALIGN((unsigned long) addr);
- end = (unsigned long) addr + size;
- while (pg_addr + PAGE_SIZE <= end) {
- struct page *page = virt_to_page(pg_addr);
- set_bit(PG_arch_1, &page->flags);
- pg_addr += PAGE_SIZE;
- }
- }
- inline void
- ia64_set_rbs_bot (void)
- {
- unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
- if (stack_size > MAX_USER_STACK_SIZE)
- stack_size = MAX_USER_STACK_SIZE;
- current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
- }
- /*
- * This performs some platform-dependent address space initialization.
- * On IA-64, we want to setup the VM area for the register backing
- * store (which grows upwards) and install the gateway page which is
- * used for signal trampolines, etc.
- */
- void
- ia64_init_addr_space (void)
- {
- struct vm_area_struct *vma;
- ia64_set_rbs_bot();
- /*
- * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
- * the problem. When the process attempts to write to the register backing store
- * for the first time, it will get a SEGFAULT in this case.
- */
- vma = vm_area_alloc(current->mm);
- if (vma) {
- vma_set_anonymous(vma);
- vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
- vma->vm_end = vma->vm_start + PAGE_SIZE;
- vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
- vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
- down_write(¤t->mm->mmap_sem);
- if (insert_vm_struct(current->mm, vma)) {
- up_write(¤t->mm->mmap_sem);
- vm_area_free(vma);
- return;
- }
- up_write(¤t->mm->mmap_sem);
- }
- /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
- if (!(current->personality & MMAP_PAGE_ZERO)) {
- vma = vm_area_alloc(current->mm);
- if (vma) {
- vma_set_anonymous(vma);
- vma->vm_end = PAGE_SIZE;
- vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
- vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
- VM_DONTEXPAND | VM_DONTDUMP;
- down_write(¤t->mm->mmap_sem);
- if (insert_vm_struct(current->mm, vma)) {
- up_write(¤t->mm->mmap_sem);
- vm_area_free(vma);
- return;
- }
- up_write(¤t->mm->mmap_sem);
- }
- }
- }
- void
- free_initmem (void)
- {
- free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
- -1, "unused kernel");
- }
- void __init
- free_initrd_mem (unsigned long start, unsigned long end)
- {
- /*
- * EFI uses 4KB pages while the kernel can use 4KB or bigger.
- * Thus EFI and the kernel may have different page sizes. It is
- * therefore possible to have the initrd share the same page as
- * the end of the kernel (given current setup).
- *
- * To avoid freeing/using the wrong page (kernel sized) we:
- * - align up the beginning of initrd
- * - align down the end of initrd
- *
- * | |
- * |=============| a000
- * | |
- * | |
- * | | 9000
- * |/////////////|
- * |/////////////|
- * |=============| 8000
- * |///INITRD////|
- * |/////////////|
- * |/////////////| 7000
- * | |
- * |KKKKKKKKKKKKK|
- * |=============| 6000
- * |KKKKKKKKKKKKK|
- * |KKKKKKKKKKKKK|
- * K=kernel using 8KB pages
- *
- * In this example, we must free page 8000 ONLY. So we must align up
- * initrd_start and keep initrd_end as is.
- */
- start = PAGE_ALIGN(start);
- end = end & PAGE_MASK;
- if (start < end)
- printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
- for (; start < end; start += PAGE_SIZE) {
- if (!virt_addr_valid(start))
- continue;
- free_reserved_page(virt_to_page(start));
- }
- }
- /*
- * This installs a clean page in the kernel's page table.
- */
- static struct page * __init
- put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
- {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
- {
- pud = pud_alloc(&init_mm, pgd, address);
- if (!pud)
- goto out;
- pmd = pmd_alloc(&init_mm, pud, address);
- if (!pmd)
- goto out;
- pte = pte_alloc_kernel(pmd, address);
- if (!pte)
- goto out;
- if (!pte_none(*pte))
- goto out;
- set_pte(pte, mk_pte(page, pgprot));
- }
- out:
- /* no need for flush_tlb */
- return page;
- }
- static void __init
- setup_gate (void)
- {
- struct page *page;
- /*
- * Map the gate page twice: once read-only to export the ELF
- * headers etc. and once execute-only page to enable
- * privilege-promotion via "epc":
- */
- page = virt_to_page(ia64_imva(__start_gate_section));
- put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
- #ifdef HAVE_BUGGY_SEGREL
- page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
- put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
- #else
- put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
- /* Fill in the holes (if any) with read-only zero pages: */
- {
- unsigned long addr;
- for (addr = GATE_ADDR + PAGE_SIZE;
- addr < GATE_ADDR + PERCPU_PAGE_SIZE;
- addr += PAGE_SIZE)
- {
- put_kernel_page(ZERO_PAGE(0), addr,
- PAGE_READONLY);
- put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
- PAGE_READONLY);
- }
- }
- #endif
- ia64_patch_gate();
- }
- static struct vm_area_struct gate_vma;
- static int __init gate_vma_init(void)
- {
- vma_init(&gate_vma, NULL);
- gate_vma.vm_start = FIXADDR_USER_START;
- gate_vma.vm_end = FIXADDR_USER_END;
- gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
- gate_vma.vm_page_prot = __P101;
- return 0;
- }
- __initcall(gate_vma_init);
- struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
- {
- return &gate_vma;
- }
- int in_gate_area_no_mm(unsigned long addr)
- {
- if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
- return 1;
- return 0;
- }
- int in_gate_area(struct mm_struct *mm, unsigned long addr)
- {
- return in_gate_area_no_mm(addr);
- }
- void ia64_mmu_init(void *my_cpu_data)
- {
- unsigned long pta, impl_va_bits;
- extern void tlb_init(void);
- #ifdef CONFIG_DISABLE_VHPT
- # define VHPT_ENABLE_BIT 0
- #else
- # define VHPT_ENABLE_BIT 1
- #endif
- /*
- * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
- * address space. The IA-64 architecture guarantees that at least 50 bits of
- * virtual address space are implemented but if we pick a large enough page size
- * (e.g., 64KB), the mapped address space is big enough that it will overlap with
- * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
- * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
- * problem in practice. Alternatively, we could truncate the top of the mapped
- * address space to not permit mappings that would overlap with the VMLPT.
- * --davidm 00/12/06
- */
- # define pte_bits 3
- # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
- /*
- * The virtual page table has to cover the entire implemented address space within
- * a region even though not all of this space may be mappable. The reason for
- * this is that the Access bit and Dirty bit fault handlers perform
- * non-speculative accesses to the virtual page table, so the address range of the
- * virtual page table itself needs to be covered by virtual page table.
- */
- # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
- # define POW2(n) (1ULL << (n))
- impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
- if (impl_va_bits < 51 || impl_va_bits > 61)
- panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
- /*
- * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
- * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
- * the test makes sure that our mapped space doesn't overlap the
- * unimplemented hole in the middle of the region.
- */
- if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
- (mapped_space_bits > impl_va_bits - 1))
- panic("Cannot build a big enough virtual-linear page table"
- " to cover mapped address space.\n"
- " Try using a smaller page size.\n");
- /* place the VMLPT at the end of each page-table mapped region: */
- pta = POW2(61) - POW2(vmlpt_bits);
- /*
- * Set the (virtually mapped linear) page table address. Bit
- * 8 selects between the short and long format, bits 2-7 the
- * size of the table, and bit 0 whether the VHPT walker is
- * enabled.
- */
- ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
- ia64_tlb_init();
- #ifdef CONFIG_HUGETLB_PAGE
- ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
- ia64_srlz_d();
- #endif
- }
- #ifdef CONFIG_VIRTUAL_MEM_MAP
- int vmemmap_find_next_valid_pfn(int node, int i)
- {
- unsigned long end_address, hole_next_pfn;
- unsigned long stop_address;
- pg_data_t *pgdat = NODE_DATA(node);
- end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
- end_address = PAGE_ALIGN(end_address);
- stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
- do {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- pgd = pgd_offset_k(end_address);
- if (pgd_none(*pgd)) {
- end_address += PGDIR_SIZE;
- continue;
- }
- pud = pud_offset(pgd, end_address);
- if (pud_none(*pud)) {
- end_address += PUD_SIZE;
- continue;
- }
- pmd = pmd_offset(pud, end_address);
- if (pmd_none(*pmd)) {
- end_address += PMD_SIZE;
- continue;
- }
- pte = pte_offset_kernel(pmd, end_address);
- retry_pte:
- if (pte_none(*pte)) {
- end_address += PAGE_SIZE;
- pte++;
- if ((end_address < stop_address) &&
- (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
- goto retry_pte;
- continue;
- }
- /* Found next valid vmem_map page */
- break;
- } while (end_address < stop_address);
- end_address = min(end_address, stop_address);
- end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
- hole_next_pfn = end_address / sizeof(struct page);
- return hole_next_pfn - pgdat->node_start_pfn;
- }
- int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
- {
- unsigned long address, start_page, end_page;
- struct page *map_start, *map_end;
- int node;
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
- map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
- start_page = (unsigned long) map_start & PAGE_MASK;
- end_page = PAGE_ALIGN((unsigned long) map_end);
- node = paddr_to_nid(__pa(start));
- for (address = start_page; address < end_page; address += PAGE_SIZE) {
- pgd = pgd_offset_k(address);
- if (pgd_none(*pgd))
- pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
- pud = pud_offset(pgd, address);
- if (pud_none(*pud))
- pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
- pmd = pmd_offset(pud, address);
- if (pmd_none(*pmd))
- pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
- pte = pte_offset_kernel(pmd, address);
- if (pte_none(*pte))
- set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
- PAGE_KERNEL));
- }
- return 0;
- }
- struct memmap_init_callback_data {
- struct page *start;
- struct page *end;
- int nid;
- unsigned long zone;
- };
- static int __meminit
- virtual_memmap_init(u64 start, u64 end, void *arg)
- {
- struct memmap_init_callback_data *args;
- struct page *map_start, *map_end;
- args = (struct memmap_init_callback_data *) arg;
- map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
- map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
- if (map_start < args->start)
- map_start = args->start;
- if (map_end > args->end)
- map_end = args->end;
- /*
- * We have to initialize "out of bounds" struct page elements that fit completely
- * on the same pages that were allocated for the "in bounds" elements because they
- * may be referenced later (and found to be "reserved").
- */
- map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
- map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
- / sizeof(struct page));
- if (map_start < map_end)
- memmap_init_zone((unsigned long)(map_end - map_start),
- args->nid, args->zone, page_to_pfn(map_start),
- MEMMAP_EARLY, NULL);
- return 0;
- }
- void __meminit
- memmap_init (unsigned long size, int nid, unsigned long zone,
- unsigned long start_pfn)
- {
- if (!vmem_map) {
- memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY,
- NULL);
- } else {
- struct page *start;
- struct memmap_init_callback_data args;
- start = pfn_to_page(start_pfn);
- args.start = start;
- args.end = start + size;
- args.nid = nid;
- args.zone = zone;
- efi_memmap_walk(virtual_memmap_init, &args);
- }
- }
- int
- ia64_pfn_valid (unsigned long pfn)
- {
- char byte;
- struct page *pg = pfn_to_page(pfn);
- return (__get_user(byte, (char __user *) pg) == 0)
- && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
- || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
- }
- EXPORT_SYMBOL(ia64_pfn_valid);
- int __init find_largest_hole(u64 start, u64 end, void *arg)
- {
- u64 *max_gap = arg;
- static u64 last_end = PAGE_OFFSET;
- /* NOTE: this algorithm assumes efi memmap table is ordered */
- if (*max_gap < (start - last_end))
- *max_gap = start - last_end;
- last_end = end;
- return 0;
- }
- #endif /* CONFIG_VIRTUAL_MEM_MAP */
- int __init register_active_ranges(u64 start, u64 len, int nid)
- {
- u64 end = start + len;
- #ifdef CONFIG_KEXEC
- if (start > crashk_res.start && start < crashk_res.end)
- start = crashk_res.end;
- if (end > crashk_res.start && end < crashk_res.end)
- end = crashk_res.start;
- #endif
- if (start < end)
- memblock_add_node(__pa(start), end - start, nid);
- return 0;
- }
- int
- find_max_min_low_pfn (u64 start, u64 end, void *arg)
- {
- unsigned long pfn_start, pfn_end;
- #ifdef CONFIG_FLATMEM
- pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
- pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
- #else
- pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
- pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
- #endif
- min_low_pfn = min(min_low_pfn, pfn_start);
- max_low_pfn = max(max_low_pfn, pfn_end);
- return 0;
- }
- /*
- * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
- * system call handler. When this option is in effect, all fsyscalls will end up bubbling
- * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
- * useful for performance testing, but conceivably could also come in handy for debugging
- * purposes.
- */
- static int nolwsys __initdata;
- static int __init
- nolwsys_setup (char *s)
- {
- nolwsys = 1;
- return 1;
- }
- __setup("nolwsys", nolwsys_setup);
- void __init
- mem_init (void)
- {
- int i;
- BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
- BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
- BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
- #ifdef CONFIG_PCI
- /*
- * This needs to be called _after_ the command line has been parsed but _before_
- * any drivers that may need the PCI DMA interface are initialized or bootmem has
- * been freed.
- */
- platform_dma_init();
- #endif
- #ifdef CONFIG_FLATMEM
- BUG_ON(!mem_map);
- #endif
- set_max_mapnr(max_low_pfn);
- high_memory = __va(max_low_pfn * PAGE_SIZE);
- free_all_bootmem();
- mem_init_print_info(NULL);
- /*
- * For fsyscall entrpoints with no light-weight handler, use the ordinary
- * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
- * code can tell them apart.
- */
- for (i = 0; i < NR_syscalls; ++i) {
- extern unsigned long fsyscall_table[NR_syscalls];
- extern unsigned long sys_call_table[NR_syscalls];
- if (!fsyscall_table[i] || nolwsys)
- fsyscall_table[i] = sys_call_table[i] | 1;
- }
- setup_gate();
- }
- #ifdef CONFIG_MEMORY_HOTPLUG
- int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
- bool want_memblock)
- {
- unsigned long start_pfn = start >> PAGE_SHIFT;
- unsigned long nr_pages = size >> PAGE_SHIFT;
- int ret;
- ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
- if (ret)
- printk("%s: Problem encountered in __add_pages() as ret=%d\n",
- __func__, ret);
- return ret;
- }
- void arch_remove_memory(int nid, u64 start, u64 size,
- struct vmem_altmap *altmap)
- {
- unsigned long start_pfn = start >> PAGE_SHIFT;
- unsigned long nr_pages = size >> PAGE_SHIFT;
- __remove_pages(start_pfn, nr_pages, altmap);
- }
- #endif
|