123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
- * Copyright (c) 2001 Intel Corp.
- * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
- * Copyright (c) 2002 NEC Corp.
- * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
- * Copyright (c) 2004 Silicon Graphics, Inc
- * Russ Anderson <rja@sgi.com>
- * Jesse Barnes <jbarnes@sgi.com>
- * Jack Steiner <steiner@sgi.com>
- */
- /*
- * Platform initialization for Discontig Memory
- */
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/nmi.h>
- #include <linux/swap.h>
- #include <linux/bootmem.h>
- #include <linux/memblock.h>
- #include <linux/acpi.h>
- #include <linux/efi.h>
- #include <linux/nodemask.h>
- #include <linux/slab.h>
- #include <asm/pgalloc.h>
- #include <asm/tlb.h>
- #include <asm/meminit.h>
- #include <asm/numa.h>
- #include <asm/sections.h>
- /*
- * Track per-node information needed to setup the boot memory allocator, the
- * per-node areas, and the real VM.
- */
- struct early_node_data {
- struct ia64_node_data *node_data;
- unsigned long pernode_addr;
- unsigned long pernode_size;
- unsigned long min_pfn;
- unsigned long max_pfn;
- };
- static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
- static nodemask_t memory_less_mask __initdata;
- pg_data_t *pgdat_list[MAX_NUMNODES];
- /*
- * To prevent cache aliasing effects, align per-node structures so that they
- * start at addresses that are strided by node number.
- */
- #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
- #define NODEDATA_ALIGN(addr, node) \
- ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
- (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
- /**
- * build_node_maps - callback to setup mem_data structs for each node
- * @start: physical start of range
- * @len: length of range
- * @node: node where this range resides
- *
- * Detect extents of each piece of memory that we wish to
- * treat as a virtually contiguous block (i.e. each node). Each such block
- * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
- * if necessary. Any non-existent pages will simply be part of the virtual
- * memmap.
- */
- static int __init build_node_maps(unsigned long start, unsigned long len,
- int node)
- {
- unsigned long spfn, epfn, end = start + len;
- epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
- spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
- if (!mem_data[node].min_pfn) {
- mem_data[node].min_pfn = spfn;
- mem_data[node].max_pfn = epfn;
- } else {
- mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
- mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
- }
- return 0;
- }
- /**
- * early_nr_cpus_node - return number of cpus on a given node
- * @node: node to check
- *
- * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
- * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
- * called yet. Note that node 0 will also count all non-existent cpus.
- */
- static int __meminit early_nr_cpus_node(int node)
- {
- int cpu, n = 0;
- for_each_possible_early_cpu(cpu)
- if (node == node_cpuid[cpu].nid)
- n++;
- return n;
- }
- /**
- * compute_pernodesize - compute size of pernode data
- * @node: the node id.
- */
- static unsigned long __meminit compute_pernodesize(int node)
- {
- unsigned long pernodesize = 0, cpus;
- cpus = early_nr_cpus_node(node);
- pernodesize += PERCPU_PAGE_SIZE * cpus;
- pernodesize += node * L1_CACHE_BYTES;
- pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
- pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
- pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
- pernodesize = PAGE_ALIGN(pernodesize);
- return pernodesize;
- }
- /**
- * per_cpu_node_setup - setup per-cpu areas on each node
- * @cpu_data: per-cpu area on this node
- * @node: node to setup
- *
- * Copy the static per-cpu data into the region we just set aside and then
- * setup __per_cpu_offset for each CPU on this node. Return a pointer to
- * the end of the area.
- */
- static void *per_cpu_node_setup(void *cpu_data, int node)
- {
- #ifdef CONFIG_SMP
- int cpu;
- for_each_possible_early_cpu(cpu) {
- void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
- if (node != node_cpuid[cpu].nid)
- continue;
- memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
- __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
- __per_cpu_start;
- /*
- * percpu area for cpu0 is moved from the __init area
- * which is setup by head.S and used till this point.
- * Update ar.k3. This move is ensures that percpu
- * area for cpu0 is on the correct node and its
- * virtual address isn't insanely far from other
- * percpu areas which is important for congruent
- * percpu allocator.
- */
- if (cpu == 0)
- ia64_set_kr(IA64_KR_PER_CPU_DATA,
- (unsigned long)cpu_data -
- (unsigned long)__per_cpu_start);
- cpu_data += PERCPU_PAGE_SIZE;
- }
- #endif
- return cpu_data;
- }
- #ifdef CONFIG_SMP
- /**
- * setup_per_cpu_areas - setup percpu areas
- *
- * Arch code has already allocated and initialized percpu areas. All
- * this function has to do is to teach the determined layout to the
- * dynamic percpu allocator, which happens to be more complex than
- * creating whole new ones using helpers.
- */
- void __init setup_per_cpu_areas(void)
- {
- struct pcpu_alloc_info *ai;
- struct pcpu_group_info *uninitialized_var(gi);
- unsigned int *cpu_map;
- void *base;
- unsigned long base_offset;
- unsigned int cpu;
- ssize_t static_size, reserved_size, dyn_size;
- int node, prev_node, unit, nr_units, rc;
- ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
- if (!ai)
- panic("failed to allocate pcpu_alloc_info");
- cpu_map = ai->groups[0].cpu_map;
- /* determine base */
- base = (void *)ULONG_MAX;
- for_each_possible_cpu(cpu)
- base = min(base,
- (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
- base_offset = (void *)__per_cpu_start - base;
- /* build cpu_map, units are grouped by node */
- unit = 0;
- for_each_node(node)
- for_each_possible_cpu(cpu)
- if (node == node_cpuid[cpu].nid)
- cpu_map[unit++] = cpu;
- nr_units = unit;
- /* set basic parameters */
- static_size = __per_cpu_end - __per_cpu_start;
- reserved_size = PERCPU_MODULE_RESERVE;
- dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
- if (dyn_size < 0)
- panic("percpu area overflow static=%zd reserved=%zd\n",
- static_size, reserved_size);
- ai->static_size = static_size;
- ai->reserved_size = reserved_size;
- ai->dyn_size = dyn_size;
- ai->unit_size = PERCPU_PAGE_SIZE;
- ai->atom_size = PAGE_SIZE;
- ai->alloc_size = PERCPU_PAGE_SIZE;
- /*
- * CPUs are put into groups according to node. Walk cpu_map
- * and create new groups at node boundaries.
- */
- prev_node = -1;
- ai->nr_groups = 0;
- for (unit = 0; unit < nr_units; unit++) {
- cpu = cpu_map[unit];
- node = node_cpuid[cpu].nid;
- if (node == prev_node) {
- gi->nr_units++;
- continue;
- }
- prev_node = node;
- gi = &ai->groups[ai->nr_groups++];
- gi->nr_units = 1;
- gi->base_offset = __per_cpu_offset[cpu] + base_offset;
- gi->cpu_map = &cpu_map[unit];
- }
- rc = pcpu_setup_first_chunk(ai, base);
- if (rc)
- panic("failed to setup percpu area (err=%d)", rc);
- pcpu_free_alloc_info(ai);
- }
- #endif
- /**
- * fill_pernode - initialize pernode data.
- * @node: the node id.
- * @pernode: physical address of pernode data
- * @pernodesize: size of the pernode data
- */
- static void __init fill_pernode(int node, unsigned long pernode,
- unsigned long pernodesize)
- {
- void *cpu_data;
- int cpus = early_nr_cpus_node(node);
- mem_data[node].pernode_addr = pernode;
- mem_data[node].pernode_size = pernodesize;
- memset(__va(pernode), 0, pernodesize);
- cpu_data = (void *)pernode;
- pernode += PERCPU_PAGE_SIZE * cpus;
- pernode += node * L1_CACHE_BYTES;
- pgdat_list[node] = __va(pernode);
- pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
- mem_data[node].node_data = __va(pernode);
- pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
- pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
- cpu_data = per_cpu_node_setup(cpu_data, node);
- return;
- }
- /**
- * find_pernode_space - allocate memory for memory map and per-node structures
- * @start: physical start of range
- * @len: length of range
- * @node: node where this range resides
- *
- * This routine reserves space for the per-cpu data struct, the list of
- * pg_data_ts and the per-node data struct. Each node will have something like
- * the following in the first chunk of addr. space large enough to hold it.
- *
- * ________________________
- * | |
- * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
- * | PERCPU_PAGE_SIZE * | start and length big enough
- * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
- * |------------------------|
- * | local pg_data_t * |
- * |------------------------|
- * | local ia64_node_data |
- * |------------------------|
- * | ??? |
- * |________________________|
- *
- * Once this space has been set aside, the bootmem maps are initialized. We
- * could probably move the allocation of the per-cpu and ia64_node_data space
- * outside of this function and use alloc_bootmem_node(), but doing it here
- * is straightforward and we get the alignments we want so...
- */
- static int __init find_pernode_space(unsigned long start, unsigned long len,
- int node)
- {
- unsigned long spfn, epfn;
- unsigned long pernodesize = 0, pernode;
- spfn = start >> PAGE_SHIFT;
- epfn = (start + len) >> PAGE_SHIFT;
- /*
- * Make sure this memory falls within this node's usable memory
- * since we may have thrown some away in build_maps().
- */
- if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
- return 0;
- /* Don't setup this node's local space twice... */
- if (mem_data[node].pernode_addr)
- return 0;
- /*
- * Calculate total size needed, incl. what's necessary
- * for good alignment and alias prevention.
- */
- pernodesize = compute_pernodesize(node);
- pernode = NODEDATA_ALIGN(start, node);
- /* Is this range big enough for what we want to store here? */
- if (start + len > (pernode + pernodesize))
- fill_pernode(node, pernode, pernodesize);
- return 0;
- }
- /**
- * reserve_pernode_space - reserve memory for per-node space
- *
- * Reserve the space used by the bootmem maps & per-node space in the boot
- * allocator so that when we actually create the real mem maps we don't
- * use their memory.
- */
- static void __init reserve_pernode_space(void)
- {
- unsigned long base, size;
- int node;
- for_each_online_node(node) {
- if (node_isset(node, memory_less_mask))
- continue;
- /* Now the per-node space */
- size = mem_data[node].pernode_size;
- base = __pa(mem_data[node].pernode_addr);
- memblock_reserve(base, size);
- }
- }
- static void __meminit scatter_node_data(void)
- {
- pg_data_t **dst;
- int node;
- /*
- * for_each_online_node() can't be used at here.
- * node_online_map is not set for hot-added nodes at this time,
- * because we are halfway through initialization of the new node's
- * structures. If for_each_online_node() is used, a new node's
- * pg_data_ptrs will be not initialized. Instead of using it,
- * pgdat_list[] is checked.
- */
- for_each_node(node) {
- if (pgdat_list[node]) {
- dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
- memcpy(dst, pgdat_list, sizeof(pgdat_list));
- }
- }
- }
- /**
- * initialize_pernode_data - fixup per-cpu & per-node pointers
- *
- * Each node's per-node area has a copy of the global pg_data_t list, so
- * we copy that to each node here, as well as setting the per-cpu pointer
- * to the local node data structure. The active_cpus field of the per-node
- * structure gets setup by the platform_cpu_init() function later.
- */
- static void __init initialize_pernode_data(void)
- {
- int cpu, node;
- scatter_node_data();
- #ifdef CONFIG_SMP
- /* Set the node_data pointer for each per-cpu struct */
- for_each_possible_early_cpu(cpu) {
- node = node_cpuid[cpu].nid;
- per_cpu(ia64_cpu_info, cpu).node_data =
- mem_data[node].node_data;
- }
- #else
- {
- struct cpuinfo_ia64 *cpu0_cpu_info;
- cpu = 0;
- node = node_cpuid[cpu].nid;
- cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
- ((char *)&ia64_cpu_info - __per_cpu_start));
- cpu0_cpu_info->node_data = mem_data[node].node_data;
- }
- #endif /* CONFIG_SMP */
- }
- /**
- * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
- * node but fall back to any other node when __alloc_bootmem_node fails
- * for best.
- * @nid: node id
- * @pernodesize: size of this node's pernode data
- */
- static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
- {
- void *ptr = NULL;
- u8 best = 0xff;
- int bestnode = -1, node, anynode = 0;
- for_each_online_node(node) {
- if (node_isset(node, memory_less_mask))
- continue;
- else if (node_distance(nid, node) < best) {
- best = node_distance(nid, node);
- bestnode = node;
- }
- anynode = node;
- }
- if (bestnode == -1)
- bestnode = anynode;
- ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
- PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
- return ptr;
- }
- /**
- * memory_less_nodes - allocate and initialize CPU only nodes pernode
- * information.
- */
- static void __init memory_less_nodes(void)
- {
- unsigned long pernodesize;
- void *pernode;
- int node;
- for_each_node_mask(node, memory_less_mask) {
- pernodesize = compute_pernodesize(node);
- pernode = memory_less_node_alloc(node, pernodesize);
- fill_pernode(node, __pa(pernode), pernodesize);
- }
- return;
- }
- /**
- * find_memory - walk the EFI memory map and setup the bootmem allocator
- *
- * Called early in boot to setup the bootmem allocator, and to
- * allocate the per-cpu and per-node structures.
- */
- void __init find_memory(void)
- {
- int node;
- reserve_memory();
- efi_memmap_walk(filter_memory, register_active_ranges);
- if (num_online_nodes() == 0) {
- printk(KERN_ERR "node info missing!\n");
- node_set_online(0);
- }
- nodes_or(memory_less_mask, memory_less_mask, node_online_map);
- min_low_pfn = -1;
- max_low_pfn = 0;
- /* These actually end up getting called by call_pernode_memory() */
- efi_memmap_walk(filter_rsvd_memory, build_node_maps);
- efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
- efi_memmap_walk(find_max_min_low_pfn, NULL);
- for_each_online_node(node)
- if (mem_data[node].min_pfn)
- node_clear(node, memory_less_mask);
- reserve_pernode_space();
- memory_less_nodes();
- initialize_pernode_data();
- max_pfn = max_low_pfn;
- find_initrd();
- }
- #ifdef CONFIG_SMP
- /**
- * per_cpu_init - setup per-cpu variables
- *
- * find_pernode_space() does most of this already, we just need to set
- * local_per_cpu_offset
- */
- void *per_cpu_init(void)
- {
- int cpu;
- static int first_time = 1;
- if (first_time) {
- first_time = 0;
- for_each_possible_early_cpu(cpu)
- per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
- }
- return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
- }
- #endif /* CONFIG_SMP */
- /**
- * call_pernode_memory - use SRAT to call callback functions with node info
- * @start: physical start of range
- * @len: length of range
- * @arg: function to call for each range
- *
- * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
- * out to which node a block of memory belongs. Ignore memory that we cannot
- * identify, and split blocks that run across multiple nodes.
- *
- * Take this opportunity to round the start address up and the end address
- * down to page boundaries.
- */
- void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
- {
- unsigned long rs, re, end = start + len;
- void (*func)(unsigned long, unsigned long, int);
- int i;
- start = PAGE_ALIGN(start);
- end &= PAGE_MASK;
- if (start >= end)
- return;
- func = arg;
- if (!num_node_memblks) {
- /* No SRAT table, so assume one node (node 0) */
- if (start < end)
- (*func)(start, end - start, 0);
- return;
- }
- for (i = 0; i < num_node_memblks; i++) {
- rs = max(start, node_memblk[i].start_paddr);
- re = min(end, node_memblk[i].start_paddr +
- node_memblk[i].size);
- if (rs < re)
- (*func)(rs, re - rs, node_memblk[i].nid);
- if (re == end)
- break;
- }
- }
- /**
- * paging_init - setup page tables
- *
- * paging_init() sets up the page tables for each node of the system and frees
- * the bootmem allocator memory for general use.
- */
- void __init paging_init(void)
- {
- unsigned long max_dma;
- unsigned long pfn_offset = 0;
- unsigned long max_pfn = 0;
- int node;
- unsigned long max_zone_pfns[MAX_NR_ZONES];
- max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
- sparse_memory_present_with_active_regions(MAX_NUMNODES);
- sparse_init();
- #ifdef CONFIG_VIRTUAL_MEM_MAP
- VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
- sizeof(struct page));
- vmem_map = (struct page *) VMALLOC_END;
- efi_memmap_walk(create_mem_map_page_table, NULL);
- printk("Virtual mem_map starts at 0x%p\n", vmem_map);
- #endif
- for_each_online_node(node) {
- pfn_offset = mem_data[node].min_pfn;
- #ifdef CONFIG_VIRTUAL_MEM_MAP
- NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
- #endif
- if (mem_data[node].max_pfn > max_pfn)
- max_pfn = mem_data[node].max_pfn;
- }
- memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
- #ifdef CONFIG_ZONE_DMA32
- max_zone_pfns[ZONE_DMA32] = max_dma;
- #endif
- max_zone_pfns[ZONE_NORMAL] = max_pfn;
- free_area_init_nodes(max_zone_pfns);
- zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
- }
- #ifdef CONFIG_MEMORY_HOTPLUG
- pg_data_t *arch_alloc_nodedata(int nid)
- {
- unsigned long size = compute_pernodesize(nid);
- return kzalloc(size, GFP_KERNEL);
- }
- void arch_free_nodedata(pg_data_t *pgdat)
- {
- kfree(pgdat);
- }
- void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
- {
- pgdat_list[update_node] = update_pgdat;
- scatter_node_data();
- }
- #endif
- #ifdef CONFIG_SPARSEMEM_VMEMMAP
- int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
- struct vmem_altmap *altmap)
- {
- return vmemmap_populate_basepages(start, end, node);
- }
- void vmemmap_free(unsigned long start, unsigned long end,
- struct vmem_altmap *altmap)
- {
- }
- #endif
|