copy_page_mck.S 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. /*
  3. * McKinley-optimized version of copy_page().
  4. *
  5. * Copyright (C) 2002 Hewlett-Packard Co
  6. * David Mosberger <davidm@hpl.hp.com>
  7. *
  8. * Inputs:
  9. * in0: address of target page
  10. * in1: address of source page
  11. * Output:
  12. * no return value
  13. *
  14. * General idea:
  15. * - use regular loads and stores to prefetch data to avoid consuming M-slot just for
  16. * lfetches => good for in-cache performance
  17. * - avoid l2 bank-conflicts by not storing into the same 16-byte bank within a single
  18. * cycle
  19. *
  20. * Principle of operation:
  21. * First, note that L1 has a line-size of 64 bytes and L2 a line-size of 128 bytes.
  22. * To avoid secondary misses in L2, we prefetch both source and destination with a line-size
  23. * of 128 bytes. When both of these lines are in the L2 and the first half of the
  24. * source line is in L1, we start copying the remaining words. The second half of the
  25. * source line is prefetched in an earlier iteration, so that by the time we start
  26. * accessing it, it's also present in the L1.
  27. *
  28. * We use a software-pipelined loop to control the overall operation. The pipeline
  29. * has 2*PREFETCH_DIST+K stages. The first PREFETCH_DIST stages are used for prefetching
  30. * source cache-lines. The second PREFETCH_DIST stages are used for prefetching destination
  31. * cache-lines, the last K stages are used to copy the cache-line words not copied by
  32. * the prefetches. The four relevant points in the pipelined are called A, B, C, D:
  33. * p[A] is TRUE if a source-line should be prefetched, p[B] is TRUE if a destination-line
  34. * should be prefetched, p[C] is TRUE if the second half of an L2 line should be brought
  35. * into L1D and p[D] is TRUE if a cacheline needs to be copied.
  36. *
  37. * This all sounds very complicated, but thanks to the modulo-scheduled loop support,
  38. * the resulting code is very regular and quite easy to follow (once you get the idea).
  39. *
  40. * As a secondary optimization, the first 2*PREFETCH_DIST iterations are implemented
  41. * as the separate .prefetch_loop. Logically, this loop performs exactly like the
  42. * main-loop (.line_copy), but has all known-to-be-predicated-off instructions removed,
  43. * so that each loop iteration is faster (again, good for cached case).
  44. *
  45. * When reading the code, it helps to keep the following picture in mind:
  46. *
  47. * word 0 word 1
  48. * +------+------+---
  49. * | v[x] | t1 | ^
  50. * | t2 | t3 | |
  51. * | t4 | t5 | |
  52. * | t6 | t7 | | 128 bytes
  53. * | n[y] | t9 | | (L2 cache line)
  54. * | t10 | t11 | |
  55. * | t12 | t13 | |
  56. * | t14 | t15 | v
  57. * +------+------+---
  58. *
  59. * Here, v[x] is copied by the (memory) prefetch. n[y] is loaded at p[C]
  60. * to fetch the second-half of the L2 cache line into L1, and the tX words are copied in
  61. * an order that avoids bank conflicts.
  62. */
  63. #include <asm/asmmacro.h>
  64. #include <asm/page.h>
  65. #include <asm/export.h>
  66. #define PREFETCH_DIST 8 // McKinley sustains 16 outstanding L2 misses (8 ld, 8 st)
  67. #define src0 r2
  68. #define src1 r3
  69. #define dst0 r9
  70. #define dst1 r10
  71. #define src_pre_mem r11
  72. #define dst_pre_mem r14
  73. #define src_pre_l2 r15
  74. #define dst_pre_l2 r16
  75. #define t1 r17
  76. #define t2 r18
  77. #define t3 r19
  78. #define t4 r20
  79. #define t5 t1 // alias!
  80. #define t6 t2 // alias!
  81. #define t7 t3 // alias!
  82. #define t9 t5 // alias!
  83. #define t10 t4 // alias!
  84. #define t11 t7 // alias!
  85. #define t12 t6 // alias!
  86. #define t14 t10 // alias!
  87. #define t13 r21
  88. #define t15 r22
  89. #define saved_lc r23
  90. #define saved_pr r24
  91. #define A 0
  92. #define B (PREFETCH_DIST)
  93. #define C (B + PREFETCH_DIST)
  94. #define D (C + 3)
  95. #define N (D + 1)
  96. #define Nrot ((N + 7) & ~7)
  97. GLOBAL_ENTRY(copy_page)
  98. .prologue
  99. alloc r8 = ar.pfs, 2, Nrot-2, 0, Nrot
  100. .rotr v[2*PREFETCH_DIST], n[D-C+1]
  101. .rotp p[N]
  102. .save ar.lc, saved_lc
  103. mov saved_lc = ar.lc
  104. .save pr, saved_pr
  105. mov saved_pr = pr
  106. .body
  107. mov src_pre_mem = in1
  108. mov pr.rot = 0x10000
  109. mov ar.ec = 1 // special unrolled loop
  110. mov dst_pre_mem = in0
  111. mov ar.lc = 2*PREFETCH_DIST - 1
  112. add src_pre_l2 = 8*8, in1
  113. add dst_pre_l2 = 8*8, in0
  114. add src0 = 8, in1 // first t1 src
  115. add src1 = 3*8, in1 // first t3 src
  116. add dst0 = 8, in0 // first t1 dst
  117. add dst1 = 3*8, in0 // first t3 dst
  118. mov t1 = (PAGE_SIZE/128) - (2*PREFETCH_DIST) - 1
  119. nop.m 0
  120. nop.i 0
  121. ;;
  122. // same as .line_copy loop, but with all predicated-off instructions removed:
  123. .prefetch_loop:
  124. (p[A]) ld8 v[A] = [src_pre_mem], 128 // M0
  125. (p[B]) st8 [dst_pre_mem] = v[B], 128 // M2
  126. br.ctop.sptk .prefetch_loop
  127. ;;
  128. cmp.eq p16, p0 = r0, r0 // reset p16 to 1 (br.ctop cleared it to zero)
  129. mov ar.lc = t1 // with 64KB pages, t1 is too big to fit in 8 bits!
  130. mov ar.ec = N // # of stages in pipeline
  131. ;;
  132. .line_copy:
  133. (p[D]) ld8 t2 = [src0], 3*8 // M0
  134. (p[D]) ld8 t4 = [src1], 3*8 // M1
  135. (p[B]) st8 [dst_pre_mem] = v[B], 128 // M2 prefetch dst from memory
  136. (p[D]) st8 [dst_pre_l2] = n[D-C], 128 // M3 prefetch dst from L2
  137. ;;
  138. (p[A]) ld8 v[A] = [src_pre_mem], 128 // M0 prefetch src from memory
  139. (p[C]) ld8 n[0] = [src_pre_l2], 128 // M1 prefetch src from L2
  140. (p[D]) st8 [dst0] = t1, 8 // M2
  141. (p[D]) st8 [dst1] = t3, 8 // M3
  142. ;;
  143. (p[D]) ld8 t5 = [src0], 8
  144. (p[D]) ld8 t7 = [src1], 3*8
  145. (p[D]) st8 [dst0] = t2, 3*8
  146. (p[D]) st8 [dst1] = t4, 3*8
  147. ;;
  148. (p[D]) ld8 t6 = [src0], 3*8
  149. (p[D]) ld8 t10 = [src1], 8
  150. (p[D]) st8 [dst0] = t5, 8
  151. (p[D]) st8 [dst1] = t7, 3*8
  152. ;;
  153. (p[D]) ld8 t9 = [src0], 3*8
  154. (p[D]) ld8 t11 = [src1], 3*8
  155. (p[D]) st8 [dst0] = t6, 3*8
  156. (p[D]) st8 [dst1] = t10, 8
  157. ;;
  158. (p[D]) ld8 t12 = [src0], 8
  159. (p[D]) ld8 t14 = [src1], 8
  160. (p[D]) st8 [dst0] = t9, 3*8
  161. (p[D]) st8 [dst1] = t11, 3*8
  162. ;;
  163. (p[D]) ld8 t13 = [src0], 4*8
  164. (p[D]) ld8 t15 = [src1], 4*8
  165. (p[D]) st8 [dst0] = t12, 8
  166. (p[D]) st8 [dst1] = t14, 8
  167. ;;
  168. (p[D-1])ld8 t1 = [src0], 8
  169. (p[D-1])ld8 t3 = [src1], 8
  170. (p[D]) st8 [dst0] = t13, 4*8
  171. (p[D]) st8 [dst1] = t15, 4*8
  172. br.ctop.sptk .line_copy
  173. ;;
  174. mov ar.lc = saved_lc
  175. mov pr = saved_pr, -1
  176. br.ret.sptk.many rp
  177. END(copy_page)
  178. EXPORT_SYMBOL(copy_page)