process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Architecture-specific setup.
  4. *
  5. * Copyright (C) 1998-2003 Hewlett-Packard Co
  6. * David Mosberger-Tang <davidm@hpl.hp.com>
  7. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  8. *
  9. * 2005-10-07 Keith Owens <kaos@sgi.com>
  10. * Add notify_die() hooks.
  11. */
  12. #include <linux/cpu.h>
  13. #include <linux/pm.h>
  14. #include <linux/elf.h>
  15. #include <linux/errno.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/slab.h>
  19. #include <linux/module.h>
  20. #include <linux/notifier.h>
  21. #include <linux/personality.h>
  22. #include <linux/sched.h>
  23. #include <linux/sched/debug.h>
  24. #include <linux/sched/hotplug.h>
  25. #include <linux/sched/task.h>
  26. #include <linux/sched/task_stack.h>
  27. #include <linux/stddef.h>
  28. #include <linux/thread_info.h>
  29. #include <linux/unistd.h>
  30. #include <linux/efi.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/delay.h>
  33. #include <linux/kdebug.h>
  34. #include <linux/utsname.h>
  35. #include <linux/tracehook.h>
  36. #include <linux/rcupdate.h>
  37. #include <generated/package.h>
  38. #include <asm/cpu.h>
  39. #include <asm/delay.h>
  40. #include <asm/elf.h>
  41. #include <asm/irq.h>
  42. #include <asm/kexec.h>
  43. #include <asm/pgalloc.h>
  44. #include <asm/processor.h>
  45. #include <asm/sal.h>
  46. #include <asm/switch_to.h>
  47. #include <asm/tlbflush.h>
  48. #include <linux/uaccess.h>
  49. #include <asm/unwind.h>
  50. #include <asm/user.h>
  51. #include "entry.h"
  52. #ifdef CONFIG_PERFMON
  53. # include <asm/perfmon.h>
  54. #endif
  55. #include "sigframe.h"
  56. void (*ia64_mark_idle)(int);
  57. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  58. EXPORT_SYMBOL(boot_option_idle_override);
  59. void (*pm_power_off) (void);
  60. EXPORT_SYMBOL(pm_power_off);
  61. void
  62. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  63. {
  64. unsigned long ip, sp, bsp;
  65. printk("\nCall Trace:\n");
  66. do {
  67. unw_get_ip(info, &ip);
  68. if (ip == 0)
  69. break;
  70. unw_get_sp(info, &sp);
  71. unw_get_bsp(info, &bsp);
  72. printk(" [<%016lx>] %pS\n"
  73. " sp=%016lx bsp=%016lx\n",
  74. ip, (void *)ip, sp, bsp);
  75. } while (unw_unwind(info) >= 0);
  76. }
  77. void
  78. show_stack (struct task_struct *task, unsigned long *sp)
  79. {
  80. if (!task)
  81. unw_init_running(ia64_do_show_stack, NULL);
  82. else {
  83. struct unw_frame_info info;
  84. unw_init_from_blocked_task(&info, task);
  85. ia64_do_show_stack(&info, NULL);
  86. }
  87. }
  88. void
  89. show_regs (struct pt_regs *regs)
  90. {
  91. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  92. print_modules();
  93. printk("\n");
  94. show_regs_print_info(KERN_DEFAULT);
  95. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s%s)\n",
  96. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  97. init_utsname()->release, LINUX_PACKAGE_ID);
  98. printk("ip is at %pS\n", (void *)ip);
  99. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  100. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  101. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  102. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  103. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  104. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  105. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  106. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  107. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  108. regs->f6.u.bits[1], regs->f6.u.bits[0],
  109. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  110. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  111. regs->f8.u.bits[1], regs->f8.u.bits[0],
  112. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  113. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  114. regs->f10.u.bits[1], regs->f10.u.bits[0],
  115. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  116. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  117. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  118. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  119. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  120. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  121. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  122. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  123. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  124. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  125. if (user_mode(regs)) {
  126. /* print the stacked registers */
  127. unsigned long val, *bsp, ndirty;
  128. int i, sof, is_nat = 0;
  129. sof = regs->cr_ifs & 0x7f; /* size of frame */
  130. ndirty = (regs->loadrs >> 19);
  131. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  132. for (i = 0; i < sof; ++i) {
  133. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  134. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  135. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  136. }
  137. } else
  138. show_stack(NULL, NULL);
  139. }
  140. /* local support for deprecated console_print */
  141. void
  142. console_print(const char *s)
  143. {
  144. printk(KERN_EMERG "%s", s);
  145. }
  146. void
  147. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  148. {
  149. if (fsys_mode(current, &scr->pt)) {
  150. /*
  151. * defer signal-handling etc. until we return to
  152. * privilege-level 0.
  153. */
  154. if (!ia64_psr(&scr->pt)->lp)
  155. ia64_psr(&scr->pt)->lp = 1;
  156. return;
  157. }
  158. #ifdef CONFIG_PERFMON
  159. if (current->thread.pfm_needs_checking)
  160. /*
  161. * Note: pfm_handle_work() allow us to call it with interrupts
  162. * disabled, and may enable interrupts within the function.
  163. */
  164. pfm_handle_work();
  165. #endif
  166. /* deal with pending signal delivery */
  167. if (test_thread_flag(TIF_SIGPENDING)) {
  168. local_irq_enable(); /* force interrupt enable */
  169. ia64_do_signal(scr, in_syscall);
  170. }
  171. if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
  172. local_irq_enable(); /* force interrupt enable */
  173. tracehook_notify_resume(&scr->pt);
  174. }
  175. /* copy user rbs to kernel rbs */
  176. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  177. local_irq_enable(); /* force interrupt enable */
  178. ia64_sync_krbs();
  179. }
  180. local_irq_disable(); /* force interrupt disable */
  181. }
  182. static int __init nohalt_setup(char * str)
  183. {
  184. cpu_idle_poll_ctrl(true);
  185. return 1;
  186. }
  187. __setup("nohalt", nohalt_setup);
  188. #ifdef CONFIG_HOTPLUG_CPU
  189. /* We don't actually take CPU down, just spin without interrupts. */
  190. static inline void play_dead(void)
  191. {
  192. unsigned int this_cpu = smp_processor_id();
  193. /* Ack it */
  194. __this_cpu_write(cpu_state, CPU_DEAD);
  195. max_xtp();
  196. local_irq_disable();
  197. idle_task_exit();
  198. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  199. /*
  200. * The above is a point of no-return, the processor is
  201. * expected to be in SAL loop now.
  202. */
  203. BUG();
  204. }
  205. #else
  206. static inline void play_dead(void)
  207. {
  208. BUG();
  209. }
  210. #endif /* CONFIG_HOTPLUG_CPU */
  211. void arch_cpu_idle_dead(void)
  212. {
  213. play_dead();
  214. }
  215. void arch_cpu_idle(void)
  216. {
  217. void (*mark_idle)(int) = ia64_mark_idle;
  218. #ifdef CONFIG_SMP
  219. min_xtp();
  220. #endif
  221. rmb();
  222. if (mark_idle)
  223. (*mark_idle)(1);
  224. safe_halt();
  225. if (mark_idle)
  226. (*mark_idle)(0);
  227. #ifdef CONFIG_SMP
  228. normal_xtp();
  229. #endif
  230. }
  231. void
  232. ia64_save_extra (struct task_struct *task)
  233. {
  234. #ifdef CONFIG_PERFMON
  235. unsigned long info;
  236. #endif
  237. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  238. ia64_save_debug_regs(&task->thread.dbr[0]);
  239. #ifdef CONFIG_PERFMON
  240. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  241. pfm_save_regs(task);
  242. info = __this_cpu_read(pfm_syst_info);
  243. if (info & PFM_CPUINFO_SYST_WIDE)
  244. pfm_syst_wide_update_task(task, info, 0);
  245. #endif
  246. }
  247. void
  248. ia64_load_extra (struct task_struct *task)
  249. {
  250. #ifdef CONFIG_PERFMON
  251. unsigned long info;
  252. #endif
  253. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  254. ia64_load_debug_regs(&task->thread.dbr[0]);
  255. #ifdef CONFIG_PERFMON
  256. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  257. pfm_load_regs(task);
  258. info = __this_cpu_read(pfm_syst_info);
  259. if (info & PFM_CPUINFO_SYST_WIDE)
  260. pfm_syst_wide_update_task(task, info, 1);
  261. #endif
  262. }
  263. /*
  264. * Copy the state of an ia-64 thread.
  265. *
  266. * We get here through the following call chain:
  267. *
  268. * from user-level: from kernel:
  269. *
  270. * <clone syscall> <some kernel call frames>
  271. * sys_clone :
  272. * do_fork do_fork
  273. * copy_thread copy_thread
  274. *
  275. * This means that the stack layout is as follows:
  276. *
  277. * +---------------------+ (highest addr)
  278. * | struct pt_regs |
  279. * +---------------------+
  280. * | struct switch_stack |
  281. * +---------------------+
  282. * | |
  283. * | memory stack |
  284. * | | <-- sp (lowest addr)
  285. * +---------------------+
  286. *
  287. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  288. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  289. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  290. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  291. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  292. * so there is nothing to worry about.
  293. */
  294. int
  295. copy_thread(unsigned long clone_flags,
  296. unsigned long user_stack_base, unsigned long user_stack_size,
  297. struct task_struct *p)
  298. {
  299. extern char ia64_ret_from_clone;
  300. struct switch_stack *child_stack, *stack;
  301. unsigned long rbs, child_rbs, rbs_size;
  302. struct pt_regs *child_ptregs;
  303. struct pt_regs *regs = current_pt_regs();
  304. int retval = 0;
  305. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  306. child_stack = (struct switch_stack *) child_ptregs - 1;
  307. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  308. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  309. /* copy parts of thread_struct: */
  310. p->thread.ksp = (unsigned long) child_stack - 16;
  311. /*
  312. * NOTE: The calling convention considers all floating point
  313. * registers in the high partition (fph) to be scratch. Since
  314. * the only way to get to this point is through a system call,
  315. * we know that the values in fph are all dead. Hence, there
  316. * is no need to inherit the fph state from the parent to the
  317. * child and all we have to do is to make sure that
  318. * IA64_THREAD_FPH_VALID is cleared in the child.
  319. *
  320. * XXX We could push this optimization a bit further by
  321. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  322. * However, it's not clear this is worth doing. Also, it
  323. * would be a slight deviation from the normal Linux system
  324. * call behavior where scratch registers are preserved across
  325. * system calls (unless used by the system call itself).
  326. */
  327. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  328. | IA64_THREAD_PM_VALID)
  329. # define THREAD_FLAGS_TO_SET 0
  330. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  331. | THREAD_FLAGS_TO_SET);
  332. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  333. if (unlikely(p->flags & PF_KTHREAD)) {
  334. if (unlikely(!user_stack_base)) {
  335. /* fork_idle() called us */
  336. return 0;
  337. }
  338. memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
  339. child_stack->r4 = user_stack_base; /* payload */
  340. child_stack->r5 = user_stack_size; /* argument */
  341. /*
  342. * Preserve PSR bits, except for bits 32-34 and 37-45,
  343. * which we can't read.
  344. */
  345. child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  346. /* mark as valid, empty frame */
  347. child_ptregs->cr_ifs = 1UL << 63;
  348. child_stack->ar_fpsr = child_ptregs->ar_fpsr
  349. = ia64_getreg(_IA64_REG_AR_FPSR);
  350. child_stack->pr = (1 << PRED_KERNEL_STACK);
  351. child_stack->ar_bspstore = child_rbs;
  352. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  353. /* stop some PSR bits from being inherited.
  354. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  355. * therefore we must specify them explicitly here and not include them in
  356. * IA64_PSR_BITS_TO_CLEAR.
  357. */
  358. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  359. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  360. return 0;
  361. }
  362. stack = ((struct switch_stack *) regs) - 1;
  363. /* copy parent's switch_stack & pt_regs to child: */
  364. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  365. /* copy the parent's register backing store to the child: */
  366. rbs_size = stack->ar_bspstore - rbs;
  367. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  368. if (clone_flags & CLONE_SETTLS)
  369. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  370. if (user_stack_base) {
  371. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  372. child_ptregs->ar_bspstore = user_stack_base;
  373. child_ptregs->ar_rnat = 0;
  374. child_ptregs->loadrs = 0;
  375. }
  376. child_stack->ar_bspstore = child_rbs + rbs_size;
  377. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  378. /* stop some PSR bits from being inherited.
  379. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  380. * therefore we must specify them explicitly here and not include them in
  381. * IA64_PSR_BITS_TO_CLEAR.
  382. */
  383. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  384. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  385. #ifdef CONFIG_PERFMON
  386. if (current->thread.pfm_context)
  387. pfm_inherit(p, child_ptregs);
  388. #endif
  389. return retval;
  390. }
  391. static void
  392. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  393. {
  394. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  395. unsigned long uninitialized_var(ip); /* GCC be quiet */
  396. elf_greg_t *dst = arg;
  397. struct pt_regs *pt;
  398. char nat;
  399. int i;
  400. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  401. if (unw_unwind_to_user(info) < 0)
  402. return;
  403. unw_get_sp(info, &sp);
  404. pt = (struct pt_regs *) (sp + 16);
  405. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  406. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  407. return;
  408. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  409. &ar_rnat);
  410. /*
  411. * coredump format:
  412. * r0-r31
  413. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  414. * predicate registers (p0-p63)
  415. * b0-b7
  416. * ip cfm user-mask
  417. * ar.rsc ar.bsp ar.bspstore ar.rnat
  418. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  419. */
  420. /* r0 is zero */
  421. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  422. unw_get_gr(info, i, &dst[i], &nat);
  423. if (nat)
  424. nat_bits |= mask;
  425. mask <<= 1;
  426. }
  427. dst[32] = nat_bits;
  428. unw_get_pr(info, &dst[33]);
  429. for (i = 0; i < 8; ++i)
  430. unw_get_br(info, i, &dst[34 + i]);
  431. unw_get_rp(info, &ip);
  432. dst[42] = ip + ia64_psr(pt)->ri;
  433. dst[43] = cfm;
  434. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  435. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  436. /*
  437. * For bsp and bspstore, unw_get_ar() would return the kernel
  438. * addresses, but we need the user-level addresses instead:
  439. */
  440. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  441. dst[47] = pt->ar_bspstore;
  442. dst[48] = ar_rnat;
  443. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  444. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  445. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  446. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  447. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  448. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  449. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  450. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  451. }
  452. void
  453. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  454. {
  455. elf_fpreg_t *dst = arg;
  456. int i;
  457. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  458. if (unw_unwind_to_user(info) < 0)
  459. return;
  460. /* f0 is 0.0, f1 is 1.0 */
  461. for (i = 2; i < 32; ++i)
  462. unw_get_fr(info, i, dst + i);
  463. ia64_flush_fph(task);
  464. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  465. memcpy(dst + 32, task->thread.fph, 96*16);
  466. }
  467. void
  468. do_copy_regs (struct unw_frame_info *info, void *arg)
  469. {
  470. do_copy_task_regs(current, info, arg);
  471. }
  472. void
  473. do_dump_fpu (struct unw_frame_info *info, void *arg)
  474. {
  475. do_dump_task_fpu(current, info, arg);
  476. }
  477. void
  478. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  479. {
  480. unw_init_running(do_copy_regs, dst);
  481. }
  482. int
  483. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  484. {
  485. unw_init_running(do_dump_fpu, dst);
  486. return 1; /* f0-f31 are always valid so we always return 1 */
  487. }
  488. /*
  489. * Flush thread state. This is called when a thread does an execve().
  490. */
  491. void
  492. flush_thread (void)
  493. {
  494. /* drop floating-point and debug-register state if it exists: */
  495. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  496. ia64_drop_fpu(current);
  497. }
  498. /*
  499. * Clean up state associated with a thread. This is called when
  500. * the thread calls exit().
  501. */
  502. void
  503. exit_thread (struct task_struct *tsk)
  504. {
  505. ia64_drop_fpu(tsk);
  506. #ifdef CONFIG_PERFMON
  507. /* if needed, stop monitoring and flush state to perfmon context */
  508. if (tsk->thread.pfm_context)
  509. pfm_exit_thread(tsk);
  510. /* free debug register resources */
  511. if (tsk->thread.flags & IA64_THREAD_DBG_VALID)
  512. pfm_release_debug_registers(tsk);
  513. #endif
  514. }
  515. unsigned long
  516. get_wchan (struct task_struct *p)
  517. {
  518. struct unw_frame_info info;
  519. unsigned long ip;
  520. int count = 0;
  521. if (!p || p == current || p->state == TASK_RUNNING)
  522. return 0;
  523. /*
  524. * Note: p may not be a blocked task (it could be current or
  525. * another process running on some other CPU. Rather than
  526. * trying to determine if p is really blocked, we just assume
  527. * it's blocked and rely on the unwind routines to fail
  528. * gracefully if the process wasn't really blocked after all.
  529. * --davidm 99/12/15
  530. */
  531. unw_init_from_blocked_task(&info, p);
  532. do {
  533. if (p->state == TASK_RUNNING)
  534. return 0;
  535. if (unw_unwind(&info) < 0)
  536. return 0;
  537. unw_get_ip(&info, &ip);
  538. if (!in_sched_functions(ip))
  539. return ip;
  540. } while (count++ < 16);
  541. return 0;
  542. }
  543. void
  544. cpu_halt (void)
  545. {
  546. pal_power_mgmt_info_u_t power_info[8];
  547. unsigned long min_power;
  548. int i, min_power_state;
  549. if (ia64_pal_halt_info(power_info) != 0)
  550. return;
  551. min_power_state = 0;
  552. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  553. for (i = 1; i < 8; ++i)
  554. if (power_info[i].pal_power_mgmt_info_s.im
  555. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  556. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  557. min_power_state = i;
  558. }
  559. while (1)
  560. ia64_pal_halt(min_power_state);
  561. }
  562. void machine_shutdown(void)
  563. {
  564. #ifdef CONFIG_HOTPLUG_CPU
  565. int cpu;
  566. for_each_online_cpu(cpu) {
  567. if (cpu != smp_processor_id())
  568. cpu_down(cpu);
  569. }
  570. #endif
  571. #ifdef CONFIG_KEXEC
  572. kexec_disable_iosapic();
  573. #endif
  574. }
  575. void
  576. machine_restart (char *restart_cmd)
  577. {
  578. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  579. efi_reboot(REBOOT_WARM, NULL);
  580. }
  581. void
  582. machine_halt (void)
  583. {
  584. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  585. cpu_halt();
  586. }
  587. void
  588. machine_power_off (void)
  589. {
  590. if (pm_power_off)
  591. pm_power_off();
  592. machine_halt();
  593. }