uaccess.h 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _ASM_IA64_UACCESS_H
  3. #define _ASM_IA64_UACCESS_H
  4. /*
  5. * This file defines various macros to transfer memory areas across
  6. * the user/kernel boundary. This needs to be done carefully because
  7. * this code is executed in kernel mode and uses user-specified
  8. * addresses. Thus, we need to be careful not to let the user to
  9. * trick us into accessing kernel memory that would normally be
  10. * inaccessible. This code is also fairly performance sensitive,
  11. * so we want to spend as little time doing safety checks as
  12. * possible.
  13. *
  14. * To make matters a bit more interesting, these macros sometimes also
  15. * called from within the kernel itself, in which case the address
  16. * validity check must be skipped. The get_fs() macro tells us what
  17. * to do: if get_fs()==USER_DS, checking is performed, if
  18. * get_fs()==KERNEL_DS, checking is bypassed.
  19. *
  20. * Note that even if the memory area specified by the user is in a
  21. * valid address range, it is still possible that we'll get a page
  22. * fault while accessing it. This is handled by filling out an
  23. * exception handler fixup entry for each instruction that has the
  24. * potential to fault. When such a fault occurs, the page fault
  25. * handler checks to see whether the faulting instruction has a fixup
  26. * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and
  27. * then resumes execution at the continuation point.
  28. *
  29. * Based on <asm-alpha/uaccess.h>.
  30. *
  31. * Copyright (C) 1998, 1999, 2001-2004 Hewlett-Packard Co
  32. * David Mosberger-Tang <davidm@hpl.hp.com>
  33. */
  34. #include <linux/compiler.h>
  35. #include <linux/page-flags.h>
  36. #include <linux/mm.h>
  37. #include <asm/intrinsics.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/io.h>
  40. #include <asm/extable.h>
  41. /*
  42. * For historical reasons, the following macros are grossly misnamed:
  43. */
  44. #define KERNEL_DS ((mm_segment_t) { ~0UL }) /* cf. access_ok() */
  45. #define USER_DS ((mm_segment_t) { TASK_SIZE-1 }) /* cf. access_ok() */
  46. #define get_ds() (KERNEL_DS)
  47. #define get_fs() (current_thread_info()->addr_limit)
  48. #define set_fs(x) (current_thread_info()->addr_limit = (x))
  49. #define segment_eq(a, b) ((a).seg == (b).seg)
  50. /*
  51. * When accessing user memory, we need to make sure the entire area really is in
  52. * user-level space. In order to do this efficiently, we make sure that the page at
  53. * address TASK_SIZE is never valid. We also need to make sure that the address doesn't
  54. * point inside the virtually mapped linear page table.
  55. */
  56. static inline int __access_ok(const void __user *p, unsigned long size)
  57. {
  58. unsigned long addr = (unsigned long)p;
  59. unsigned long seg = get_fs().seg;
  60. return likely(addr <= seg) &&
  61. (seg == KERNEL_DS.seg || likely(REGION_OFFSET(addr) < RGN_MAP_LIMIT));
  62. }
  63. #define access_ok(type, addr, size) __access_ok((addr), (size))
  64. /*
  65. * These are the main single-value transfer routines. They automatically
  66. * use the right size if we just have the right pointer type.
  67. *
  68. * Careful to not
  69. * (a) re-use the arguments for side effects (sizeof/typeof is ok)
  70. * (b) require any knowledge of processes at this stage
  71. */
  72. #define put_user(x, ptr) __put_user_check((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
  73. #define get_user(x, ptr) __get_user_check((x), (ptr), sizeof(*(ptr)))
  74. /*
  75. * The "__xxx" versions do not do address space checking, useful when
  76. * doing multiple accesses to the same area (the programmer has to do the
  77. * checks by hand with "access_ok()")
  78. */
  79. #define __put_user(x, ptr) __put_user_nocheck((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
  80. #define __get_user(x, ptr) __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
  81. #ifdef ASM_SUPPORTED
  82. struct __large_struct { unsigned long buf[100]; };
  83. # define __m(x) (*(struct __large_struct __user *)(x))
  84. /* We need to declare the __ex_table section before we can use it in .xdata. */
  85. asm (".section \"__ex_table\", \"a\"\n\t.previous");
  86. # define __get_user_size(val, addr, n, err) \
  87. do { \
  88. register long __gu_r8 asm ("r8") = 0; \
  89. register long __gu_r9 asm ("r9"); \
  90. asm ("\n[1:]\tld"#n" %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n" \
  91. "\t.xdata4 \"__ex_table\", 1b-., 1f-.+4\n" \
  92. "[1:]" \
  93. : "=r"(__gu_r9), "=r"(__gu_r8) : "m"(__m(addr)), "1"(__gu_r8)); \
  94. (err) = __gu_r8; \
  95. (val) = __gu_r9; \
  96. } while (0)
  97. /*
  98. * The "__put_user_size()" macro tells gcc it reads from memory instead of writing it. This
  99. * is because they do not write to any memory gcc knows about, so there are no aliasing
  100. * issues.
  101. */
  102. # define __put_user_size(val, addr, n, err) \
  103. do { \
  104. register long __pu_r8 asm ("r8") = 0; \
  105. asm volatile ("\n[1:]\tst"#n" %1=%r2%P1\t// %0 gets overwritten by exception handler\n" \
  106. "\t.xdata4 \"__ex_table\", 1b-., 1f-.\n" \
  107. "[1:]" \
  108. : "=r"(__pu_r8) : "m"(__m(addr)), "rO"(val), "0"(__pu_r8)); \
  109. (err) = __pu_r8; \
  110. } while (0)
  111. #else /* !ASM_SUPPORTED */
  112. # define RELOC_TYPE 2 /* ip-rel */
  113. # define __get_user_size(val, addr, n, err) \
  114. do { \
  115. __ld_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE); \
  116. (err) = ia64_getreg(_IA64_REG_R8); \
  117. (val) = ia64_getreg(_IA64_REG_R9); \
  118. } while (0)
  119. # define __put_user_size(val, addr, n, err) \
  120. do { \
  121. __st_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE, \
  122. (__force unsigned long) (val)); \
  123. (err) = ia64_getreg(_IA64_REG_R8); \
  124. } while (0)
  125. #endif /* !ASM_SUPPORTED */
  126. extern void __get_user_unknown (void);
  127. /*
  128. * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
  129. * could clobber r8 and r9 (among others). Thus, be careful not to evaluate it while
  130. * using r8/r9.
  131. */
  132. #define __do_get_user(check, x, ptr, size) \
  133. ({ \
  134. const __typeof__(*(ptr)) __user *__gu_ptr = (ptr); \
  135. __typeof__ (size) __gu_size = (size); \
  136. long __gu_err = -EFAULT; \
  137. unsigned long __gu_val = 0; \
  138. if (!check || __access_ok(__gu_ptr, size)) \
  139. switch (__gu_size) { \
  140. case 1: __get_user_size(__gu_val, __gu_ptr, 1, __gu_err); break; \
  141. case 2: __get_user_size(__gu_val, __gu_ptr, 2, __gu_err); break; \
  142. case 4: __get_user_size(__gu_val, __gu_ptr, 4, __gu_err); break; \
  143. case 8: __get_user_size(__gu_val, __gu_ptr, 8, __gu_err); break; \
  144. default: __get_user_unknown(); break; \
  145. } \
  146. (x) = (__force __typeof__(*(__gu_ptr))) __gu_val; \
  147. __gu_err; \
  148. })
  149. #define __get_user_nocheck(x, ptr, size) __do_get_user(0, x, ptr, size)
  150. #define __get_user_check(x, ptr, size) __do_get_user(1, x, ptr, size)
  151. extern void __put_user_unknown (void);
  152. /*
  153. * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
  154. * could clobber r8 (among others). Thus, be careful not to evaluate them while using r8.
  155. */
  156. #define __do_put_user(check, x, ptr, size) \
  157. ({ \
  158. __typeof__ (x) __pu_x = (x); \
  159. __typeof__ (*(ptr)) __user *__pu_ptr = (ptr); \
  160. __typeof__ (size) __pu_size = (size); \
  161. long __pu_err = -EFAULT; \
  162. \
  163. if (!check || __access_ok(__pu_ptr, __pu_size)) \
  164. switch (__pu_size) { \
  165. case 1: __put_user_size(__pu_x, __pu_ptr, 1, __pu_err); break; \
  166. case 2: __put_user_size(__pu_x, __pu_ptr, 2, __pu_err); break; \
  167. case 4: __put_user_size(__pu_x, __pu_ptr, 4, __pu_err); break; \
  168. case 8: __put_user_size(__pu_x, __pu_ptr, 8, __pu_err); break; \
  169. default: __put_user_unknown(); break; \
  170. } \
  171. __pu_err; \
  172. })
  173. #define __put_user_nocheck(x, ptr, size) __do_put_user(0, x, ptr, size)
  174. #define __put_user_check(x, ptr, size) __do_put_user(1, x, ptr, size)
  175. /*
  176. * Complex access routines
  177. */
  178. extern unsigned long __must_check __copy_user (void __user *to, const void __user *from,
  179. unsigned long count);
  180. static inline unsigned long
  181. raw_copy_to_user(void __user *to, const void *from, unsigned long count)
  182. {
  183. return __copy_user(to, (__force void __user *) from, count);
  184. }
  185. static inline unsigned long
  186. raw_copy_from_user(void *to, const void __user *from, unsigned long count)
  187. {
  188. return __copy_user((__force void __user *) to, from, count);
  189. }
  190. #define INLINE_COPY_FROM_USER
  191. #define INLINE_COPY_TO_USER
  192. extern unsigned long __do_clear_user (void __user *, unsigned long);
  193. #define __clear_user(to, n) __do_clear_user(to, n)
  194. #define clear_user(to, n) \
  195. ({ \
  196. unsigned long __cu_len = (n); \
  197. if (__access_ok(to, __cu_len)) \
  198. __cu_len = __do_clear_user(to, __cu_len); \
  199. __cu_len; \
  200. })
  201. /*
  202. * Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else
  203. * strlen.
  204. */
  205. extern long __must_check __strncpy_from_user (char *to, const char __user *from, long to_len);
  206. #define strncpy_from_user(to, from, n) \
  207. ({ \
  208. const char __user * __sfu_from = (from); \
  209. long __sfu_ret = -EFAULT; \
  210. if (__access_ok(__sfu_from, 0)) \
  211. __sfu_ret = __strncpy_from_user((to), __sfu_from, (n)); \
  212. __sfu_ret; \
  213. })
  214. /*
  215. * Returns: 0 if exception before NUL or reaching the supplied limit
  216. * (N), a value greater than N if the limit would be exceeded, else
  217. * strlen.
  218. */
  219. extern unsigned long __strnlen_user (const char __user *, long);
  220. #define strnlen_user(str, len) \
  221. ({ \
  222. const char __user *__su_str = (str); \
  223. unsigned long __su_ret = 0; \
  224. if (__access_ok(__su_str, 0)) \
  225. __su_ret = __strnlen_user(__su_str, len); \
  226. __su_ret; \
  227. })
  228. #define ARCH_HAS_TRANSLATE_MEM_PTR 1
  229. static __inline__ void *
  230. xlate_dev_mem_ptr(phys_addr_t p)
  231. {
  232. struct page *page;
  233. void *ptr;
  234. page = pfn_to_page(p >> PAGE_SHIFT);
  235. if (PageUncached(page))
  236. ptr = (void *)p + __IA64_UNCACHED_OFFSET;
  237. else
  238. ptr = __va(p);
  239. return ptr;
  240. }
  241. /*
  242. * Convert a virtual cached kernel memory pointer to an uncached pointer
  243. */
  244. static __inline__ void *
  245. xlate_dev_kmem_ptr(void *p)
  246. {
  247. struct page *page;
  248. void *ptr;
  249. page = virt_to_page((unsigned long)p);
  250. if (PageUncached(page))
  251. ptr = (void *)__pa(p) + __IA64_UNCACHED_OFFSET;
  252. else
  253. ptr = p;
  254. return ptr;
  255. }
  256. #endif /* _ASM_IA64_UACCESS_H */