fault.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. /*
  2. * linux/arch/arm/mm/fault.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Modifications for ARM processor (c) 1995-2004 Russell King
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/extable.h>
  12. #include <linux/signal.h>
  13. #include <linux/mm.h>
  14. #include <linux/hardirq.h>
  15. #include <linux/init.h>
  16. #include <linux/kprobes.h>
  17. #include <linux/uaccess.h>
  18. #include <linux/page-flags.h>
  19. #include <linux/sched/signal.h>
  20. #include <linux/sched/debug.h>
  21. #include <linux/highmem.h>
  22. #include <linux/perf_event.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/system_misc.h>
  25. #include <asm/system_info.h>
  26. #include <asm/tlbflush.h>
  27. #include "fault.h"
  28. #ifdef CONFIG_MMU
  29. #ifdef CONFIG_KPROBES
  30. static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
  31. {
  32. int ret = 0;
  33. if (!user_mode(regs)) {
  34. /* kprobe_running() needs smp_processor_id() */
  35. preempt_disable();
  36. if (kprobe_running() && kprobe_fault_handler(regs, fsr))
  37. ret = 1;
  38. preempt_enable();
  39. }
  40. return ret;
  41. }
  42. #else
  43. static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
  44. {
  45. return 0;
  46. }
  47. #endif
  48. /*
  49. * This is useful to dump out the page tables associated with
  50. * 'addr' in mm 'mm'.
  51. */
  52. void show_pte(struct mm_struct *mm, unsigned long addr)
  53. {
  54. pgd_t *pgd;
  55. if (!mm)
  56. mm = &init_mm;
  57. pr_alert("pgd = %p\n", mm->pgd);
  58. pgd = pgd_offset(mm, addr);
  59. pr_alert("[%08lx] *pgd=%08llx",
  60. addr, (long long)pgd_val(*pgd));
  61. do {
  62. pud_t *pud;
  63. pmd_t *pmd;
  64. pte_t *pte;
  65. if (pgd_none(*pgd))
  66. break;
  67. if (pgd_bad(*pgd)) {
  68. pr_cont("(bad)");
  69. break;
  70. }
  71. pud = pud_offset(pgd, addr);
  72. if (PTRS_PER_PUD != 1)
  73. pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
  74. if (pud_none(*pud))
  75. break;
  76. if (pud_bad(*pud)) {
  77. pr_cont("(bad)");
  78. break;
  79. }
  80. pmd = pmd_offset(pud, addr);
  81. if (PTRS_PER_PMD != 1)
  82. pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
  83. if (pmd_none(*pmd))
  84. break;
  85. if (pmd_bad(*pmd)) {
  86. pr_cont("(bad)");
  87. break;
  88. }
  89. /* We must not map this if we have highmem enabled */
  90. if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
  91. break;
  92. pte = pte_offset_map(pmd, addr);
  93. pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
  94. #ifndef CONFIG_ARM_LPAE
  95. pr_cont(", *ppte=%08llx",
  96. (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
  97. #endif
  98. pte_unmap(pte);
  99. } while(0);
  100. pr_cont("\n");
  101. }
  102. #else /* CONFIG_MMU */
  103. void show_pte(struct mm_struct *mm, unsigned long addr)
  104. { }
  105. #endif /* CONFIG_MMU */
  106. /*
  107. * Oops. The kernel tried to access some page that wasn't present.
  108. */
  109. static void
  110. __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
  111. struct pt_regs *regs)
  112. {
  113. /*
  114. * Are we prepared to handle this kernel fault?
  115. */
  116. if (fixup_exception(regs))
  117. return;
  118. /*
  119. * No handler, we'll have to terminate things with extreme prejudice.
  120. */
  121. bust_spinlocks(1);
  122. pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
  123. (addr < PAGE_SIZE) ? "NULL pointer dereference" :
  124. "paging request", addr);
  125. show_pte(mm, addr);
  126. die("Oops", regs, fsr);
  127. bust_spinlocks(0);
  128. do_exit(SIGKILL);
  129. }
  130. /*
  131. * Something tried to access memory that isn't in our memory map..
  132. * User mode accesses just cause a SIGSEGV
  133. */
  134. static void
  135. __do_user_fault(struct task_struct *tsk, unsigned long addr,
  136. unsigned int fsr, unsigned int sig, int code,
  137. struct pt_regs *regs)
  138. {
  139. struct siginfo si;
  140. if (addr > TASK_SIZE)
  141. harden_branch_predictor();
  142. clear_siginfo(&si);
  143. #ifdef CONFIG_DEBUG_USER
  144. if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
  145. ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
  146. printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
  147. tsk->comm, sig, addr, fsr);
  148. show_pte(tsk->mm, addr);
  149. show_regs(regs);
  150. }
  151. #endif
  152. tsk->thread.address = addr;
  153. tsk->thread.error_code = fsr;
  154. tsk->thread.trap_no = 14;
  155. si.si_signo = sig;
  156. si.si_errno = 0;
  157. si.si_code = code;
  158. si.si_addr = (void __user *)addr;
  159. force_sig_info(sig, &si, tsk);
  160. }
  161. void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
  162. {
  163. struct task_struct *tsk = current;
  164. struct mm_struct *mm = tsk->active_mm;
  165. /*
  166. * If we are in kernel mode at this point, we
  167. * have no context to handle this fault with.
  168. */
  169. if (user_mode(regs))
  170. __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
  171. else
  172. __do_kernel_fault(mm, addr, fsr, regs);
  173. }
  174. #ifdef CONFIG_MMU
  175. #define VM_FAULT_BADMAP 0x010000
  176. #define VM_FAULT_BADACCESS 0x020000
  177. /*
  178. * Check that the permissions on the VMA allow for the fault which occurred.
  179. * If we encountered a write fault, we must have write permission, otherwise
  180. * we allow any permission.
  181. */
  182. static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
  183. {
  184. unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
  185. if ((fsr & FSR_WRITE) && !(fsr & FSR_CM))
  186. mask = VM_WRITE;
  187. if (fsr & FSR_LNX_PF)
  188. mask = VM_EXEC;
  189. return vma->vm_flags & mask ? false : true;
  190. }
  191. static vm_fault_t __kprobes
  192. __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
  193. unsigned int flags, struct task_struct *tsk)
  194. {
  195. struct vm_area_struct *vma;
  196. vm_fault_t fault;
  197. vma = find_vma(mm, addr);
  198. fault = VM_FAULT_BADMAP;
  199. if (unlikely(!vma))
  200. goto out;
  201. if (unlikely(vma->vm_start > addr))
  202. goto check_stack;
  203. /*
  204. * Ok, we have a good vm_area for this
  205. * memory access, so we can handle it.
  206. */
  207. good_area:
  208. if (access_error(fsr, vma)) {
  209. fault = VM_FAULT_BADACCESS;
  210. goto out;
  211. }
  212. return handle_mm_fault(vma, addr & PAGE_MASK, flags);
  213. check_stack:
  214. /* Don't allow expansion below FIRST_USER_ADDRESS */
  215. if (vma->vm_flags & VM_GROWSDOWN &&
  216. addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
  217. goto good_area;
  218. out:
  219. return fault;
  220. }
  221. static int __kprobes
  222. do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
  223. {
  224. struct task_struct *tsk;
  225. struct mm_struct *mm;
  226. int sig, code;
  227. vm_fault_t fault;
  228. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
  229. if (notify_page_fault(regs, fsr))
  230. return 0;
  231. tsk = current;
  232. mm = tsk->mm;
  233. /* Enable interrupts if they were enabled in the parent context. */
  234. if (interrupts_enabled(regs))
  235. local_irq_enable();
  236. /*
  237. * If we're in an interrupt or have no user
  238. * context, we must not take the fault..
  239. */
  240. if (faulthandler_disabled() || !mm)
  241. goto no_context;
  242. if (user_mode(regs))
  243. flags |= FAULT_FLAG_USER;
  244. if ((fsr & FSR_WRITE) && !(fsr & FSR_CM))
  245. flags |= FAULT_FLAG_WRITE;
  246. /*
  247. * As per x86, we may deadlock here. However, since the kernel only
  248. * validly references user space from well defined areas of the code,
  249. * we can bug out early if this is from code which shouldn't.
  250. */
  251. if (!down_read_trylock(&mm->mmap_sem)) {
  252. if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
  253. goto no_context;
  254. retry:
  255. down_read(&mm->mmap_sem);
  256. } else {
  257. /*
  258. * The above down_read_trylock() might have succeeded in
  259. * which case, we'll have missed the might_sleep() from
  260. * down_read()
  261. */
  262. might_sleep();
  263. #ifdef CONFIG_DEBUG_VM
  264. if (!user_mode(regs) &&
  265. !search_exception_tables(regs->ARM_pc))
  266. goto no_context;
  267. #endif
  268. }
  269. fault = __do_page_fault(mm, addr, fsr, flags, tsk);
  270. /* If we need to retry but a fatal signal is pending, handle the
  271. * signal first. We do not need to release the mmap_sem because
  272. * it would already be released in __lock_page_or_retry in
  273. * mm/filemap.c. */
  274. if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
  275. if (!user_mode(regs))
  276. goto no_context;
  277. return 0;
  278. }
  279. /*
  280. * Major/minor page fault accounting is only done on the
  281. * initial attempt. If we go through a retry, it is extremely
  282. * likely that the page will be found in page cache at that point.
  283. */
  284. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
  285. if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
  286. if (fault & VM_FAULT_MAJOR) {
  287. tsk->maj_flt++;
  288. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
  289. regs, addr);
  290. } else {
  291. tsk->min_flt++;
  292. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
  293. regs, addr);
  294. }
  295. if (fault & VM_FAULT_RETRY) {
  296. /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  297. * of starvation. */
  298. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  299. flags |= FAULT_FLAG_TRIED;
  300. goto retry;
  301. }
  302. }
  303. up_read(&mm->mmap_sem);
  304. /*
  305. * Handle the "normal" case first - VM_FAULT_MAJOR
  306. */
  307. if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
  308. return 0;
  309. /*
  310. * If we are in kernel mode at this point, we
  311. * have no context to handle this fault with.
  312. */
  313. if (!user_mode(regs))
  314. goto no_context;
  315. if (fault & VM_FAULT_OOM) {
  316. /*
  317. * We ran out of memory, call the OOM killer, and return to
  318. * userspace (which will retry the fault, or kill us if we
  319. * got oom-killed)
  320. */
  321. pagefault_out_of_memory();
  322. return 0;
  323. }
  324. if (fault & VM_FAULT_SIGBUS) {
  325. /*
  326. * We had some memory, but were unable to
  327. * successfully fix up this page fault.
  328. */
  329. sig = SIGBUS;
  330. code = BUS_ADRERR;
  331. } else {
  332. /*
  333. * Something tried to access memory that
  334. * isn't in our memory map..
  335. */
  336. sig = SIGSEGV;
  337. code = fault == VM_FAULT_BADACCESS ?
  338. SEGV_ACCERR : SEGV_MAPERR;
  339. }
  340. __do_user_fault(tsk, addr, fsr, sig, code, regs);
  341. return 0;
  342. no_context:
  343. __do_kernel_fault(mm, addr, fsr, regs);
  344. return 0;
  345. }
  346. #else /* CONFIG_MMU */
  347. static int
  348. do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
  349. {
  350. return 0;
  351. }
  352. #endif /* CONFIG_MMU */
  353. /*
  354. * First Level Translation Fault Handler
  355. *
  356. * We enter here because the first level page table doesn't contain
  357. * a valid entry for the address.
  358. *
  359. * If the address is in kernel space (>= TASK_SIZE), then we are
  360. * probably faulting in the vmalloc() area.
  361. *
  362. * If the init_task's first level page tables contains the relevant
  363. * entry, we copy the it to this task. If not, we send the process
  364. * a signal, fixup the exception, or oops the kernel.
  365. *
  366. * NOTE! We MUST NOT take any locks for this case. We may be in an
  367. * interrupt or a critical region, and should only copy the information
  368. * from the master page table, nothing more.
  369. */
  370. #ifdef CONFIG_MMU
  371. static int __kprobes
  372. do_translation_fault(unsigned long addr, unsigned int fsr,
  373. struct pt_regs *regs)
  374. {
  375. unsigned int index;
  376. pgd_t *pgd, *pgd_k;
  377. pud_t *pud, *pud_k;
  378. pmd_t *pmd, *pmd_k;
  379. if (addr < TASK_SIZE)
  380. return do_page_fault(addr, fsr, regs);
  381. if (user_mode(regs))
  382. goto bad_area;
  383. index = pgd_index(addr);
  384. pgd = cpu_get_pgd() + index;
  385. pgd_k = init_mm.pgd + index;
  386. if (pgd_none(*pgd_k))
  387. goto bad_area;
  388. if (!pgd_present(*pgd))
  389. set_pgd(pgd, *pgd_k);
  390. pud = pud_offset(pgd, addr);
  391. pud_k = pud_offset(pgd_k, addr);
  392. if (pud_none(*pud_k))
  393. goto bad_area;
  394. if (!pud_present(*pud))
  395. set_pud(pud, *pud_k);
  396. pmd = pmd_offset(pud, addr);
  397. pmd_k = pmd_offset(pud_k, addr);
  398. #ifdef CONFIG_ARM_LPAE
  399. /*
  400. * Only one hardware entry per PMD with LPAE.
  401. */
  402. index = 0;
  403. #else
  404. /*
  405. * On ARM one Linux PGD entry contains two hardware entries (see page
  406. * tables layout in pgtable.h). We normally guarantee that we always
  407. * fill both L1 entries. But create_mapping() doesn't follow the rule.
  408. * It can create inidividual L1 entries, so here we have to call
  409. * pmd_none() check for the entry really corresponded to address, not
  410. * for the first of pair.
  411. */
  412. index = (addr >> SECTION_SHIFT) & 1;
  413. #endif
  414. if (pmd_none(pmd_k[index]))
  415. goto bad_area;
  416. copy_pmd(pmd, pmd_k);
  417. return 0;
  418. bad_area:
  419. do_bad_area(addr, fsr, regs);
  420. return 0;
  421. }
  422. #else /* CONFIG_MMU */
  423. static int
  424. do_translation_fault(unsigned long addr, unsigned int fsr,
  425. struct pt_regs *regs)
  426. {
  427. return 0;
  428. }
  429. #endif /* CONFIG_MMU */
  430. /*
  431. * Some section permission faults need to be handled gracefully.
  432. * They can happen due to a __{get,put}_user during an oops.
  433. */
  434. #ifndef CONFIG_ARM_LPAE
  435. static int
  436. do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
  437. {
  438. do_bad_area(addr, fsr, regs);
  439. return 0;
  440. }
  441. #endif /* CONFIG_ARM_LPAE */
  442. /*
  443. * This abort handler always returns "fault".
  444. */
  445. static int
  446. do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
  447. {
  448. return 1;
  449. }
  450. struct fsr_info {
  451. int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
  452. int sig;
  453. int code;
  454. const char *name;
  455. };
  456. /* FSR definition */
  457. #ifdef CONFIG_ARM_LPAE
  458. #include "fsr-3level.c"
  459. #else
  460. #include "fsr-2level.c"
  461. #endif
  462. void __init
  463. hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
  464. int sig, int code, const char *name)
  465. {
  466. if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
  467. BUG();
  468. fsr_info[nr].fn = fn;
  469. fsr_info[nr].sig = sig;
  470. fsr_info[nr].code = code;
  471. fsr_info[nr].name = name;
  472. }
  473. /*
  474. * Dispatch a data abort to the relevant handler.
  475. */
  476. asmlinkage void
  477. do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
  478. {
  479. const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
  480. struct siginfo info;
  481. if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
  482. return;
  483. pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
  484. inf->name, fsr, addr);
  485. show_pte(current->mm, addr);
  486. clear_siginfo(&info);
  487. info.si_signo = inf->sig;
  488. info.si_errno = 0;
  489. info.si_code = inf->code;
  490. info.si_addr = (void __user *)addr;
  491. arm_notify_die("", regs, &info, fsr, 0);
  492. }
  493. void __init
  494. hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
  495. int sig, int code, const char *name)
  496. {
  497. if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
  498. BUG();
  499. ifsr_info[nr].fn = fn;
  500. ifsr_info[nr].sig = sig;
  501. ifsr_info[nr].code = code;
  502. ifsr_info[nr].name = name;
  503. }
  504. asmlinkage void
  505. do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
  506. {
  507. const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
  508. struct siginfo info;
  509. if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
  510. return;
  511. pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
  512. inf->name, ifsr, addr);
  513. clear_siginfo(&info);
  514. info.si_signo = inf->sig;
  515. info.si_errno = 0;
  516. info.si_code = inf->code;
  517. info.si_addr = (void __user *)addr;
  518. arm_notify_die("", regs, &info, ifsr, 0);
  519. }
  520. /*
  521. * Abort handler to be used only during first unmasking of asynchronous aborts
  522. * on the boot CPU. This makes sure that the machine will not die if the
  523. * firmware/bootloader left an imprecise abort pending for us to trip over.
  524. */
  525. static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
  526. struct pt_regs *regs)
  527. {
  528. pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
  529. "first unmask, this is most likely caused by a "
  530. "firmware/bootloader bug.\n", fsr);
  531. return 0;
  532. }
  533. void __init early_abt_enable(void)
  534. {
  535. fsr_info[FSR_FS_AEA].fn = early_abort_handler;
  536. local_abt_enable();
  537. fsr_info[FSR_FS_AEA].fn = do_bad;
  538. }
  539. #ifndef CONFIG_ARM_LPAE
  540. static int __init exceptions_init(void)
  541. {
  542. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  543. hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
  544. "I-cache maintenance fault");
  545. }
  546. if (cpu_architecture() >= CPU_ARCH_ARMv7) {
  547. /*
  548. * TODO: Access flag faults introduced in ARMv6K.
  549. * Runtime check for 'K' extension is needed
  550. */
  551. hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
  552. "section access flag fault");
  553. hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
  554. "section access flag fault");
  555. }
  556. return 0;
  557. }
  558. arch_initcall(exceptions_init);
  559. #endif