123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372 |
- #!/usr/bin/env python
- # -*- coding: iso-8859-1 -*-
- # Note that PyPy contains also a built-in module 'md5' which will hide
- # this one if compiled in.
- """A sample implementation of MD5 in pure Python.
- This is an implementation of the MD5 hash function, as specified by
- RFC 1321, in pure Python. It was implemented using Bruce Schneier's
- excellent book "Applied Cryptography", 2nd ed., 1996.
- Surely this is not meant to compete with the existing implementation
- of the Python standard library (written in C). Rather, it should be
- seen as a Python complement that is more readable than C and can be
- used more conveniently for learning and experimenting purposes in
- the field of cryptography.
- This module tries very hard to follow the API of the existing Python
- standard library's "md5" module, but although it seems to work fine,
- it has not been extensively tested! (But note that there is a test
- module, test_md5py.py, that compares this Python implementation with
- the C one of the Python standard library.
- BEWARE: this comes with no guarantee whatsoever about fitness and/or
- other properties! Specifically, do not use this in any production
- code! License is Python License!
- Special thanks to Aurelian Coman who fixed some nasty bugs!
- Dinu C. Gherman
- """
- __date__ = '2004-11-17'
- __version__ = 0.91 # Modernised by J. Hallén and L. Creighton for Pypy
- __metaclass__ = type # or genrpy won't work
- import struct, copy
- # ======================================================================
- # Bit-Manipulation helpers
- # ======================================================================
- def _bytelist2long(list):
- "Transform a list of characters into a list of longs."
- imax = len(list) // 4
- hl = [0] * imax
- j = 0
- i = 0
- while i < imax:
- b0 = list[j]
- b1 = list[j+1] << 8
- b2 = list[j+2] << 16
- b3 = list[j+3] << 24
- hl[i] = b0 | b1 |b2 | b3
- i = i+1
- j = j+4
- return hl
- def _rotateLeft(x, n):
- "Rotate x (32 bit) left n bits circularly."
- return (x << n) | (x >> (32-n))
- # ======================================================================
- # The real MD5 meat...
- #
- # Implemented after "Applied Cryptography", 2nd ed., 1996,
- # pp. 436-441 by Bruce Schneier.
- # ======================================================================
- # F, G, H and I are basic MD5 functions.
- def F(x, y, z):
- return (x & y) | ((~x) & z)
- def G(x, y, z):
- return (x & z) | (y & (~z))
- def H(x, y, z):
- return x ^ y ^ z
- def I(x, y, z):
- return y ^ (x | (~z))
- def XX(func, a, b, c, d, x, s, ac):
- """Wrapper for call distribution to functions F, G, H and I.
- This replaces functions FF, GG, HH and II from "Appl. Crypto."
- Rotation is separate from addition to prevent recomputation
- (now summed-up in one function).
- """
- res = 0
- res = res + a + func(b, c, d)
- res = res + x
- res = res + ac
- res = res & 0xffffffff
- res = _rotateLeft(res, s)
- res = res & 0xffffffff
- res = res + b
- return res & 0xffffffff
- class md5:
- "An implementation of the MD5 hash function in pure Python."
- digest_size = digestsize = 16
- block_size = 64
- def __init__(self, arg=None):
- "Initialisation."
-
- # Initial message length in bits(!).
- self.length = 0
- self.count = [0, 0]
- # Initial empty message as a sequence of bytes (8 bit characters).
- self.input = []
- # Call a separate init function, that can be used repeatedly
- # to start from scratch on the same object.
- self.init()
- if arg:
- self.update(arg)
- def init(self):
- "Initialize the message-digest and set all fields to zero."
- self.length = 0
- self.count = [0, 0]
- self.input = []
- # Load magic initialization constants.
- self.A = 0x67452301
- self.B = 0xefcdab89
- self.C = 0x98badcfe
- self.D = 0x10325476
- def _transform(self, inp):
- """Basic MD5 step transforming the digest based on the input.
- Note that if the Mysterious Constants are arranged backwards
- in little-endian order and decrypted with the DES they produce
- OCCULT MESSAGES!
- """
- a, b, c, d = A, B, C, D = self.A, self.B, self.C, self.D
- # Round 1.
- S11, S12, S13, S14 = 7, 12, 17, 22
- a = XX(F, a, b, c, d, inp[ 0], S11, 0xD76AA478) # 1
- d = XX(F, d, a, b, c, inp[ 1], S12, 0xE8C7B756) # 2
- c = XX(F, c, d, a, b, inp[ 2], S13, 0x242070DB) # 3
- b = XX(F, b, c, d, a, inp[ 3], S14, 0xC1BDCEEE) # 4
- a = XX(F, a, b, c, d, inp[ 4], S11, 0xF57C0FAF) # 5
- d = XX(F, d, a, b, c, inp[ 5], S12, 0x4787C62A) # 6
- c = XX(F, c, d, a, b, inp[ 6], S13, 0xA8304613) # 7
- b = XX(F, b, c, d, a, inp[ 7], S14, 0xFD469501) # 8
- a = XX(F, a, b, c, d, inp[ 8], S11, 0x698098D8) # 9
- d = XX(F, d, a, b, c, inp[ 9], S12, 0x8B44F7AF) # 10
- c = XX(F, c, d, a, b, inp[10], S13, 0xFFFF5BB1) # 11
- b = XX(F, b, c, d, a, inp[11], S14, 0x895CD7BE) # 12
- a = XX(F, a, b, c, d, inp[12], S11, 0x6B901122) # 13
- d = XX(F, d, a, b, c, inp[13], S12, 0xFD987193) # 14
- c = XX(F, c, d, a, b, inp[14], S13, 0xA679438E) # 15
- b = XX(F, b, c, d, a, inp[15], S14, 0x49B40821) # 16
- # Round 2.
- S21, S22, S23, S24 = 5, 9, 14, 20
- a = XX(G, a, b, c, d, inp[ 1], S21, 0xF61E2562) # 17
- d = XX(G, d, a, b, c, inp[ 6], S22, 0xC040B340) # 18
- c = XX(G, c, d, a, b, inp[11], S23, 0x265E5A51) # 19
- b = XX(G, b, c, d, a, inp[ 0], S24, 0xE9B6C7AA) # 20
- a = XX(G, a, b, c, d, inp[ 5], S21, 0xD62F105D) # 21
- d = XX(G, d, a, b, c, inp[10], S22, 0x02441453) # 22
- c = XX(G, c, d, a, b, inp[15], S23, 0xD8A1E681) # 23
- b = XX(G, b, c, d, a, inp[ 4], S24, 0xE7D3FBC8) # 24
- a = XX(G, a, b, c, d, inp[ 9], S21, 0x21E1CDE6) # 25
- d = XX(G, d, a, b, c, inp[14], S22, 0xC33707D6) # 26
- c = XX(G, c, d, a, b, inp[ 3], S23, 0xF4D50D87) # 27
- b = XX(G, b, c, d, a, inp[ 8], S24, 0x455A14ED) # 28
- a = XX(G, a, b, c, d, inp[13], S21, 0xA9E3E905) # 29
- d = XX(G, d, a, b, c, inp[ 2], S22, 0xFCEFA3F8) # 30
- c = XX(G, c, d, a, b, inp[ 7], S23, 0x676F02D9) # 31
- b = XX(G, b, c, d, a, inp[12], S24, 0x8D2A4C8A) # 32
- # Round 3.
- S31, S32, S33, S34 = 4, 11, 16, 23
- a = XX(H, a, b, c, d, inp[ 5], S31, 0xFFFA3942) # 33
- d = XX(H, d, a, b, c, inp[ 8], S32, 0x8771F681) # 34
- c = XX(H, c, d, a, b, inp[11], S33, 0x6D9D6122) # 35
- b = XX(H, b, c, d, a, inp[14], S34, 0xFDE5380C) # 36
- a = XX(H, a, b, c, d, inp[ 1], S31, 0xA4BEEA44) # 37
- d = XX(H, d, a, b, c, inp[ 4], S32, 0x4BDECFA9) # 38
- c = XX(H, c, d, a, b, inp[ 7], S33, 0xF6BB4B60) # 39
- b = XX(H, b, c, d, a, inp[10], S34, 0xBEBFBC70) # 40
- a = XX(H, a, b, c, d, inp[13], S31, 0x289B7EC6) # 41
- d = XX(H, d, a, b, c, inp[ 0], S32, 0xEAA127FA) # 42
- c = XX(H, c, d, a, b, inp[ 3], S33, 0xD4EF3085) # 43
- b = XX(H, b, c, d, a, inp[ 6], S34, 0x04881D05) # 44
- a = XX(H, a, b, c, d, inp[ 9], S31, 0xD9D4D039) # 45
- d = XX(H, d, a, b, c, inp[12], S32, 0xE6DB99E5) # 46
- c = XX(H, c, d, a, b, inp[15], S33, 0x1FA27CF8) # 47
- b = XX(H, b, c, d, a, inp[ 2], S34, 0xC4AC5665) # 48
- # Round 4.
- S41, S42, S43, S44 = 6, 10, 15, 21
- a = XX(I, a, b, c, d, inp[ 0], S41, 0xF4292244) # 49
- d = XX(I, d, a, b, c, inp[ 7], S42, 0x432AFF97) # 50
- c = XX(I, c, d, a, b, inp[14], S43, 0xAB9423A7) # 51
- b = XX(I, b, c, d, a, inp[ 5], S44, 0xFC93A039) # 52
- a = XX(I, a, b, c, d, inp[12], S41, 0x655B59C3) # 53
- d = XX(I, d, a, b, c, inp[ 3], S42, 0x8F0CCC92) # 54
- c = XX(I, c, d, a, b, inp[10], S43, 0xFFEFF47D) # 55
- b = XX(I, b, c, d, a, inp[ 1], S44, 0x85845DD1) # 56
- a = XX(I, a, b, c, d, inp[ 8], S41, 0x6FA87E4F) # 57
- d = XX(I, d, a, b, c, inp[15], S42, 0xFE2CE6E0) # 58
- c = XX(I, c, d, a, b, inp[ 6], S43, 0xA3014314) # 59
- b = XX(I, b, c, d, a, inp[13], S44, 0x4E0811A1) # 60
- a = XX(I, a, b, c, d, inp[ 4], S41, 0xF7537E82) # 61
- d = XX(I, d, a, b, c, inp[11], S42, 0xBD3AF235) # 62
- c = XX(I, c, d, a, b, inp[ 2], S43, 0x2AD7D2BB) # 63
- b = XX(I, b, c, d, a, inp[ 9], S44, 0xEB86D391) # 64
- A = (A + a) & 0xffffffff
- B = (B + b) & 0xffffffff
- C = (C + c) & 0xffffffff
- D = (D + d) & 0xffffffff
- self.A, self.B, self.C, self.D = A, B, C, D
- # Down from here all methods follow the Python Standard Library
- # API of the md5 module.
- def update(self, inBuf):
- """Add to the current message.
- Update the md5 object with the string arg. Repeated calls
- are equivalent to a single call with the concatenation of all
- the arguments, i.e. m.update(a); m.update(b) is equivalent
- to m.update(a+b).
- The hash is immediately calculated for all full blocks. The final
- calculation is made in digest(). This allows us to keep an
- intermediate value for the hash, so that we only need to make
- minimal recalculation if we call update() to add moredata to
- the hashed string.
- """
- leninBuf = len(inBuf)
- # Compute number of bytes mod 64.
- index = (self.count[0] >> 3) & 0x3F
- # Update number of bits.
- self.count[0] = self.count[0] + (leninBuf << 3)
- if self.count[0] < (leninBuf << 3):
- self.count[1] = self.count[1] + 1
- self.count[1] = self.count[1] + (leninBuf >> 29)
- partLen = 64 - index
- if leninBuf >= partLen:
- self.input[index:] = list(inBuf[:partLen])
- self._transform(_bytelist2long(self.input))
- i = partLen
- while i + 63 < leninBuf:
- self._transform(_bytelist2long(list(inBuf[i:i+64])))
- i = i + 64
- else:
- self.input = list(inBuf[i:leninBuf])
- else:
- i = 0
- self.input = self.input + list(inBuf)
- def digest(self):
- """Terminate the message-digest computation and return digest.
- Return the digest of the strings passed to the update()
- method so far. This is a 16-byte string which may contain
- non-ASCII characters, including null bytes.
- """
- A = self.A
- B = self.B
- C = self.C
- D = self.D
- input = [] + self.input
- count = [] + self.count
- index = (self.count[0] >> 3) & 0x3f
- if index < 56:
- padLen = 56 - index
- else:
- padLen = 120 - index
- padding = [128] + [0] * 63
- self.update(padding[:padLen])
- # Append length (before padding).
- bits = _bytelist2long(self.input[:56]) + count
- self._transform(bits)
- # Store state in digest.
- digest = struct.pack("<IIII", self.A, self.B, self.C, self.D)
- self.A = A
- self.B = B
- self.C = C
- self.D = D
- self.input = input
- self.count = count
- return digest
- def hexdigest(self):
- """Terminate and return digest in HEX form.
- Like digest() except the digest is returned as a string of
- length 32, containing only hexadecimal digits. This may be
- used to exchange the value safely in email or other non-
- binary environments.
- """
- return ''.join(['%02x' % c for c in self.digest()])
- def copy(self):
- """Return a clone object.
- Return a copy ('clone') of the md5 object. This can be used
- to efficiently compute the digests of strings that share
- a common initial substring.
- """
- if 0: # set this to 1 to make the flow space crash
- return copy.deepcopy(self)
- clone = self.__class__()
- clone.length = self.length
- clone.count = [] + self.count[:]
- clone.input = [] + self.input
- clone.A = self.A
- clone.B = self.B
- clone.C = self.C
- clone.D = self.D
- return clone
|