123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- /*
- * Copyright 2013 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "Daltonizer.h"
- #include <ui/mat4.h>
- namespace android {
- Daltonizer::Daltonizer() :
- mType(deuteranomaly), mMode(simulation), mDirty(true) {
- }
- Daltonizer::~Daltonizer() {
- }
- void Daltonizer::setType(Daltonizer::ColorBlindnessTypes type) {
- if (type != mType) {
- mDirty = true;
- mType = type;
- }
- }
- void Daltonizer::setMode(Daltonizer::Mode mode) {
- if (mode != mMode) {
- mDirty = true;
- mMode = mode;
- }
- }
- const mat4& Daltonizer::operator()() {
- if (mDirty) {
- mDirty = false;
- update();
- }
- return mColorTransform;
- }
- void Daltonizer::update() {
- // converts a linear RGB color to the XYZ space
- const mat4 rgb2xyz( 0.4124, 0.2126, 0.0193, 0,
- 0.3576, 0.7152, 0.1192, 0,
- 0.1805, 0.0722, 0.9505, 0,
- 0 , 0 , 0 , 1);
- // converts a XYZ color to the LMS space.
- const mat4 xyz2lms( 0.7328,-0.7036, 0.0030, 0,
- 0.4296, 1.6975, 0.0136, 0,
- -0.1624, 0.0061, 0.9834, 0,
- 0 , 0 , 0 , 1);
- // Direct conversion from linear RGB to LMS
- const mat4 rgb2lms(xyz2lms*rgb2xyz);
- // And back from LMS to linear RGB
- const mat4 lms2rgb(inverse(rgb2lms));
- // To simulate color blindness we need to "remove" the data lost by the absence of
- // a cone. This cannot be done by just zeroing out the corresponding LMS component
- // because it would create a color outside of the RGB gammut.
- // Instead we project the color along the axis of the missing component onto a plane
- // within the RGB gammut:
- // - since the projection happens along the axis of the missing component, a
- // color blind viewer perceives the projected color the same.
- // - We use the plane defined by 3 points in LMS space: black, white and
- // blue and red for protanopia/deuteranopia and tritanopia respectively.
- // LMS space red
- const vec3& lms_r(rgb2lms[0].rgb);
- // LMS space blue
- const vec3& lms_b(rgb2lms[2].rgb);
- // LMS space white
- const vec3 lms_w((rgb2lms * vec4(1)).rgb);
- // To find the planes we solve the a*L + b*M + c*S = 0 equation for the LMS values
- // of the three known points. This equation is trivially solved, and has for
- // solution the following cross-products:
- const vec3 p0 = cross(lms_w, lms_b); // protanopia/deuteranopia
- const vec3 p1 = cross(lms_w, lms_r); // tritanopia
- // The following 3 matrices perform the projection of a LMS color onto the given plane
- // along the selected axis
- // projection for protanopia (L = 0)
- const mat4 lms2lmsp( 0.0000, 0.0000, 0.0000, 0,
- -p0.y / p0.x, 1.0000, 0.0000, 0,
- -p0.z / p0.x, 0.0000, 1.0000, 0,
- 0 , 0 , 0 , 1);
- // projection for deuteranopia (M = 0)
- const mat4 lms2lmsd( 1.0000, -p0.x / p0.y, 0.0000, 0,
- 0.0000, 0.0000, 0.0000, 0,
- 0.0000, -p0.z / p0.y, 1.0000, 0,
- 0 , 0 , 0 , 1);
- // projection for tritanopia (S = 0)
- const mat4 lms2lmst( 1.0000, 0.0000, -p1.x / p1.z, 0,
- 0.0000, 1.0000, -p1.y / p1.z, 0,
- 0.0000, 0.0000, 0.0000, 0,
- 0 , 0 , 0 , 1);
- // We will calculate the error between the color and the color viewed by
- // a color blind user and "spread" this error onto the healthy cones.
- // The matrices below perform this last step and have been chosen arbitrarily.
- // The amount of correction can be adjusted here.
- // error spread for protanopia
- const mat4 errp( 1.0, 0.7, 0.7, 0,
- 0.0, 1.0, 0.0, 0,
- 0.0, 0.0, 1.0, 0,
- 0, 0, 0, 1);
- // error spread for deuteranopia
- const mat4 errd( 1.0, 0.0, 0.0, 0,
- 0.7, 1.0, 0.7, 0,
- 0.0, 0.0, 1.0, 0,
- 0, 0, 0, 1);
- // error spread for tritanopia
- const mat4 errt( 1.0, 0.0, 0.0, 0,
- 0.0, 1.0, 0.0, 0,
- 0.7, 0.7, 1.0, 0,
- 0, 0, 0, 1);
- const mat4 identity;
- // And the magic happens here...
- // We construct the matrix that will perform the whole correction.
- // simulation: type of color blindness to simulate:
- // set to either lms2lmsp, lms2lmsd, lms2lmst
- mat4 simulation;
- // correction: type of color blindness correction (should match the simulation above):
- // set to identity, errp, errd, errt ([0] for simulation only)
- mat4 correction(0);
- switch (mType) {
- case protanopia:
- case protanomaly:
- simulation = lms2lmsp;
- if (mMode == Daltonizer::correction)
- correction = errp;
- break;
- case deuteranopia:
- case deuteranomaly:
- simulation = lms2lmsd;
- if (mMode == Daltonizer::correction)
- correction = errd;
- break;
- case tritanopia:
- case tritanomaly:
- simulation = lms2lmst;
- if (mMode == Daltonizer::correction)
- correction = errt;
- break;
- }
- mColorTransform = lms2rgb *
- (simulation * rgb2lms + correction * (rgb2lms - simulation * rgb2lms));
- }
- } /* namespace android */
|