123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482 |
- /*
- * Copyright (C) 2011 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <stdio.h>
- #include <utils/Log.h>
- #include "Fusion.h"
- namespace android {
- // -----------------------------------------------------------------------
- /*
- * gyroVAR gives the measured variance of the gyro's output per
- * Hz (or variance at 1 Hz). This is an "intrinsic" parameter of the gyro,
- * which is independent of the sampling frequency.
- *
- * The variance of gyro's output at a given sampling period can be
- * calculated as:
- * variance(T) = gyroVAR / T
- *
- * The variance of the INTEGRATED OUTPUT at a given sampling period can be
- * calculated as:
- * variance_integrate_output(T) = gyroVAR * T
- *
- */
- static const float gyroVAR = 1e-7; // (rad/s)^2 / Hz
- static const float biasVAR = 1e-8; // (rad/s)^2 / s (guessed)
- /*
- * Standard deviations of accelerometer and magnetometer
- */
- static const float accSTDEV = 0.05f; // m/s^2 (measured 0.08 / CDD 0.05)
- static const float magSTDEV = 0.5f; // uT (measured 0.7 / CDD 0.5)
- static const float SYMMETRY_TOLERANCE = 1e-10f;
- /*
- * Accelerometer updates will not be performed near free fall to avoid
- * ill-conditioning and div by zeros.
- * Threshhold: 10% of g, in m/s^2
- */
- static const float FREE_FALL_THRESHOLD = 0.981f;
- static const float FREE_FALL_THRESHOLD_SQ =
- FREE_FALL_THRESHOLD*FREE_FALL_THRESHOLD;
- /*
- * The geomagnetic-field should be between 30uT and 60uT.
- * Fields strengths greater than this likely indicate a local magnetic
- * disturbance which we do not want to update into the fused frame.
- */
- static const float MAX_VALID_MAGNETIC_FIELD = 100; // uT
- static const float MAX_VALID_MAGNETIC_FIELD_SQ =
- MAX_VALID_MAGNETIC_FIELD*MAX_VALID_MAGNETIC_FIELD;
- /*
- * Values of the field smaller than this should be ignored in fusion to avoid
- * ill-conditioning. This state can happen with anomalous local magnetic
- * disturbances canceling the Earth field.
- */
- static const float MIN_VALID_MAGNETIC_FIELD = 10; // uT
- static const float MIN_VALID_MAGNETIC_FIELD_SQ =
- MIN_VALID_MAGNETIC_FIELD*MIN_VALID_MAGNETIC_FIELD;
- /*
- * If the cross product of two vectors has magnitude squared less than this,
- * we reject it as invalid due to alignment of the vectors.
- * This threshold is used to check for the case where the magnetic field sample
- * is parallel to the gravity field, which can happen in certain places due
- * to magnetic field disturbances.
- */
- static const float MIN_VALID_CROSS_PRODUCT_MAG = 1.0e-3;
- static const float MIN_VALID_CROSS_PRODUCT_MAG_SQ =
- MIN_VALID_CROSS_PRODUCT_MAG*MIN_VALID_CROSS_PRODUCT_MAG;
- // -----------------------------------------------------------------------
- template <typename TYPE, size_t C, size_t R>
- static mat<TYPE, R, R> scaleCovariance(
- const mat<TYPE, C, R>& A,
- const mat<TYPE, C, C>& P) {
- // A*P*transpose(A);
- mat<TYPE, R, R> APAt;
- for (size_t r=0 ; r<R ; r++) {
- for (size_t j=r ; j<R ; j++) {
- double apat(0);
- for (size_t c=0 ; c<C ; c++) {
- double v(A[c][r]*P[c][c]*0.5);
- for (size_t k=c+1 ; k<C ; k++)
- v += A[k][r] * P[c][k];
- apat += 2 * v * A[c][j];
- }
- APAt[j][r] = apat;
- APAt[r][j] = apat;
- }
- }
- return APAt;
- }
- template <typename TYPE, typename OTHER_TYPE>
- static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
- mat<TYPE, 3, 3> r;
- r[0][0] = diag;
- r[1][1] = diag;
- r[2][2] = diag;
- r[0][1] = p.z;
- r[1][0] =-p.z;
- r[0][2] =-p.y;
- r[2][0] = p.y;
- r[1][2] = p.x;
- r[2][1] =-p.x;
- return r;
- }
- template<typename TYPE, size_t SIZE>
- class Covariance {
- mat<TYPE, SIZE, SIZE> mSumXX;
- vec<TYPE, SIZE> mSumX;
- size_t mN;
- public:
- Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
- void update(const vec<TYPE, SIZE>& x) {
- mSumXX += x*transpose(x);
- mSumX += x;
- mN++;
- }
- mat<TYPE, SIZE, SIZE> operator()() const {
- const float N = 1.0f / mN;
- return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
- }
- void reset() {
- mN = 0;
- mSumXX = 0;
- mSumX = 0;
- }
- size_t getCount() const {
- return mN;
- }
- };
- // -----------------------------------------------------------------------
- Fusion::Fusion() {
- Phi[0][1] = 0;
- Phi[1][1] = 1;
- Ba.x = 0;
- Ba.y = 0;
- Ba.z = 1;
- Bm.x = 0;
- Bm.y = 1;
- Bm.z = 0;
- x0 = 0;
- x1 = 0;
- init();
- }
- void Fusion::init() {
- mInitState = 0;
- mGyroRate = 0;
- mCount[0] = 0;
- mCount[1] = 0;
- mCount[2] = 0;
- mData = 0;
- }
- void Fusion::initFusion(const vec4_t& q, float dT)
- {
- // initial estimate: E{ x(t0) }
- x0 = q;
- x1 = 0;
- // process noise covariance matrix: G.Q.Gt, with
- //
- // G = | -1 0 | Q = | q00 q10 |
- // | 0 1 | | q01 q11 |
- //
- // q00 = sv^2.dt + 1/3.su^2.dt^3
- // q10 = q01 = 1/2.su^2.dt^2
- // q11 = su^2.dt
- //
- const float dT2 = dT*dT;
- const float dT3 = dT2*dT;
- // variance of integrated output at 1/dT Hz (random drift)
- const float q00 = gyroVAR * dT + 0.33333f * biasVAR * dT3;
- // variance of drift rate ramp
- const float q11 = biasVAR * dT;
- const float q10 = 0.5f * biasVAR * dT2;
- const float q01 = q10;
- GQGt[0][0] = q00; // rad^2
- GQGt[1][0] = -q10;
- GQGt[0][1] = -q01;
- GQGt[1][1] = q11; // (rad/s)^2
- // initial covariance: Var{ x(t0) }
- // TODO: initialize P correctly
- P = 0;
- }
- bool Fusion::hasEstimate() const {
- return (mInitState == (MAG|ACC|GYRO));
- }
- bool Fusion::checkInitComplete(int what, const vec3_t& d, float dT) {
- if (hasEstimate())
- return true;
- if (what == ACC) {
- mData[0] += d * (1/length(d));
- mCount[0]++;
- mInitState |= ACC;
- } else if (what == MAG) {
- mData[1] += d * (1/length(d));
- mCount[1]++;
- mInitState |= MAG;
- } else if (what == GYRO) {
- mGyroRate = dT;
- mData[2] += d*dT;
- mCount[2]++;
- if (mCount[2] == 64) {
- // 64 samples is good enough to estimate the gyro drift and
- // doesn't take too much time.
- mInitState |= GYRO;
- }
- }
- if (mInitState == (MAG|ACC|GYRO)) {
- // Average all the values we collected so far
- mData[0] *= 1.0f/mCount[0];
- mData[1] *= 1.0f/mCount[1];
- mData[2] *= 1.0f/mCount[2];
- // calculate the MRPs from the data collection, this gives us
- // a rough estimate of our initial state
- mat33_t R;
- vec3_t up(mData[0]);
- vec3_t east(cross_product(mData[1], up));
- east *= 1/length(east);
- vec3_t north(cross_product(up, east));
- R << east << north << up;
- const vec4_t q = matrixToQuat(R);
- initFusion(q, mGyroRate);
- }
- return false;
- }
- void Fusion::handleGyro(const vec3_t& w, float dT) {
- if (!checkInitComplete(GYRO, w, dT))
- return;
- predict(w, dT);
- }
- status_t Fusion::handleAcc(const vec3_t& a) {
- // ignore acceleration data if we're close to free-fall
- if (length_squared(a) < FREE_FALL_THRESHOLD_SQ) {
- return BAD_VALUE;
- }
- if (!checkInitComplete(ACC, a))
- return BAD_VALUE;
- const float l = 1/length(a);
- update(a*l, Ba, accSTDEV*l);
- return NO_ERROR;
- }
- status_t Fusion::handleMag(const vec3_t& m) {
- // the geomagnetic-field should be between 30uT and 60uT
- // reject if too large to avoid spurious magnetic sources
- const float magFieldSq = length_squared(m);
- if (magFieldSq > MAX_VALID_MAGNETIC_FIELD_SQ) {
- return BAD_VALUE;
- } else if (magFieldSq < MIN_VALID_MAGNETIC_FIELD_SQ) {
- // Also reject if too small since we will get ill-defined (zero mag)
- // cross-products below
- return BAD_VALUE;
- }
- if (!checkInitComplete(MAG, m))
- return BAD_VALUE;
- // Orthogonalize the magnetic field to the gravity field, mapping it into
- // tangent to Earth.
- const vec3_t up( getRotationMatrix() * Ba );
- const vec3_t east( cross_product(m, up) );
- // If the m and up vectors align, the cross product magnitude will
- // approach 0.
- // Reject this case as well to avoid div by zero problems and
- // ill-conditioning below.
- if (length_squared(east) < MIN_VALID_CROSS_PRODUCT_MAG_SQ) {
- return BAD_VALUE;
- }
- // If we have created an orthogonal magnetic field successfully,
- // then pass it in as the update.
- vec3_t north( cross_product(up, east) );
- const float l = 1 / length(north);
- north *= l;
- update(north, Bm, magSTDEV*l);
- return NO_ERROR;
- }
- void Fusion::checkState() {
- // P needs to stay positive semidefinite or the fusion diverges. When we
- // detect divergence, we reset the fusion.
- // TODO(braun): Instead, find the reason for the divergence and fix it.
- if (!isPositiveSemidefinite(P[0][0], SYMMETRY_TOLERANCE) ||
- !isPositiveSemidefinite(P[1][1], SYMMETRY_TOLERANCE)) {
- ALOGW("Sensor fusion diverged; resetting state.");
- P = 0;
- }
- }
- vec4_t Fusion::getAttitude() const {
- return x0;
- }
- vec3_t Fusion::getBias() const {
- return x1;
- }
- mat33_t Fusion::getRotationMatrix() const {
- return quatToMatrix(x0);
- }
- mat34_t Fusion::getF(const vec4_t& q) {
- mat34_t F;
- // This is used to compute the derivative of q
- // F = | [q.xyz]x |
- // | -q.xyz |
- F[0].x = q.w; F[1].x =-q.z; F[2].x = q.y;
- F[0].y = q.z; F[1].y = q.w; F[2].y =-q.x;
- F[0].z =-q.y; F[1].z = q.x; F[2].z = q.w;
- F[0].w =-q.x; F[1].w =-q.y; F[2].w =-q.z;
- return F;
- }
- void Fusion::predict(const vec3_t& w, float dT) {
- const vec4_t q = x0;
- const vec3_t b = x1;
- const vec3_t we = w - b;
- // q(k+1) = O(we)*q(k)
- // --------------------
- //
- // O(w) = | cos(0.5*||w||*dT)*I33 - [psi]x psi |
- // | -psi' cos(0.5*||w||*dT) |
- //
- // psi = sin(0.5*||w||*dT)*w / ||w||
- //
- //
- // P(k+1) = Phi(k)*P(k)*Phi(k)' + G*Q(k)*G'
- // ----------------------------------------
- //
- // G = | -I33 0 |
- // | 0 I33 |
- //
- // Phi = | Phi00 Phi10 |
- // | 0 1 |
- //
- // Phi00 = I33
- // - [w]x * sin(||w||*dt)/||w||
- // + [w]x^2 * (1-cos(||w||*dT))/||w||^2
- //
- // Phi10 = [w]x * (1 - cos(||w||*dt))/||w||^2
- // - [w]x^2 * (||w||*dT - sin(||w||*dt))/||w||^3
- // - I33*dT
- const mat33_t I33(1);
- const mat33_t I33dT(dT);
- const mat33_t wx(crossMatrix(we, 0));
- const mat33_t wx2(wx*wx);
- const float lwedT = length(we)*dT;
- const float hlwedT = 0.5f*lwedT;
- const float ilwe = 1/length(we);
- const float k0 = (1-cosf(lwedT))*(ilwe*ilwe);
- const float k1 = sinf(lwedT);
- const float k2 = cosf(hlwedT);
- const vec3_t psi(sinf(hlwedT)*ilwe*we);
- const mat33_t O33(crossMatrix(-psi, k2));
- mat44_t O;
- O[0].xyz = O33[0]; O[0].w = -psi.x;
- O[1].xyz = O33[1]; O[1].w = -psi.y;
- O[2].xyz = O33[2]; O[2].w = -psi.z;
- O[3].xyz = psi; O[3].w = k2;
- Phi[0][0] = I33 - wx*(k1*ilwe) + wx2*k0;
- Phi[1][0] = wx*k0 - I33dT - wx2*(ilwe*ilwe*ilwe)*(lwedT-k1);
- x0 = O*q;
- if (x0.w < 0)
- x0 = -x0;
- P = Phi*P*transpose(Phi) + GQGt;
- checkState();
- }
- void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
- vec4_t q(x0);
- // measured vector in body space: h(p) = A(p)*Bi
- const mat33_t A(quatToMatrix(q));
- const vec3_t Bb(A*Bi);
- // Sensitivity matrix H = dh(p)/dp
- // H = [ L 0 ]
- const mat33_t L(crossMatrix(Bb, 0));
- // gain...
- // K = P*Ht / [H*P*Ht + R]
- vec<mat33_t, 2> K;
- const mat33_t R(sigma*sigma);
- const mat33_t S(scaleCovariance(L, P[0][0]) + R);
- const mat33_t Si(invert(S));
- const mat33_t LtSi(transpose(L)*Si);
- K[0] = P[0][0] * LtSi;
- K[1] = transpose(P[1][0])*LtSi;
- // update...
- // P = (I-K*H) * P
- // P -= K*H*P
- // | K0 | * | L 0 | * P = | K0*L 0 | * | P00 P10 | = | K0*L*P00 K0*L*P10 |
- // | K1 | | K1*L 0 | | P01 P11 | | K1*L*P00 K1*L*P10 |
- // Note: the Joseph form is numerically more stable and given by:
- // P = (I-KH) * P * (I-KH)' + K*R*R'
- const mat33_t K0L(K[0] * L);
- const mat33_t K1L(K[1] * L);
- P[0][0] -= K0L*P[0][0];
- P[1][1] -= K1L*P[1][0];
- P[1][0] -= K0L*P[1][0];
- P[0][1] = transpose(P[1][0]);
- const vec3_t e(z - Bb);
- const vec3_t dq(K[0]*e);
- const vec3_t db(K[1]*e);
- q += getF(q)*(0.5f*dq);
- x0 = normalize_quat(q);
- x1 += db;
- checkState();
- }
- // -----------------------------------------------------------------------
- }; // namespace android
|