123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- # -*- coding: utf-8 -*-
- #
- # SelfTest/PublicKey/test_DSA.py: Self-test for the DSA primitive
- #
- # Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
- #
- # ===================================================================
- # The contents of this file are dedicated to the public domain. To
- # the extent that dedication to the public domain is not available,
- # everyone is granted a worldwide, perpetual, royalty-free,
- # non-exclusive license to exercise all rights associated with the
- # contents of this file for any purpose whatsoever.
- # No rights are reserved.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- # ===================================================================
- """Self-test suite for Cryptodome.PublicKey.DSA"""
- import os
- from Cryptodome.Util.py3compat import *
- import unittest
- from Cryptodome.SelfTest.st_common import list_test_cases, a2b_hex, b2a_hex
- def _sws(s):
- """Remove whitespace from a text or byte string"""
- if isinstance(s,str):
- return "".join(s.split())
- else:
- return b("").join(s.split())
- class DSATest(unittest.TestCase):
- # Test vector from "Appendix 5. Example of the DSA" of
- # "Digital Signature Standard (DSS)",
- # U.S. Department of Commerce/National Institute of Standards and Technology
- # FIPS 186-2 (+Change Notice), 2000 January 27.
- # http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
- y = _sws("""19131871 d75b1612 a819f29d 78d1b0d7 346f7aa7 7bb62a85
- 9bfd6c56 75da9d21 2d3a36ef 1672ef66 0b8c7c25 5cc0ec74
- 858fba33 f44c0669 9630a76b 030ee333""")
- g = _sws("""626d0278 39ea0a13 413163a5 5b4cb500 299d5522 956cefcb
- 3bff10f3 99ce2c2e 71cb9de5 fa24babf 58e5b795 21925c9c
- c42e9f6f 464b088c c572af53 e6d78802""")
- p = _sws("""8df2a494 492276aa 3d25759b b06869cb eac0d83a fb8d0cf7
- cbb8324f 0d7882e5 d0762fc5 b7210eaf c2e9adac 32ab7aac
- 49693dfb f83724c2 ec0736ee 31c80291""")
- q = _sws("""c773218c 737ec8ee 993b4f2d ed30f48e dace915f""")
- x = _sws("""2070b322 3dba372f de1c0ffc 7b2e3b49 8b260614""")
- k = _sws("""358dad57 1462710f 50e254cf 1a376b2b deaadfbf""")
- k_inverse = _sws("""0d516729 8202e49b 4116ac10 4fc3f415 ae52f917""")
- m = b2a_hex(b("abc"))
- m_hash = _sws("""a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d""")
- r = _sws("""8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0""")
- s = _sws("""41e2345f 1f56df24 58f426d1 55b4ba2d b6dcd8c8""")
- def setUp(self):
- global DSA, Random, bytes_to_long, size
- from Cryptodome.PublicKey import DSA
- from Cryptodome import Random
- from Cryptodome.Util.number import bytes_to_long, inverse, size
- self.dsa = DSA
- def test_generate_1arg(self):
- """DSA (default implementation) generated key (1 argument)"""
- dsaObj = self.dsa.generate(1024)
- self._check_private_key(dsaObj)
- pub = dsaObj.public_key()
- self._check_public_key(pub)
- def test_generate_2arg(self):
- """DSA (default implementation) generated key (2 arguments)"""
- dsaObj = self.dsa.generate(1024, Random.new().read)
- self._check_private_key(dsaObj)
- pub = dsaObj.public_key()
- self._check_public_key(pub)
- def test_construct_4tuple(self):
- """DSA (default implementation) constructed key (4-tuple)"""
- (y, g, p, q) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q)]
- dsaObj = self.dsa.construct((y, g, p, q))
- self._test_verification(dsaObj)
- def test_construct_5tuple(self):
- """DSA (default implementation) constructed key (5-tuple)"""
- (y, g, p, q, x) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q, self.x)]
- dsaObj = self.dsa.construct((y, g, p, q, x))
- self._test_signing(dsaObj)
- self._test_verification(dsaObj)
- def test_construct_bad_key4(self):
- (y, g, p, q) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q)]
- tup = (y, g, p+1, q)
- self.assertRaises(ValueError, self.dsa.construct, tup)
- tup = (y, g, p, q+1)
- self.assertRaises(ValueError, self.dsa.construct, tup)
- tup = (y, 1, p, q)
- self.assertRaises(ValueError, self.dsa.construct, tup)
- def test_construct_bad_key5(self):
- (y, g, p, q, x) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q, self.x)]
- tup = (y, g, p, q, x+1)
- self.assertRaises(ValueError, self.dsa.construct, tup)
- tup = (y, g, p, q, q+10)
- self.assertRaises(ValueError, self.dsa.construct, tup)
- def _check_private_key(self, dsaObj):
- # Check capabilities
- self.assertEqual(1, dsaObj.has_private())
- self.assertEqual(1, dsaObj.can_sign())
- self.assertEqual(0, dsaObj.can_encrypt())
- # Sanity check key data
- self.assertEqual(1, dsaObj.p > dsaObj.q) # p > q
- self.assertEqual(160, size(dsaObj.q)) # size(q) == 160 bits
- self.assertEqual(0, (dsaObj.p - 1) % dsaObj.q) # q is a divisor of p-1
- self.assertEqual(dsaObj.y, pow(dsaObj.g, dsaObj.x, dsaObj.p)) # y == g**x mod p
- self.assertEqual(1, 0 < dsaObj.x < dsaObj.q) # 0 < x < q
- def _check_public_key(self, dsaObj):
- k = bytes_to_long(a2b_hex(self.k))
- m_hash = bytes_to_long(a2b_hex(self.m_hash))
- # Check capabilities
- self.assertEqual(0, dsaObj.has_private())
- self.assertEqual(1, dsaObj.can_sign())
- self.assertEqual(0, dsaObj.can_encrypt())
- # Check that private parameters are all missing
- self.assertEqual(0, hasattr(dsaObj, 'x'))
- # Sanity check key data
- self.assertEqual(1, dsaObj.p > dsaObj.q) # p > q
- self.assertEqual(160, size(dsaObj.q)) # size(q) == 160 bits
- self.assertEqual(0, (dsaObj.p - 1) % dsaObj.q) # q is a divisor of p-1
- # Public-only key objects should raise an error when .sign() is called
- self.assertRaises(TypeError, dsaObj._sign, m_hash, k)
- # Check __eq__ and __ne__
- self.assertEqual(dsaObj.public_key() == dsaObj.public_key(),True) # assert_
- self.assertEqual(dsaObj.public_key() != dsaObj.public_key(),False) # failIf
- self.assertEqual(dsaObj.public_key(), dsaObj.publickey())
- def _test_signing(self, dsaObj):
- k = bytes_to_long(a2b_hex(self.k))
- m_hash = bytes_to_long(a2b_hex(self.m_hash))
- r = bytes_to_long(a2b_hex(self.r))
- s = bytes_to_long(a2b_hex(self.s))
- (r_out, s_out) = dsaObj._sign(m_hash, k)
- self.assertEqual((r, s), (r_out, s_out))
- def _test_verification(self, dsaObj):
- m_hash = bytes_to_long(a2b_hex(self.m_hash))
- r = bytes_to_long(a2b_hex(self.r))
- s = bytes_to_long(a2b_hex(self.s))
- self.failUnless(dsaObj._verify(m_hash, (r, s)))
- self.failIf(dsaObj._verify(m_hash + 1, (r, s)))
- def test_repr(self):
- (y, g, p, q) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q)]
- dsaObj = self.dsa.construct((y, g, p, q))
- repr(dsaObj)
- class DSADomainTest(unittest.TestCase):
- def test_domain1(self):
- """Verify we can generate new keys in a given domain"""
- dsa_key_1 = DSA.generate(1024)
- domain_params = dsa_key_1.domain()
- dsa_key_2 = DSA.generate(1024, domain=domain_params)
- self.assertEqual(dsa_key_1.p, dsa_key_2.p)
- self.assertEqual(dsa_key_1.q, dsa_key_2.q)
- self.assertEqual(dsa_key_1.g, dsa_key_2.g)
- self.assertEqual(dsa_key_1.domain(), dsa_key_2.domain())
- def _get_weak_domain(self):
- from Cryptodome.Math.Numbers import Integer
- from Cryptodome.Math import Primality
- p = Integer(4)
- while p.size_in_bits() != 1024 or Primality.test_probable_prime(p) != Primality.PROBABLY_PRIME:
- q1 = Integer.random(exact_bits=80)
- q2 = Integer.random(exact_bits=80)
- q = q1 * q2
- z = Integer.random(exact_bits=1024-160)
- p = z * q + 1
- h = Integer(2)
- g = 1
- while g == 1:
- g = pow(h, z, p)
- h += 1
- return (p, q, g)
- def test_generate_error_weak_domain(self):
- """Verify that domain parameters with composite q are rejected"""
- domain_params = self._get_weak_domain()
- self.assertRaises(ValueError, DSA.generate, 1024, domain=domain_params)
- def test_construct_error_weak_domain(self):
- """Verify that domain parameters with composite q are rejected"""
- from Cryptodome.Math.Numbers import Integer
- p, q, g = self._get_weak_domain()
- y = pow(g, 89, p)
- self.assertRaises(ValueError, DSA.construct, (y, g, p, q))
- def get_tests(config={}):
- tests = []
- tests += list_test_cases(DSATest)
- tests += list_test_cases(DSADomainTest)
- return tests
- if __name__ == '__main__':
- suite = lambda: unittest.TestSuite(get_tests())
- unittest.main(defaultTest='suite')
- # vim:set ts=4 sw=4 sts=4 expandtab:
|