123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- #
- # ElGamal.py : ElGamal encryption/decryption and signatures
- #
- # Part of the Python Cryptography Toolkit
- #
- # Originally written by: A.M. Kuchling
- #
- # ===================================================================
- # The contents of this file are dedicated to the public domain. To
- # the extent that dedication to the public domain is not available,
- # everyone is granted a worldwide, perpetual, royalty-free,
- # non-exclusive license to exercise all rights associated with the
- # contents of this file for any purpose whatsoever.
- # No rights are reserved.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- # ===================================================================
- __all__ = ['generate', 'construct', 'ElGamalKey']
- from Cryptodome import Random
- from Cryptodome.Math.Primality import ( generate_probable_safe_prime,
- test_probable_prime, COMPOSITE )
- from Cryptodome.Math.Numbers import Integer
- # Generate an ElGamal key with N bits
- def generate(bits, randfunc):
- """Randomly generate a fresh, new ElGamal key.
- The key will be safe for use for both encryption and signature
- (although it should be used for **only one** purpose).
- Args:
- bits (int):
- Key length, or size (in bits) of the modulus *p*.
- The recommended value is 2048.
- randfunc (callable):
- Random number generation function; it should accept
- a single integer *N* and return a string of random
- *N* random bytes.
- Return:
- an :class:`ElGamalKey` object
- """
- obj=ElGamalKey()
- # Generate a safe prime p
- # See Algorithm 4.86 in Handbook of Applied Cryptography
- obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc)
- q = (obj.p - 1) >> 1
- # Generate generator g
- while 1:
- # Choose a square residue; it will generate a cyclic group of order q.
- obj.g = pow(Integer.random_range(min_inclusive=2,
- max_exclusive=obj.p,
- randfunc=randfunc), 2, obj.p)
- # We must avoid g=2 because of Bleichenbacher's attack described
- # in "Generating ElGamal signatures without knowning the secret key",
- # 1996
- if obj.g in (1, 2):
- continue
- # Discard g if it divides p-1 because of the attack described
- # in Note 11.67 (iii) in HAC
- if (obj.p - 1) % obj.g == 0:
- continue
- # g^{-1} must not divide p-1 because of Khadir's attack
- # described in "Conditions of the generator for forging ElGamal
- # signature", 2011
- ginv = obj.g.inverse(obj.p)
- if (obj.p - 1) % ginv == 0:
- continue
- # Found
- break
- # Generate private key x
- obj.x = Integer.random_range(min_inclusive=2,
- max_exclusive=obj.p-1,
- randfunc=randfunc)
- # Generate public key y
- obj.y = pow(obj.g, obj.x, obj.p)
- return obj
- def construct(tup):
- r"""Construct an ElGamal key from a tuple of valid ElGamal components.
- The modulus *p* must be a prime.
- The following conditions must apply:
- .. math::
- \begin{align}
- &1 < g < p-1 \\
- &g^{p-1} = 1 \text{ mod } 1 \\
- &1 < x < p-1 \\
- &g^x = y \text{ mod } p
- \end{align}
- Args:
- tup (tuple):
- A tuple with either 3 or 4 integers,
- in the following order:
- 1. Modulus (*p*).
- 2. Generator (*g*).
- 3. Public key (*y*).
- 4. Private key (*x*). Optional.
- Raises:
- ValueError: when the key being imported fails the most basic ElGamal validity checks.
- Returns:
- an :class:`ElGamalKey` object
- """
- obj=ElGamalKey()
- if len(tup) not in [3,4]:
- raise ValueError('argument for construct() wrong length')
- for i in range(len(tup)):
- field = obj._keydata[i]
- setattr(obj, field, Integer(tup[i]))
- fmt_error = test_probable_prime(obj.p) == COMPOSITE
- fmt_error |= obj.g<=1 or obj.g>=obj.p
- fmt_error |= pow(obj.g, obj.p-1, obj.p)!=1
- fmt_error |= obj.y<1 or obj.y>=obj.p
- if len(tup)==4:
- fmt_error |= obj.x<=1 or obj.x>=obj.p
- fmt_error |= pow(obj.g, obj.x, obj.p)!=obj.y
- if fmt_error:
- raise ValueError("Invalid ElGamal key components")
- return obj
- class ElGamalKey(object):
- r"""Class defining an ElGamal key.
- Do not instantiate directly.
- Use :func:`generate` or :func:`construct` instead.
- :ivar p: Modulus
- :vartype d: integer
- :ivar g: Generator
- :vartype e: integer
- :ivar y: Public key component
- :vartype y: integer
- :ivar x: Private key component
- :vartype x: integer
- """
- #: Dictionary of ElGamal parameters.
- #:
- #: A public key will only have the following entries:
- #:
- #: - **y**, the public key.
- #: - **g**, the generator.
- #: - **p**, the modulus.
- #:
- #: A private key will also have:
- #:
- #: - **x**, the private key.
- _keydata=['p', 'g', 'y', 'x']
- def __init__(self, randfunc=None):
- if randfunc is None:
- randfunc = Random.new().read
- self._randfunc = randfunc
- def _encrypt(self, M, K):
- a=pow(self.g, K, self.p)
- b=( pow(self.y, K, self.p)*M ) % self.p
- return [int(a), int(b)]
- def _decrypt(self, M):
- if (not hasattr(self, 'x')):
- raise TypeError('Private key not available in this object')
- r = Integer.random_range(min_inclusive=2,
- max_exclusive=self.p-1,
- randfunc=self._randfunc)
- a_blind = (pow(self.g, r, self.p) * M[0]) % self.p
- ax=pow(a_blind, self.x, self.p)
- plaintext_blind = (ax.inverse(self.p) * M[1] ) % self.p
- plaintext = (plaintext_blind * pow(self.y, r, self.p)) % self.p
- return int(plaintext)
- def _sign(self, M, K):
- if (not hasattr(self, 'x')):
- raise TypeError('Private key not available in this object')
- p1=self.p-1
- K = Integer(K)
- if (K.gcd(p1)!=1):
- raise ValueError('Bad K value: GCD(K,p-1)!=1')
- a=pow(self.g, K, self.p)
- t=(Integer(M)-self.x*a) % p1
- while t<0: t=t+p1
- b=(t*K.inverse(p1)) % p1
- return [int(a), int(b)]
- def _verify(self, M, sig):
- sig = [Integer(x) for x in sig]
- if sig[0]<1 or sig[0]>self.p-1:
- return 0
- v1=pow(self.y, sig[0], self.p)
- v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
- v2=pow(self.g, M, self.p)
- if v1==v2:
- return 1
- return 0
- def has_private(self):
- """Whether this is an ElGamal private key"""
- if hasattr(self, 'x'):
- return 1
- else:
- return 0
- def can_encrypt(self):
- return True
- def can_sign(self):
- return True
- def publickey(self):
- """A matching ElGamal public key.
- Returns:
- a new :class:`ElGamalKey` object
- """
- return construct((self.p, self.g, self.y))
- def __eq__(self, other):
- if bool(self.has_private()) != bool(other.has_private()):
- return False
- result = True
- for comp in self._keydata:
- result = result and (getattr(self.key, comp, None) ==
- getattr(other.key, comp, None))
- return result
- def __ne__(self, other):
- return not self.__eq__(other)
- def __getstate__(self):
- # ElGamal key is not pickable
- from pickle import PicklingError
- raise PicklingError
- # Methods defined in PyCryptodome that we don't support anymore
- def sign(self, M, K):
- raise NotImplementedError
- def verify(self, M, signature):
- raise NotImplementedError
- def encrypt(self, plaintext, K):
- raise NotImplementedError
- def decrypt(self, ciphertext):
- raise NotImplementedError
- def blind(self, M, B):
- raise NotImplementedError
- def unblind(self, M, B):
- raise NotImplementedError
- def size(self):
- raise NotImplementedError
|