123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683 |
- # -*- coding: utf-8 -*-
- #
- # PublicKey/DSA.py : DSA signature primitive
- #
- # Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
- #
- # ===================================================================
- # The contents of this file are dedicated to the public domain. To
- # the extent that dedication to the public domain is not available,
- # everyone is granted a worldwide, perpetual, royalty-free,
- # non-exclusive license to exercise all rights associated with the
- # contents of this file for any purpose whatsoever.
- # No rights are reserved.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- # ===================================================================
- __all__ = ['generate', 'construct', 'DsaKey', 'import_key' ]
- import binascii
- import struct
- import itertools
- from Cryptodome.Util.py3compat import bchr, bord, tobytes, tostr, iter_range
- from Cryptodome import Random
- from Cryptodome.IO import PKCS8, PEM
- from Cryptodome.Hash import SHA256
- from Cryptodome.Util.asn1 import (
- DerObject, DerSequence,
- DerInteger, DerObjectId,
- DerBitString,
- )
- from Cryptodome.Math.Numbers import Integer
- from Cryptodome.Math.Primality import (test_probable_prime, COMPOSITE,
- PROBABLY_PRIME)
- from Cryptodome.PublicKey import (_expand_subject_public_key_info,
- _create_subject_public_key_info,
- _extract_subject_public_key_info)
- # ; The following ASN.1 types are relevant for DSA
- #
- # SubjectPublicKeyInfo ::= SEQUENCE {
- # algorithm AlgorithmIdentifier,
- # subjectPublicKey BIT STRING
- # }
- #
- # id-dsa ID ::= { iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }
- #
- # ; See RFC3279
- # Dss-Parms ::= SEQUENCE {
- # p INTEGER,
- # q INTEGER,
- # g INTEGER
- # }
- #
- # DSAPublicKey ::= INTEGER
- #
- # DSSPrivatKey_OpenSSL ::= SEQUENCE
- # version INTEGER,
- # p INTEGER,
- # q INTEGER,
- # g INTEGER,
- # y INTEGER,
- # x INTEGER
- # }
- #
- class DsaKey(object):
- r"""Class defining an actual DSA key.
- Do not instantiate directly.
- Use :func:`generate`, :func:`construct` or :func:`import_key` instead.
- :ivar p: DSA modulus
- :vartype p: integer
- :ivar q: Order of the subgroup
- :vartype q: integer
- :ivar g: Generator
- :vartype g: integer
- :ivar y: Public key
- :vartype y: integer
- :ivar x: Private key
- :vartype x: integer
- :undocumented: exportKey, publickey
- """
- _keydata = ['y', 'g', 'p', 'q', 'x']
- def __init__(self, key_dict):
- input_set = set(key_dict.keys())
- public_set = set(('y' , 'g', 'p', 'q'))
- if not public_set.issubset(input_set):
- raise ValueError("Some DSA components are missing = %s" %
- str(public_set - input_set))
- extra_set = input_set - public_set
- if extra_set and extra_set != set(('x',)):
- raise ValueError("Unknown DSA components = %s" %
- str(extra_set - set(('x',))))
- self._key = dict(key_dict)
- def _sign(self, m, k):
- if not self.has_private():
- raise TypeError("DSA public key cannot be used for signing")
- if not (1 < k < self.q):
- raise ValueError("k is not between 2 and q-1")
- x, q, p, g = [self._key[comp] for comp in ['x', 'q', 'p', 'g']]
- blind_factor = Integer.random_range(min_inclusive=1,
- max_exclusive=q)
- inv_blind_k = (blind_factor * k).inverse(q)
- blind_x = x * blind_factor
- r = pow(g, k, p) % q # r = (g**k mod p) mod q
- s = (inv_blind_k * (blind_factor * m + blind_x * r)) % q
- return map(int, (r, s))
- def _verify(self, m, sig):
- r, s = sig
- y, q, p, g = [self._key[comp] for comp in ['y', 'q', 'p', 'g']]
- if not (0 < r < q) or not (0 < s < q):
- return False
- w = Integer(s).inverse(q)
- u1 = (w * m) % q
- u2 = (w * r) % q
- v = (pow(g, u1, p) * pow(y, u2, p) % p) % q
- return v == r
- def has_private(self):
- """Whether this is a DSA private key"""
- return 'x' in self._key
- def can_encrypt(self): # legacy
- return False
- def can_sign(self): # legacy
- return True
- def public_key(self):
- """A matching DSA public key.
- Returns:
- a new :class:`DsaKey` object
- """
- public_components = dict((k, self._key[k]) for k in ('y', 'g', 'p', 'q'))
- return DsaKey(public_components)
- def __eq__(self, other):
- if bool(self.has_private()) != bool(other.has_private()):
- return False
- result = True
- for comp in self._keydata:
- result = result and (getattr(self._key, comp, None) ==
- getattr(other._key, comp, None))
- return result
- def __ne__(self, other):
- return not self.__eq__(other)
- def __getstate__(self):
- # DSA key is not pickable
- from pickle import PicklingError
- raise PicklingError
- def domain(self):
- """The DSA domain parameters.
- Returns
- tuple : (p,q,g)
- """
- return [int(self._key[comp]) for comp in ('p', 'q', 'g')]
- def __repr__(self):
- attrs = []
- for k in self._keydata:
- if k == 'p':
- bits = Integer(self.p).size_in_bits()
- attrs.append("p(%d)" % (bits,))
- elif hasattr(self, k):
- attrs.append(k)
- if self.has_private():
- attrs.append("private")
- # PY3K: This is meant to be text, do not change to bytes (data)
- return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
- def __getattr__(self, item):
- try:
- return int(self._key[item])
- except KeyError:
- raise AttributeError(item)
- def export_key(self, format='PEM', pkcs8=None, passphrase=None,
- protection=None, randfunc=None):
- """Export this DSA key.
- Args:
- format (string):
- The encoding for the output:
- - *'PEM'* (default). ASCII as per `RFC1421`_/ `RFC1423`_.
- - *'DER'*. Binary ASN.1 encoding.
- - *'OpenSSH'*. ASCII one-liner as per `RFC4253`_.
- Only suitable for public keys, not for private keys.
- passphrase (string):
- *Private keys only*. The pass phrase to protect the output.
- pkcs8 (boolean):
- *Private keys only*. If ``True`` (default), the key is encoded
- with `PKCS#8`_. If ``False``, it is encoded in the custom
- OpenSSL/OpenSSH container.
- protection (string):
- *Only in combination with a pass phrase*.
- The encryption scheme to use to protect the output.
- If :data:`pkcs8` takes value ``True``, this is the PKCS#8
- algorithm to use for deriving the secret and encrypting
- the private DSA key.
- For a complete list of algorithms, see :mod:`Cryptodome.IO.PKCS8`.
- The default is *PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC*.
- If :data:`pkcs8` is ``False``, the obsolete PEM encryption scheme is
- used. It is based on MD5 for key derivation, and Triple DES for
- encryption. Parameter :data:`protection` is then ignored.
- The combination ``format='DER'`` and ``pkcs8=False`` is not allowed
- if a passphrase is present.
- randfunc (callable):
- A function that returns random bytes.
- By default it is :func:`Cryptodome.Random.get_random_bytes`.
- Returns:
- byte string : the encoded key
- Raises:
- ValueError : when the format is unknown or when you try to encrypt a private
- key with *DER* format and OpenSSL/OpenSSH.
- .. warning::
- If you don't provide a pass phrase, the private key will be
- exported in the clear!
- .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
- .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
- .. _RFC4253: http://www.ietf.org/rfc/rfc4253.txt
- .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
- """
- if passphrase is not None:
- passphrase = tobytes(passphrase)
- if randfunc is None:
- randfunc = Random.get_random_bytes
- if format == 'OpenSSH':
- tup1 = [self._key[x].to_bytes() for x in ('p', 'q', 'g', 'y')]
- def func(x):
- if (bord(x[0]) & 0x80):
- return bchr(0) + x
- else:
- return x
- tup2 = [func(x) for x in tup1]
- keyparts = [b'ssh-dss'] + tup2
- keystring = b''.join(
- [struct.pack(">I", len(kp)) + kp for kp in keyparts]
- )
- return b'ssh-dss ' + binascii.b2a_base64(keystring)[:-1]
- # DER format is always used, even in case of PEM, which simply
- # encodes it into BASE64.
- params = DerSequence([self.p, self.q, self.g])
- if self.has_private():
- if pkcs8 is None:
- pkcs8 = True
- if pkcs8:
- if not protection:
- protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC'
- private_key = DerInteger(self.x).encode()
- binary_key = PKCS8.wrap(
- private_key, oid, passphrase,
- protection, key_params=params,
- randfunc=randfunc
- )
- if passphrase:
- key_type = 'ENCRYPTED PRIVATE'
- else:
- key_type = 'PRIVATE'
- passphrase = None
- else:
- if format != 'PEM' and passphrase:
- raise ValueError("DSA private key cannot be encrypted")
- ints = [0, self.p, self.q, self.g, self.y, self.x]
- binary_key = DerSequence(ints).encode()
- key_type = "DSA PRIVATE"
- else:
- if pkcs8:
- raise ValueError("PKCS#8 is only meaningful for private keys")
- binary_key = _create_subject_public_key_info(oid,
- DerInteger(self.y), params)
- key_type = "PUBLIC"
- if format == 'DER':
- return binary_key
- if format == 'PEM':
- pem_str = PEM.encode(
- binary_key, key_type + " KEY",
- passphrase, randfunc
- )
- return tobytes(pem_str)
- raise ValueError("Unknown key format '%s'. Cannot export the DSA key." % format)
- # Backward-compatibility
- exportKey = export_key
- publickey = public_key
- # Methods defined in PyCryptodome that we don't support anymore
- def sign(self, M, K):
- raise NotImplementedError("Use module Cryptodome.Signature.DSS instead")
- def verify(self, M, signature):
- raise NotImplementedError("Use module Cryptodome.Signature.DSS instead")
- def encrypt(self, plaintext, K):
- raise NotImplementedError
- def decrypt(self, ciphertext):
- raise NotImplementedError
- def blind(self, M, B):
- raise NotImplementedError
- def unblind(self, M, B):
- raise NotImplementedError
- def size(self):
- raise NotImplementedError
- def _generate_domain(L, randfunc):
- """Generate a new set of DSA domain parameters"""
- N = { 1024:160, 2048:224, 3072:256 }.get(L)
- if N is None:
- raise ValueError("Invalid modulus length (%d)" % L)
- outlen = SHA256.digest_size * 8
- n = (L + outlen - 1) // outlen - 1 # ceil(L/outlen) -1
- b_ = L - 1 - (n * outlen)
- # Generate q (A.1.1.2)
- q = Integer(4)
- upper_bit = 1 << (N - 1)
- while test_probable_prime(q, randfunc) != PROBABLY_PRIME:
- seed = randfunc(64)
- U = Integer.from_bytes(SHA256.new(seed).digest()) & (upper_bit - 1)
- q = U | upper_bit | 1
- assert(q.size_in_bits() == N)
- # Generate p (A.1.1.2)
- offset = 1
- upper_bit = 1 << (L - 1)
- while True:
- V = [ SHA256.new(seed + Integer(offset + j).to_bytes()).digest()
- for j in iter_range(n + 1) ]
- V = [ Integer.from_bytes(v) for v in V ]
- W = sum([V[i] * (1 << (i * outlen)) for i in iter_range(n)],
- (V[n] & ((1 << b_) - 1)) * (1 << (n * outlen)))
- X = Integer(W + upper_bit) # 2^{L-1} < X < 2^{L}
- assert(X.size_in_bits() == L)
- c = X % (q * 2)
- p = X - (c - 1) # 2q divides (p-1)
- if p.size_in_bits() == L and \
- test_probable_prime(p, randfunc) == PROBABLY_PRIME:
- break
- offset += n + 1
- # Generate g (A.2.3, index=1)
- e = (p - 1) // q
- for count in itertools.count(1):
- U = seed + b"ggen" + bchr(1) + Integer(count).to_bytes()
- W = Integer.from_bytes(SHA256.new(U).digest())
- g = pow(W, e, p)
- if g != 1:
- break
- return (p, q, g, seed)
- def generate(bits, randfunc=None, domain=None):
- """Generate a new DSA key pair.
- The algorithm follows Appendix A.1/A.2 and B.1 of `FIPS 186-4`_,
- respectively for domain generation and key pair generation.
- Args:
- bits (integer):
- Key length, or size (in bits) of the DSA modulus *p*.
- It must be 1024, 2048 or 3072.
- randfunc (callable):
- Random number generation function; it accepts a single integer N
- and return a string of random data N bytes long.
- If not specified, :func:`Cryptodome.Random.get_random_bytes` is used.
- domain (tuple):
- The DSA domain parameters *p*, *q* and *g* as a list of 3
- integers. Size of *p* and *q* must comply to `FIPS 186-4`_.
- If not specified, the parameters are created anew.
- Returns:
- :class:`DsaKey` : a new DSA key object
- Raises:
- ValueError : when **bits** is too little, too big, or not a multiple of 64.
- .. _FIPS 186-4: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
- """
- if randfunc is None:
- randfunc = Random.get_random_bytes
- if domain:
- p, q, g = map(Integer, domain)
- ## Perform consistency check on domain parameters
- # P and Q must be prime
- fmt_error = test_probable_prime(p) == COMPOSITE
- fmt_error |= test_probable_prime(q) == COMPOSITE
- # Verify Lagrange's theorem for sub-group
- fmt_error |= ((p - 1) % q) != 0
- fmt_error |= g <= 1 or g >= p
- fmt_error |= pow(g, q, p) != 1
- if fmt_error:
- raise ValueError("Invalid DSA domain parameters")
- else:
- p, q, g, _ = _generate_domain(bits, randfunc)
- L = p.size_in_bits()
- N = q.size_in_bits()
- if L != bits:
- raise ValueError("Mismatch between size of modulus (%d)"
- " and 'bits' parameter (%d)" % (L, bits))
- if (L, N) not in [(1024, 160), (2048, 224),
- (2048, 256), (3072, 256)]:
- raise ValueError("Lengths of p and q (%d, %d) are not compatible"
- "to FIPS 186-3" % (L, N))
- if not 1 < g < p:
- raise ValueError("Incorrent DSA generator")
- # B.1.1
- c = Integer.random(exact_bits=N + 64, randfunc=randfunc)
- x = c % (q - 1) + 1 # 1 <= x <= q-1
- y = pow(g, x, p)
- key_dict = { 'y':y, 'g':g, 'p':p, 'q':q, 'x':x }
- return DsaKey(key_dict)
- def construct(tup, consistency_check=True):
- """Construct a DSA key from a tuple of valid DSA components.
- Args:
- tup (tuple):
- A tuple of long integers, with 4 or 5 items
- in the following order:
- 1. Public key (*y*).
- 2. Sub-group generator (*g*).
- 3. Modulus, finite field order (*p*).
- 4. Sub-group order (*q*).
- 5. Private key (*x*). Optional.
- consistency_check (boolean):
- If ``True``, the library will verify that the provided components
- fulfil the main DSA properties.
- Raises:
- ValueError: when the key being imported fails the most basic DSA validity checks.
- Returns:
- :class:`DsaKey` : a DSA key object
- """
- key_dict = dict(zip(('y', 'g', 'p', 'q', 'x'), map(Integer, tup)))
- key = DsaKey(key_dict)
- fmt_error = False
- if consistency_check:
- # P and Q must be prime
- fmt_error = test_probable_prime(key.p) == COMPOSITE
- fmt_error |= test_probable_prime(key.q) == COMPOSITE
- # Verify Lagrange's theorem for sub-group
- fmt_error |= ((key.p - 1) % key.q) != 0
- fmt_error |= key.g <= 1 or key.g >= key.p
- fmt_error |= pow(key.g, key.q, key.p) != 1
- # Public key
- fmt_error |= key.y <= 0 or key.y >= key.p
- if hasattr(key, 'x'):
- fmt_error |= key.x <= 0 or key.x >= key.q
- fmt_error |= pow(key.g, key.x, key.p) != key.y
- if fmt_error:
- raise ValueError("Invalid DSA key components")
- return key
- # Dss-Parms ::= SEQUENCE {
- # p OCTET STRING,
- # q OCTET STRING,
- # g OCTET STRING
- # }
- # DSAPublicKey ::= INTEGER -- public key, y
- def _import_openssl_private(encoded, passphrase, params):
- if params:
- raise ValueError("DSA private key already comes with parameters")
- der = DerSequence().decode(encoded, nr_elements=6, only_ints_expected=True)
- if der[0] != 0:
- raise ValueError("No version found")
- tup = [der[comp] for comp in (4, 3, 1, 2, 5)]
- return construct(tup)
- def _import_subjectPublicKeyInfo(encoded, passphrase, params):
- algoid, encoded_key, emb_params = _expand_subject_public_key_info(encoded)
- if algoid != oid:
- raise ValueError("No DSA subjectPublicKeyInfo")
- if params and emb_params:
- raise ValueError("Too many DSA parameters")
- y = DerInteger().decode(encoded_key).value
- p, q, g = list(DerSequence().decode(params or emb_params))
- tup = (y, g, p, q)
- return construct(tup)
- def _import_x509_cert(encoded, passphrase, params):
- sp_info = _extract_subject_public_key_info(encoded)
- return _import_subjectPublicKeyInfo(sp_info, None, params)
- def _import_pkcs8(encoded, passphrase, params):
- if params:
- raise ValueError("PKCS#8 already includes parameters")
- k = PKCS8.unwrap(encoded, passphrase)
- if k[0] != oid:
- raise ValueError("No PKCS#8 encoded DSA key")
- x = DerInteger().decode(k[1]).value
- p, q, g = list(DerSequence().decode(k[2]))
- tup = (pow(g, x, p), g, p, q, x)
- return construct(tup)
- def _import_key_der(key_data, passphrase, params):
- """Import a DSA key (public or private half), encoded in DER form."""
- decodings = (_import_openssl_private,
- _import_subjectPublicKeyInfo,
- _import_x509_cert,
- _import_pkcs8)
- for decoding in decodings:
- try:
- return decoding(key_data, passphrase, params)
- except ValueError:
- pass
- raise ValueError("DSA key format is not supported")
- def import_key(extern_key, passphrase=None):
- """Import a DSA key.
- Args:
- extern_key (string or byte string):
- The DSA key to import.
- The following formats are supported for a DSA **public** key:
- - X.509 certificate (binary DER or PEM)
- - X.509 ``subjectPublicKeyInfo`` (binary DER or PEM)
- - OpenSSH (ASCII one-liner, see `RFC4253`_)
- The following formats are supported for a DSA **private** key:
- - `PKCS#8`_ ``PrivateKeyInfo`` or ``EncryptedPrivateKeyInfo``
- DER SEQUENCE (binary or PEM)
- - OpenSSL/OpenSSH custom format (binary or PEM)
- For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
- passphrase (string):
- In case of an encrypted private key, this is the pass phrase
- from which the decryption key is derived.
- Encryption may be applied either at the `PKCS#8`_ or at the PEM level.
- Returns:
- :class:`DsaKey` : a DSA key object
- Raises:
- ValueError : when the given key cannot be parsed (possibly because
- the pass phrase is wrong).
- .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
- .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
- .. _RFC4253: http://www.ietf.org/rfc/rfc4253.txt
- .. _PKCS#8: http://www.ietf.org/rfc/rfc5208.txt
- """
- extern_key = tobytes(extern_key)
- if passphrase is not None:
- passphrase = tobytes(passphrase)
- if extern_key.startswith(b'-----'):
- # This is probably a PEM encoded key
- (der, marker, enc_flag) = PEM.decode(tostr(extern_key), passphrase)
- if enc_flag:
- passphrase = None
- return _import_key_der(der, passphrase, None)
- if extern_key.startswith(b'ssh-dss '):
- # This is probably a public OpenSSH key
- keystring = binascii.a2b_base64(extern_key.split(b' ')[1])
- keyparts = []
- while len(keystring) > 4:
- length = struct.unpack(">I", keystring[:4])[0]
- keyparts.append(keystring[4:4 + length])
- keystring = keystring[4 + length:]
- if keyparts[0] == b"ssh-dss":
- tup = [Integer.from_bytes(keyparts[x]) for x in (4, 3, 1, 2)]
- return construct(tup)
- if len(extern_key) > 0 and bord(extern_key[0]) == 0x30:
- # This is probably a DER encoded key
- return _import_key_der(extern_key, passphrase, None)
- raise ValueError("DSA key format is not supported")
- # Backward compatibility
- importKey = import_key
- #: `Object ID`_ for a DSA key.
- #:
- #: id-dsa ID ::= { iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }
- #:
- #: .. _`Object ID`: http://www.alvestrand.no/objectid/1.2.840.10040.4.1.html
- oid = "1.2.840.10040.4.1"
|