123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- #
- # SecretSharing.py : distribute a secret amongst a group of participants
- #
- # ===================================================================
- #
- # Copyright (c) 2014, Legrandin <helderijs@gmail.com>
- # All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- #
- # 1. Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # 2. Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in
- # the documentation and/or other materials provided with the
- # distribution.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- # POSSIBILITY OF SUCH DAMAGE.
- # ===================================================================
- from Cryptodome.Util.py3compat import is_native_int
- from Cryptodome.Util import number
- from Cryptodome.Util.number import long_to_bytes, bytes_to_long
- from Cryptodome.Random import get_random_bytes as rng
- def _mult_gf2(f1, f2):
- """Multiply two polynomials in GF(2)"""
- # Ensure f2 is the smallest
- if f2 > f1:
- f1, f2 = f2, f1
- z = 0
- while f2:
- if f2 & 1:
- z ^= f1
- f1 <<= 1
- f2 >>= 1
- return z
- def _div_gf2(a, b):
- """
- Compute division of polynomials over GF(2).
- Given a and b, it finds two polynomials q and r such that:
- a = b*q + r with deg(r)<deg(b)
- """
- if (a < b):
- return 0, a
- deg = number.size
- q = 0
- r = a
- d = deg(b)
- while deg(r) >= d:
- s = 1 << (deg(r) - d)
- q ^= s
- r ^= _mult_gf2(b, s)
- return (q, r)
- class _Element(object):
- """Element of GF(2^128) field"""
- # The irreducible polynomial defining this field is 1+x+x^2+x^7+x^128
- irr_poly = 1 + 2 + 4 + 128 + 2 ** 128
- def __init__(self, encoded_value):
- """Initialize the element to a certain value.
- The value passed as parameter is internally encoded as
- a 128-bit integer, where each bit represents a polynomial
- coefficient. The LSB is the constant coefficient.
- """
- if is_native_int(encoded_value):
- self._value = encoded_value
- elif len(encoded_value) == 16:
- self._value = bytes_to_long(encoded_value)
- else:
- raise ValueError("The encoded value must be an integer or a 16 byte string")
- def __eq__(self, other):
- return self._value == other._value
- def __int__(self):
- """Return the field element, encoded as a 128-bit integer."""
- return self._value
- def encode(self):
- """Return the field element, encoded as a 16 byte string."""
- return long_to_bytes(self._value, 16)
- def __mul__(self, factor):
- f1 = self._value
- f2 = factor._value
- # Make sure that f2 is the smallest, to speed up the loop
- if f2 > f1:
- f1, f2 = f2, f1
- if self.irr_poly in (f1, f2):
- return _Element(0)
- mask1 = 2 ** 128
- v, z = f1, 0
- while f2:
- # if f2 ^ 1: z ^= v
- mask2 = int(bin(f2 & 1)[2:] * 128, base=2)
- z = (mask2 & (z ^ v)) | ((mask1 - mask2 - 1) & z)
- v <<= 1
- # if v & mask1: v ^= self.irr_poly
- mask3 = int(bin((v >> 128) & 1)[2:] * 128, base=2)
- v = (mask3 & (v ^ self.irr_poly)) | ((mask1 - mask3 - 1) & v)
- f2 >>= 1
- return _Element(z)
- def __add__(self, term):
- return _Element(self._value ^ term._value)
- def inverse(self):
- """Return the inverse of this element in GF(2^128)."""
- # We use the Extended GCD algorithm
- # http://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor
- if self._value == 0:
- raise ValueError("Inversion of zero")
- r0, r1 = self._value, self.irr_poly
- s0, s1 = 1, 0
- while r1 > 0:
- q = _div_gf2(r0, r1)[0]
- r0, r1 = r1, r0 ^ _mult_gf2(q, r1)
- s0, s1 = s1, s0 ^ _mult_gf2(q, s1)
- return _Element(s0)
- def __pow__(self, exponent):
- result = _Element(self._value)
- for _ in range(exponent - 1):
- result = result * self
- return result
- class Shamir(object):
- """Shamir's secret sharing scheme.
- A secret is split into ``n`` shares, and it is sufficient to collect
- ``k`` of them to reconstruct the secret.
- """
- @staticmethod
- def split(k, n, secret, ssss=False):
- """Split a secret into ``n`` shares.
- The secret can be reconstructed later using just ``k`` shares
- out of the original ``n``.
- Each share must be kept confidential to the person it was
- assigned to.
- Each share is associated to an index (starting from 1).
- Args:
- k (integer):
- The sufficient number of shares to reconstruct the secret (``k < n``).
- n (integer):
- The number of shares that this method will create.
- secret (byte string):
- A byte string of 16 bytes (e.g. the AES 128 key).
- ssss (bool):
- If ``True``, the shares can be used with the ``ssss`` utility.
- Default: ``False``.
- Return (tuples):
- ``n`` tuples. A tuple is meant for each participant and it contains two items:
- 1. the unique index (an integer)
- 2. the share (a byte string, 16 bytes)
- """
- #
- # We create a polynomial with random coefficients in GF(2^128):
- #
- # p(x) = \sum_{i=0}^{k-1} c_i * x^i
- #
- # c_0 is the encoded secret
- #
- coeffs = [_Element(rng(16)) for i in range(k - 1)]
- coeffs.append(_Element(secret))
- # Each share is y_i = p(x_i) where x_i is the public index
- # associated to each of the n users.
- def make_share(user, coeffs, ssss):
- idx = _Element(user)
- share = _Element(0)
- for coeff in coeffs:
- share = idx * share + coeff
- if ssss:
- share += _Element(user) ** len(coeffs)
- return share.encode()
- return [(i, make_share(i, coeffs, ssss)) for i in range(1, n + 1)]
- @staticmethod
- def combine(shares, ssss=False):
- """Recombine a secret, if enough shares are presented.
- Args:
- shares (tuples):
- The *k* tuples, each containin the index (an integer) and
- the share (a byte string, 16 bytes long) that were assigned to
- a participant.
- ssss (bool):
- If ``True``, the shares were produced by the ``ssss`` utility.
- Default: ``False``.
- Return:
- The original secret, as a byte string (16 bytes long).
- """
- #
- # Given k points (x,y), the interpolation polynomial of degree k-1 is:
- #
- # L(x) = \sum_{j=0}^{k-1} y_i * l_j(x)
- #
- # where:
- #
- # l_j(x) = \prod_{ \overset{0 \le m \le k-1}{m \ne j} }
- # \frac{x - x_m}{x_j - x_m}
- #
- # However, in this case we are purely interested in the constant
- # coefficient of L(x).
- #
- k = len(shares)
- gf_shares = []
- for x in shares:
- idx = _Element(x[0])
- value = _Element(x[1])
- if any(y[0] == idx for y in gf_shares):
- raise ValueError("Duplicate share")
- if ssss:
- value += idx ** k
- gf_shares.append((idx, value))
- result = _Element(0)
- for j in range(k):
- x_j, y_j = gf_shares[j]
- numerator = _Element(1)
- denominator = _Element(1)
- for m in range(k):
- x_m = gf_shares[m][0]
- if m != j:
- numerator *= x_m
- denominator *= x_j + x_m
- result += y_j * numerator * denominator.inverse()
- return result.encode()
|