123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 |
- # ===================================================================
- #
- # Copyright (c) 2014, Legrandin <helderijs@gmail.com>
- # All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- #
- # 1. Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # 2. Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in
- # the documentation and/or other materials provided with the
- # distribution.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- # POSSIBILITY OF SUCH DAMAGE.
- # ===================================================================
- from ._IntegerBase import IntegerBase
- from Cryptodome.Util.number import long_to_bytes, bytes_to_long
- class IntegerNative(IntegerBase):
- """A class to model a natural integer (including zero)"""
- def __init__(self, value):
- if isinstance(value, float):
- raise ValueError("A floating point type is not a natural number")
- try:
- self._value = value._value
- except AttributeError:
- self._value = value
- # Conversions
- def __int__(self):
- return self._value
- def __str__(self):
- return str(int(self))
- def __repr__(self):
- return "Integer(%s)" % str(self)
- # Only Python 2.x
- def __hex__(self):
- return hex(self._value)
- # Only Python 3.x
- def __index__(self):
- return int(self._value)
- def to_bytes(self, block_size=0):
- if self._value < 0:
- raise ValueError("Conversion only valid for non-negative numbers")
- result = long_to_bytes(self._value, block_size)
- if len(result) > block_size > 0:
- raise ValueError("Value too large to encode")
- return result
- @classmethod
- def from_bytes(cls, byte_string):
- return cls(bytes_to_long(byte_string))
- # Relations
- def __eq__(self, term):
- if term is None:
- return False
- return self._value == int(term)
- def __ne__(self, term):
- return not self.__eq__(term)
- def __lt__(self, term):
- return self._value < int(term)
- def __le__(self, term):
- return self.__lt__(term) or self.__eq__(term)
- def __gt__(self, term):
- return not self.__le__(term)
- def __ge__(self, term):
- return not self.__lt__(term)
- def __nonzero__(self):
- return self._value != 0
- __bool__ = __nonzero__
- def is_negative(self):
- return self._value < 0
- # Arithmetic operations
- def __add__(self, term):
- try:
- return self.__class__(self._value + int(term))
- except (ValueError, AttributeError, TypeError):
- return NotImplemented
- def __sub__(self, term):
- try:
- return self.__class__(self._value - int(term))
- except (ValueError, AttributeError, TypeError):
- return NotImplemented
- def __mul__(self, factor):
- try:
- return self.__class__(self._value * int(factor))
- except (ValueError, AttributeError, TypeError):
- return NotImplemented
- def __floordiv__(self, divisor):
- return self.__class__(self._value // int(divisor))
- def __mod__(self, divisor):
- divisor_value = int(divisor)
- if divisor_value < 0:
- raise ValueError("Modulus must be positive")
- return self.__class__(self._value % divisor_value)
- def inplace_pow(self, exponent, modulus=None):
- exp_value = int(exponent)
- if exp_value < 0:
- raise ValueError("Exponent must not be negative")
- if modulus is not None:
- mod_value = int(modulus)
- if mod_value < 0:
- raise ValueError("Modulus must be positive")
- if mod_value == 0:
- raise ZeroDivisionError("Modulus cannot be zero")
- else:
- mod_value = None
- self._value = pow(self._value, exp_value, mod_value)
- return self
- def __pow__(self, exponent, modulus=None):
- result = self.__class__(self)
- return result.inplace_pow(exponent, modulus)
- def __abs__(self):
- return abs(self._value)
- def sqrt(self, modulus=None):
- value = self._value
- if modulus is None:
- if value < 0:
- raise ValueError("Square root of negative value")
- # http://stackoverflow.com/questions/15390807/integer-square-root-in-python
- x = value
- y = (x + 1) // 2
- while y < x:
- x = y
- y = (x + value // x) // 2
- result = x
- else:
- if modulus <= 0:
- raise ValueError("Modulus must be positive")
- result = self._tonelli_shanks(self % modulus, modulus)
- return self.__class__(result)
- def __iadd__(self, term):
- self._value += int(term)
- return self
- def __isub__(self, term):
- self._value -= int(term)
- return self
- def __imul__(self, term):
- self._value *= int(term)
- return self
- def __imod__(self, term):
- modulus = int(term)
- if modulus == 0:
- raise ZeroDivisionError("Division by zero")
- if modulus < 0:
- raise ValueError("Modulus must be positive")
- self._value %= modulus
- return self
- # Boolean/bit operations
- def __and__(self, term):
- return self.__class__(self._value & int(term))
- def __or__(self, term):
- return self.__class__(self._value | int(term))
- def __rshift__(self, pos):
- try:
- return self.__class__(self._value >> int(pos))
- except OverflowError:
- if self._value >= 0:
- return 0
- else:
- return -1
- def __irshift__(self, pos):
- try:
- self._value >>= int(pos)
- except OverflowError:
- if self._value >= 0:
- return 0
- else:
- return -1
- return self
- def __lshift__(self, pos):
- try:
- return self.__class__(self._value << int(pos))
- except OverflowError:
- raise ValueError("Incorrect shift count")
- def __ilshift__(self, pos):
- try:
- self._value <<= int(pos)
- except OverflowError:
- raise ValueError("Incorrect shift count")
- return self
- def get_bit(self, n):
- if self._value < 0:
- raise ValueError("no bit representation for negative values")
- try:
- try:
- result = (self._value >> n._value) & 1
- if n._value < 0:
- raise ValueError("negative bit count")
- except AttributeError:
- result = (self._value >> n) & 1
- if n < 0:
- raise ValueError("negative bit count")
- except OverflowError:
- result = 0
- return result
- # Extra
- def is_odd(self):
- return (self._value & 1) == 1
- def is_even(self):
- return (self._value & 1) == 0
- def size_in_bits(self):
- if self._value < 0:
- raise ValueError("Conversion only valid for non-negative numbers")
- if self._value == 0:
- return 1
- bit_size = 0
- tmp = self._value
- while tmp:
- tmp >>= 1
- bit_size += 1
- return bit_size
- def size_in_bytes(self):
- return (self.size_in_bits() - 1) // 8 + 1
- def is_perfect_square(self):
- if self._value < 0:
- return False
- if self._value in (0, 1):
- return True
- x = self._value // 2
- square_x = x ** 2
- while square_x > self._value:
- x = (square_x + self._value) // (2 * x)
- square_x = x ** 2
- return self._value == x ** 2
- def fail_if_divisible_by(self, small_prime):
- if (self._value % int(small_prime)) == 0:
- raise ValueError("Value is composite")
- def multiply_accumulate(self, a, b):
- self._value += int(a) * int(b)
- return self
- def set(self, source):
- self._value = int(source)
- def inplace_inverse(self, modulus):
- modulus = int(modulus)
- if modulus == 0:
- raise ZeroDivisionError("Modulus cannot be zero")
- if modulus < 0:
- raise ValueError("Modulus cannot be negative")
- r_p, r_n = self._value, modulus
- s_p, s_n = 1, 0
- while r_n > 0:
- q = r_p // r_n
- r_p, r_n = r_n, r_p - q * r_n
- s_p, s_n = s_n, s_p - q * s_n
- if r_p != 1:
- raise ValueError("No inverse value can be computed" + str(r_p))
- while s_p < 0:
- s_p += modulus
- self._value = s_p
- return self
- def inverse(self, modulus):
- result = self.__class__(self)
- result.inplace_inverse(modulus)
- return result
- def gcd(self, term):
- r_p, r_n = abs(self._value), abs(int(term))
- while r_n > 0:
- q = r_p // r_n
- r_p, r_n = r_n, r_p - q * r_n
- return self.__class__(r_p)
- def lcm(self, term):
- term = int(term)
- if self._value == 0 or term == 0:
- return self.__class__(0)
- return self.__class__(abs((self._value * term) // self.gcd(term)._value))
- @staticmethod
- def jacobi_symbol(a, n):
- a = int(a)
- n = int(n)
- if n <= 0:
- raise ValueError("n must be a positive integer")
- if (n & 1) == 0:
- raise ValueError("n must be even for the Jacobi symbol")
- # Step 1
- a = a % n
- # Step 2
- if a == 1 or n == 1:
- return 1
- # Step 3
- if a == 0:
- return 0
- # Step 4
- e = 0
- a1 = a
- while (a1 & 1) == 0:
- a1 >>= 1
- e += 1
- # Step 5
- if (e & 1) == 0:
- s = 1
- elif n % 8 in (1, 7):
- s = 1
- else:
- s = -1
- # Step 6
- if n % 4 == 3 and a1 % 4 == 3:
- s = -s
- # Step 7
- n1 = n % a1
- # Step 8
- return s * IntegerNative.jacobi_symbol(n1, a1)
|