123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- /*
- * Copyright (c) Contributors to the Open 3D Engine Project.
- * For complete copyright and license terms please see the LICENSE at the root of this distribution.
- *
- * SPDX-License-Identifier: Apache-2.0 OR MIT
- *
- */
- // Description : Common intersection-tests
- #pragma once
- #include <Cry_Geo.h>
- namespace Intersect {
- inline bool Ray_Plane(const Ray& ray, const Plane_tpl<f32>& plane, Vec3& output, bool bSingleSidePlane = true)
- {
- float cosine = plane.n | ray.direction;
- //REJECTION 1: if "line-direction" is perpendicular to "plane-normal", an intersection is not possible! That means ray is parallel
- // to the plane
- //REJECTION 2: if bSingleSidePlane == true we deal with single-sided planes. That means
- // if "line-direction" is pointing in the same direction as "the plane-normal",
- // an intersection is not possible!
- if ((cosine == 0.0f) || // normal is orthogonal to vector, cant intersect
- (bSingleSidePlane && (cosine > 0.0f))) // we are trying to find an intersection in the same direction as the plane normal
- {
- return false;
- }
- float numer = plane.DistFromPlane(ray.origin);
- float fLength = -numer / cosine;
- output = ray.origin + (ray.direction * fLength);
- //skip, if cutting-point is "behind" ray.origin
- if (fLength < 0.0f)
- {
- return false;
- }
- return true; //intersection occurred
- }
- /*
- * calculates intersection between a ray and a triangle.
- * IMPORTANT: this is a single-sided intersection test. That means its not sufficient
- * that the triangle and rayt overlap, its also important that the triangle
- * is "visible" when you from the origin along the ray-direction.
- *
- * If you need a double-sided test, you'll have to call this function twice with
- * reversed order of triangle vertices.
- *
- * return values
- * if there is an intertection the functions return "true" and stores the
- * 3d-intersection point in "output". if the function returns "false" the value in
- * "output" is undefined
- */
- inline bool Ray_Triangle(const Ray& ray, const Vec3& v0, const Vec3& v1, const Vec3& v2, Vec3& output)
- {
- const float Epsilon = 0.0000001f;
- Vec3 edgeA = v1 - v0;
- Vec3 edgeB = v2 - v0;
- Vec3 dir = ray.direction;
- Vec3 p = dir.Cross(edgeA);
- Vec3 t = ray.origin - v0;
- Vec3 q = t.Cross(edgeB);
- float dot = edgeB.Dot(p);
- float u = t.Dot(p);
- float v = dir.Dot(q);
- float DotGreaterThanEpsilon = dot - Epsilon;
- float VGreaterEqualThanZero = v;
- float UGreaterEqualThanZero = u;
- float UVLessThanDot = dot - (u + v);
- float ULessThanDot = dot - u;
- float UVGreaterEqualThanZero = (float)fsel(VGreaterEqualThanZero, UGreaterEqualThanZero, VGreaterEqualThanZero);
- float UUVLessThanDot = (float)fsel(UVLessThanDot, ULessThanDot, UVLessThanDot);
- float BothGood = (float)fsel(UVGreaterEqualThanZero, UUVLessThanDot, UVGreaterEqualThanZero);
- float AllGood = (float)fsel(DotGreaterThanEpsilon, BothGood, DotGreaterThanEpsilon);
- if (AllGood < 0.0f)
- {
- return false;
- }
- float dt = edgeA.Dot(q) / dot;
- Vec3 result = (dir * dt) + ray.origin;
- output = result;
- float AfterStart = (result - ray.origin).Dot(dir);
- return AfterStart >= 0.0f;
- }
- //----------------------------------------------------------------------------------
- // Ray_AABB
- //
- // just ONE intersection point is calculated, and thats the entry point -
- // Lineseg and AABB are assumed to be in the same space
- //
- //--- 0x00 = no intersection (output undefined) --------------------------
- //--- 0x01 = intersection (intersection point in output) --------------
- //--- 0x02 = start of Lineseg is inside the AABB (ls.start is output)
- //----------------------------------------------------------------------------------
- inline uint8 Ray_AABB(const Ray& ray, const AABB& aabb, Vec3& output1)
- {
- uint8 cflags;
- float cosine;
- Vec3 cut;
- //--------------------------------------------------------------------------------------
- //---- check if "ray.origin" is inside of AABB ---------------------------
- //--------------------------------------------------------------------------------------
- cflags = (ray.origin.x >= aabb.min.x) << 0;
- cflags |= (ray.origin.x <= aabb.max.x) << 1;
- cflags |= (ray.origin.y >= aabb.min.y) << 2;
- cflags |= (ray.origin.y <= aabb.max.y) << 3;
- cflags |= (ray.origin.z >= aabb.min.z) << 4;
- cflags |= (ray.origin.z <= aabb.max.z) << 5;
- if (cflags == 0x3f)
- {
- output1 = ray.origin;
- return 0x02;
- }
- //--------------------------------------------------------------------------------------
- //---- check intersection with planes ------------------------------
- //--------------------------------------------------------------------------------------
- for (int i = 0; i < 3; i++)
- {
- if ((ray.direction[i] > 0) && (ray.origin[i] < aabb.min[i]))
- {
- cosine = (-ray.origin[i] + aabb.min[i]) / ray.direction[i];
- cut[i] = aabb.min[i];
- cut[incm3(i)] = ray.origin[incm3(i)] + (ray.direction[incm3(i)] * cosine);
- cut[decm3(i)] = ray.origin[decm3(i)] + (ray.direction[decm3(i)] * cosine);
- if ((cut[incm3(i)] > aabb.min[incm3(i)]) && (cut[incm3(i)] < aabb.max[incm3(i)]) && (cut[decm3(i)] > aabb.min[decm3(i)]) && (cut[decm3(i)] < aabb.max[decm3(i)]))
- {
- output1 = cut;
- return 0x01;
- }
- }
- if ((ray.direction[i] < 0) && (ray.origin[i] > aabb.max[i]))
- {
- cosine = (+ray.origin[i] - aabb.max[i]) / ray.direction[i];
- cut[i] = aabb.max[i];
- cut[incm3(i)] = ray.origin[incm3(i)] - (ray.direction[incm3(i)] * cosine);
- cut[decm3(i)] = ray.origin[decm3(i)] - (ray.direction[decm3(i)] * cosine);
- if ((cut[incm3(i)] > aabb.min[incm3(i)]) && (cut[incm3(i)] < aabb.max[incm3(i)]) && (cut[decm3(i)] > aabb.min[decm3(i)]) && (cut[decm3(i)] < aabb.max[decm3(i)]))
- {
- output1 = cut;
- return 0x01;
- }
- }
- }
- return 0x00;//no intersection
- }
- //----------------------------------------------------------------------------------
- //--- 0x00 = no intersection --------------------------
- //--- 0x01 = not possible --
- //--- 0x02 = one intersection, lineseg has just an EXIT point but no ENTRY point (ls.start is inside the sphere) --
- //--- 0x03 = two intersection, lineseg has ENTRY and EXIT point --
- //----------------------------------------------------------------------------------
- inline unsigned char Ray_Sphere(const Ray& ray, const ::Sphere& s, Vec3& i0, Vec3& i1)
- {
- Vec3 end = ray.origin + ray.direction;
- float a = ray.direction | ray.direction;
- float b = (ray.direction | (ray.origin - s.center)) * 2.0f;
- float c = ((ray.origin - s.center) | (ray.origin - s.center)) - (s.radius * s.radius);
- float desc = (b * b) - (4 * a * c);
- unsigned char intersection = 0;
- if (desc >= 0.0f)
- {
- float lamba0 = (-b - sqrt_tpl(desc)) / (2.0f * a);
- // _stprintf(d3dApp.token,"lamba0: %20.12f",lamba0);
- // d3dApp.m_pFont->DrawText( 2, d3dApp.PrintY, D3DCOLOR_ARGB(255,255,255,0), d3dApp.token ); d3dApp.PrintY+=20;
- if (lamba0 > 0.0f)
- {
- i0 = ray.origin + ((end - ray.origin) * lamba0);
- intersection = 1;
- }
- float lamba1 = (-b + sqrt_tpl(desc)) / (2.0f * a);
- // _stprintf(d3dApp.token,"lamba1: %20.12f",lamba1);
- // d3dApp.m_pFont->DrawText( 2, d3dApp.PrintY, D3DCOLOR_ARGB(255,255,255,0), d3dApp.token ); d3dApp.PrintY+=20;
- if (lamba1 > 0.0f)
- {
- i1 = ray.origin + ((end - ray.origin) * lamba1);
- intersection |= 2;
- }
- }
- return intersection;
- }
- inline bool Ray_SphereFirst(const Ray& ray, const ::Sphere& s, Vec3& intPoint)
- {
- Vec3 p2;
- unsigned char res = Ray_Sphere(ray, s, intPoint, p2);
- if (res == 2)
- {
- intPoint = p2;
- }
- if (res > 1)
- {
- return true;
- }
- return false;
- }
- } //Intersect
|