123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301 |
- /*
- * ***** BEGIN GPL LICENSE BLOCK *****
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * Contributor(s): Joseph Eagar, Campbell Barton
- *
- * ***** END GPL LICENSE BLOCK *****
- */
- /** \file blender/bmesh/operators/bmo_normals.c
- * \ingroup bmesh
- *
- * normal recalculation.
- */
- #include "MEM_guardedalloc.h"
- #include "BLI_math.h"
- #include "BLI_linklist_stack.h"
- #include "bmesh.h"
- #include "intern/bmesh_operators_private.h" /* own include */
- /********* righthand faces implementation ****** */
- #define FACE_FLAG (1 << 0)
- #define FACE_FLIP (1 << 1)
- #define FACE_TEMP (1 << 2)
- static bool bmo_recalc_normal_loop_filter_cb(const BMLoop *l, void *UNUSED(user_data))
- {
- return BM_edge_is_manifold(l->e);
- }
- /**
- * This uses a more comprehensive test to see if the furthest face from the center
- * is pointing towards the center or not.
- *
- * A simple test could just check the dot product of the faces-normal and the direction from the center,
- * however this can fail for faces which make a sharp spike. eg:
- *
- * <pre>
- * +
- * |\ <- face
- * + +
- * \ \
- * \ \
- * \ +--------------+
- * \ |
- * \ center -> + |
- * \ |
- * +------------+
- * </pre>
- *
- * In the example above, the a\ face can point towards the \a center
- * which would end up flipping the normals inwards.
- *
- * To take these spikes into account, find the furthest face-loop-vertex.
- */
- /**
- * \return a face index in \a faces and set \a r_is_flip if the face is flipped away from the center.
- */
- static int recalc_face_normals_find_index(BMesh *bm, BMFace **faces, const int faces_len, bool *r_is_flip)
- {
- const float eps = FLT_EPSILON;
- float cent_area_accum = 0.0f;
- float cent[3];
- const float cent_fac = 1.0f / (float)faces_len;
- bool is_flip = false;
- int f_start_index;
- int i;
- /* Search for the best loop. Members are compared in-order defined here. */
- struct {
- /* Squared distance from the center to the loops vertex 'l->v'.
- * The normalized direction between the center and this vertex is also used for the dot-products below. */
- float dist_sq;
- /* Signed dot product using the normalized edge vector,
- * (best of 'l->prev->v' or 'l->next->v'). */
- float edge_dot;
- /* Unsigned dot product using the loop-normal
- * (sign is used to check if we need to flip) */
- float loop_dot;
- } best, test;
- UNUSED_VARS_NDEBUG(bm);
- zero_v3(cent);
- /* first calculate the center */
- for (i = 0; i < faces_len; i++) {
- float f_cent[3];
- const float f_area = BM_face_calc_area(faces[i]);
- BM_face_calc_center_mean_weighted(faces[i], f_cent);
- madd_v3_v3fl(cent, f_cent, cent_fac * f_area);
- cent_area_accum += f_area;
- BLI_assert(BMO_face_flag_test(bm, faces[i], FACE_TEMP) == 0);
- BLI_assert(BM_face_is_normal_valid(faces[i]));
- }
- if (cent_area_accum != 0.0f) {
- mul_v3_fl(cent, 1.0f / cent_area_accum);
- }
- /* Distances must start above zero,
- * or we can't do meaningful calculations based on the direction to the center */
- best.dist_sq = eps;
- best.edge_dot = best.loop_dot = -FLT_MAX;
- /* used in degenerate cases only */
- f_start_index = 0;
- /**
- * Find the outer-most vertex, comparing distance to the center,
- * then the outer-most loop attached to that vertex.
- *
- * Important this is correctly detected,
- * where casting a ray from the center wont hit any loops past this one.
- * Otherwise the result may be incorrect.
- */
- for (i = 0; i < faces_len; i++) {
- BMLoop *l_iter, *l_first;
- l_iter = l_first = BM_FACE_FIRST_LOOP(faces[i]);
- do {
- bool is_best_dist_sq;
- float dir[3];
- sub_v3_v3v3(dir, l_iter->v->co, cent);
- test.dist_sq = len_squared_v3(dir);
- is_best_dist_sq = (test.dist_sq > best.dist_sq);
- if (is_best_dist_sq || (test.dist_sq == best.dist_sq)) {
- float edge_dir_pair[2][3];
- mul_v3_fl(dir, 1.0f / sqrtf(test.dist_sq));
- sub_v3_v3v3(edge_dir_pair[0], l_iter->next->v->co, l_iter->v->co);
- sub_v3_v3v3(edge_dir_pair[1], l_iter->prev->v->co, l_iter->v->co);
- if ((normalize_v3(edge_dir_pair[0]) > eps) &&
- (normalize_v3(edge_dir_pair[1]) > eps))
- {
- bool is_best_edge_dot;
- test.edge_dot = max_ff(dot_v3v3(dir, edge_dir_pair[0]),
- dot_v3v3(dir, edge_dir_pair[1]));
- is_best_edge_dot = (test.edge_dot > best.edge_dot);
- if (is_best_dist_sq || is_best_edge_dot || (test.edge_dot == best.edge_dot)) {
- float loop_dir[3];
- cross_v3_v3v3(loop_dir, edge_dir_pair[0], edge_dir_pair[1]);
- if (normalize_v3(loop_dir) > eps) {
- float loop_dir_dot;
- /* Highly unlikely the furthest loop is also the concave part of an ngon,
- * but it can be contrived with _very_ non-planar faces - so better check. */
- if (UNLIKELY(dot_v3v3(loop_dir, l_iter->f->no) < 0.0f)) {
- negate_v3(loop_dir);
- }
- loop_dir_dot = dot_v3v3(dir, loop_dir);
- test.loop_dot = fabsf(loop_dir_dot);
- if (is_best_dist_sq || is_best_edge_dot || (test.loop_dot > best.loop_dot)) {
- best = test;
- f_start_index = i;
- is_flip = (loop_dir_dot < 0.0f);
- }
- }
- }
- }
- }
- } while ((l_iter = l_iter->next) != l_first);
- }
- *r_is_flip = is_flip;
- return f_start_index;
- }
- /**
- * Given an array of faces, recalculate their normals.
- * this functions assumes all faces in the array are connected by edges.
- *
- * \param bm
- * \param faces Array of connected faces.
- * \param faces_len Length of \a faces
- * \param oflag Flag to check before doing the actual face flipping.
- */
- static void bmo_recalc_face_normals_array(BMesh *bm, BMFace **faces, const int faces_len, const short oflag)
- {
- int i, f_start_index;
- const short oflag_flip = oflag | FACE_FLIP;
- bool is_flip;
- BMFace *f;
- BLI_LINKSTACK_DECLARE(fstack, BMFace *);
- f_start_index = recalc_face_normals_find_index(bm, faces, faces_len, &is_flip);
- if (is_flip) {
- BMO_face_flag_enable(bm, faces[f_start_index], FACE_FLIP);
- }
- /* now that we've found our starting face, make all connected faces
- * have the same winding. this is done recursively, using a manual
- * stack (if we use simple function recursion, we'd end up overloading
- * the stack on large meshes). */
- BLI_LINKSTACK_INIT(fstack);
- BLI_LINKSTACK_PUSH(fstack, faces[f_start_index]);
- BMO_face_flag_enable(bm, faces[f_start_index], FACE_TEMP);
- while ((f = BLI_LINKSTACK_POP(fstack))) {
- const bool flip_state = BMO_face_flag_test_bool(bm, f, FACE_FLIP);
- BMLoop *l_iter, *l_first;
- l_iter = l_first = BM_FACE_FIRST_LOOP(f);
- do {
- BMLoop *l_other = l_iter->radial_next;
- if ((l_other != l_iter) && bmo_recalc_normal_loop_filter_cb(l_iter, NULL)) {
- if (!BMO_face_flag_test(bm, l_other->f, FACE_TEMP)) {
- BMO_face_flag_enable(bm, l_other->f, FACE_TEMP);
- BMO_face_flag_set(bm, l_other->f, FACE_FLIP, (l_other->v == l_iter->v) != flip_state);
- BLI_LINKSTACK_PUSH(fstack, l_other->f);
- }
- }
- } while ((l_iter = l_iter->next) != l_first);
- }
- BLI_LINKSTACK_FREE(fstack);
- /* apply flipping to oflag'd faces */
- for (i = 0; i < faces_len; i++) {
- if (BMO_face_flag_test(bm, faces[i], oflag_flip) == oflag_flip) {
- BM_face_normal_flip(bm, faces[i]);
- }
- BMO_face_flag_disable(bm, faces[i], FACE_TEMP);
- }
- }
- /*
- * put normal to the outside, and set the first direction flags in edges
- *
- * then check the object, and set directions / direction-flags: but only for edges with 1 or 2 faces
- * this is in fact the 'select connected'
- *
- * in case all faces were not done: start over with 'find the ultimate ...' */
- void bmo_recalc_face_normals_exec(BMesh *bm, BMOperator *op)
- {
- int *groups_array = MEM_mallocN(sizeof(*groups_array) * bm->totface, __func__);
- BMFace **faces_grp = MEM_mallocN(sizeof(*faces_grp) * bm->totface, __func__);
- int (*group_index)[2];
- const int group_tot = BM_mesh_calc_face_groups(
- bm, groups_array, &group_index,
- bmo_recalc_normal_loop_filter_cb, NULL,
- 0, BM_EDGE);
- int i;
- BMO_slot_buffer_flag_enable(bm, op->slots_in, "faces", BM_FACE, FACE_FLAG);
- BM_mesh_elem_table_ensure(bm, BM_FACE);
- for (i = 0; i < group_tot; i++) {
- const int fg_sta = group_index[i][0];
- const int fg_len = group_index[i][1];
- int j;
- bool is_calc = false;
- for (j = 0; j < fg_len; j++) {
- faces_grp[j] = BM_face_at_index(bm, groups_array[fg_sta + j]);
- if (is_calc == false) {
- is_calc = BMO_face_flag_test_bool(bm, faces_grp[j], FACE_FLAG);
- }
- }
- if (is_calc) {
- bmo_recalc_face_normals_array(bm, faces_grp, fg_len, FACE_FLAG);
- }
- }
- MEM_freeN(faces_grp);
- MEM_freeN(groups_array);
- MEM_freeN(group_index);
- }
|