12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295 |
- /*
- * This program implements a breadth-first search which
- * exhaustively solves the Countdown numbers game, and related
- * games with slightly different rule sets such as `Flippo'.
- *
- * Currently it is simply a standalone command-line utility to
- * which you provide a set of numbers and it tells you everything
- * it can make together with how many different ways it can be
- * made. I would like ultimately to turn it into the generator for
- * a Puzzles puzzle, but I haven't even started on writing a
- * Puzzles user interface yet.
- */
- /*
- * TODO:
- *
- * - start thinking about difficulty ratings
- * + anything involving associative operations will be flagged
- * as many-paths because of the associative options (e.g.
- * 2*3*4 can be (2*3)*4 or 2*(3*4), or indeed (2*4)*3). This
- * is probably a _good_ thing, since those are unusually
- * easy.
- * + tree-structured calculations ((a*b)/(c+d)) have multiple
- * paths because the independent branches of the tree can be
- * evaluated in either order, whereas straight-line
- * calculations with no branches will be considered easier.
- * Can we do anything about this? It's certainly not clear to
- * me that tree-structure calculations are _easier_, although
- * I'm also not convinced they're harder.
- * + I think for a realistic difficulty assessment we must also
- * consider the `obviousness' of the arithmetic operations in
- * some heuristic sense, and also (in Countdown) how many
- * numbers ended up being used.
- * - actually try some generations
- * - at this point we're probably ready to start on the Puzzles
- * integration.
- */
- #include <stdio.h>
- #include <string.h>
- #include <limits.h>
- #include <assert.h>
- #ifdef NO_TGMATH_H
- # include <math.h>
- #else
- # include <tgmath.h>
- #endif
- #include "puzzles.h"
- #include "tree234.h"
- /*
- * To search for numbers we can make, we employ a breadth-first
- * search across the space of sets of input numbers. That is, for
- * example, we start with the set (3,6,25,50,75,100); we apply
- * moves which involve combining two numbers (e.g. adding the 50
- * and the 75 takes us to the set (3,6,25,100,125); and then we see
- * if we ever end up with a set containing (say) 952.
- *
- * If the rules are changed so that all the numbers must be used,
- * this is easy to adjust to: we simply see if we end up with a set
- * containing _only_ (say) 952.
- *
- * Obviously, we can vary the rules about permitted arithmetic
- * operations simply by altering the set of valid moves in the bfs.
- * However, there's one common rule in this sort of puzzle which
- * takes a little more thought, and that's _concatenation_. For
- * example, if you are given (say) four 4s and required to make 10,
- * you are permitted to combine two of the 4s into a 44 to begin
- * with, making (44-4)/4 = 10. However, you are generally not
- * allowed to concatenate two numbers that _weren't_ both in the
- * original input set (you couldn't multiply two 4s to get 16 and
- * then concatenate a 4 on to it to make 164), so concatenation is
- * not an operation which is valid in all situations.
- *
- * We could enforce this restriction by storing a flag alongside
- * each number indicating whether or not it's an original number;
- * the rules being that concatenation of two numbers is only valid
- * if they both have the original flag, and that its output _also_
- * has the original flag (so that you can concatenate three 4s into
- * a 444), but that applying any other arithmetic operation clears
- * the original flag on the output. However, we can get marginally
- * simpler than that by observing that since concatenation has to
- * happen to a number before any other operation, we can simply
- * place all the concatenations at the start of the search. In
- * other words, we have a global flag on an entire number _set_
- * which indicates whether we are still permitted to perform
- * concatenations; if so, we can concatenate any of the numbers in
- * that set. Performing any other operation clears the flag.
- */
- #define SETFLAG_CONCAT 1 /* we can do concatenation */
- struct sets;
- struct ancestor {
- struct set *prev; /* index of ancestor set in set list */
- unsigned char pa, pb, po, pr; /* operation that got here from prev */
- };
- struct set {
- int *numbers; /* rationals stored as n,d pairs */
- short nnumbers; /* # of rationals, so half # of ints */
- short flags; /* SETFLAG_CONCAT only, at present */
- int npaths; /* number of ways to reach this set */
- struct ancestor a; /* primary ancestor */
- struct ancestor *as; /* further ancestors, if we care */
- int nas, assize;
- };
- struct output {
- int number;
- struct set *set;
- int index; /* which number in the set is it? */
- int npaths; /* number of ways to reach this */
- };
- #define SETLISTLEN 1024
- #define NUMBERLISTLEN 32768
- #define OUTPUTLISTLEN 1024
- struct operation;
- struct sets {
- struct set **setlists;
- int nsets, nsetlists, setlistsize;
- tree234 *settree;
- int **numberlists;
- int nnumbers, nnumberlists, numberlistsize;
- struct output **outputlists;
- int noutputs, noutputlists, outputlistsize;
- tree234 *outputtree;
- const struct operation *const *ops;
- };
- #define OPFLAG_NEEDS_CONCAT 1
- #define OPFLAG_KEEPS_CONCAT 2
- #define OPFLAG_UNARY 4
- #define OPFLAG_UNARYPREFIX 8
- #define OPFLAG_FN 16
- struct operation {
- /*
- * Most operations should be shown in the output working, but
- * concatenation should not; we just take the result of the
- * concatenation and assume that it's obvious how it was
- * derived.
- */
- int display;
- /*
- * Text display of the operator, in expressions and for
- * debugging respectively.
- */
- const char *text, *dbgtext;
- /*
- * Flags dictating when the operator can be applied.
- */
- int flags;
- /*
- * Priority of the operator (for avoiding unnecessary
- * parentheses when formatting it into a string).
- */
- int priority;
- /*
- * Associativity of the operator. Bit 0 means we need parens
- * when the left operand of one of these operators is another
- * instance of it, e.g. (2^3)^4. Bit 1 means we need parens
- * when the right operand is another instance of the same
- * operator, e.g. 2-(3-4). Thus:
- *
- * - this field is 0 for a fully associative operator, since
- * we never need parens.
- * - it's 1 for a right-associative operator.
- * - it's 2 for a left-associative operator.
- * - it's 3 for a _non_-associative operator (which always
- * uses parens just to be sure).
- */
- int assoc;
- /*
- * Whether the operator is commutative. Saves time in the
- * search if we don't have to try it both ways round.
- */
- int commutes;
- /*
- * Function which implements the operator. Returns true on
- * success, false on failure. Takes two rationals and writes
- * out a third.
- */
- int (*perform)(int *a, int *b, int *output);
- };
- struct rules {
- const struct operation *const *ops;
- int use_all;
- };
- #define MUL(r, a, b) do { \
- (r) = (a) * (b); \
- if ((b) && (a) && (r) / (b) != (a)) return false; \
- } while (0)
- #define ADD(r, a, b) do { \
- (r) = (a) + (b); \
- if ((a) > 0 && (b) > 0 && (r) < 0) return false; \
- if ((a) < 0 && (b) < 0 && (r) > 0) return false; \
- } while (0)
- #define OUT(output, n, d) do { \
- int g = gcd((n),(d)); \
- if (g < 0) g = -g; \
- if ((d) < 0) g = -g; \
- if (g == -1 && (n) < -INT_MAX) return false; \
- if (g == -1 && (d) < -INT_MAX) return false; \
- (output)[0] = (n)/g; \
- (output)[1] = (d)/g; \
- assert((output)[1] > 0); \
- } while (0)
- static int gcd(int x, int y)
- {
- while (x != 0 && y != 0) {
- int t = x;
- x = y;
- y = t % y;
- }
- return abs(x + y); /* i.e. whichever one isn't zero */
- }
- static int perform_add(int *a, int *b, int *output)
- {
- int at, bt, tn, bn;
- /*
- * a0/a1 + b0/b1 = (a0*b1 + b0*a1) / (a1*b1)
- */
- MUL(at, a[0], b[1]);
- MUL(bt, b[0], a[1]);
- ADD(tn, at, bt);
- MUL(bn, a[1], b[1]);
- OUT(output, tn, bn);
- return true;
- }
- static int perform_sub(int *a, int *b, int *output)
- {
- int at, bt, tn, bn;
- /*
- * a0/a1 - b0/b1 = (a0*b1 - b0*a1) / (a1*b1)
- */
- MUL(at, a[0], b[1]);
- MUL(bt, b[0], a[1]);
- ADD(tn, at, -bt);
- MUL(bn, a[1], b[1]);
- OUT(output, tn, bn);
- return true;
- }
- static int perform_mul(int *a, int *b, int *output)
- {
- int tn, bn;
- /*
- * a0/a1 * b0/b1 = (a0*b0) / (a1*b1)
- */
- MUL(tn, a[0], b[0]);
- MUL(bn, a[1], b[1]);
- OUT(output, tn, bn);
- return true;
- }
- static int perform_div(int *a, int *b, int *output)
- {
- int tn, bn;
- /*
- * Division by zero is outlawed.
- */
- if (b[0] == 0)
- return false;
- /*
- * a0/a1 / b0/b1 = (a0*b1) / (a1*b0)
- */
- MUL(tn, a[0], b[1]);
- MUL(bn, a[1], b[0]);
- OUT(output, tn, bn);
- return true;
- }
- static int perform_exact_div(int *a, int *b, int *output)
- {
- int tn, bn;
- /*
- * Division by zero is outlawed.
- */
- if (b[0] == 0)
- return false;
- /*
- * a0/a1 / b0/b1 = (a0*b1) / (a1*b0)
- */
- MUL(tn, a[0], b[1]);
- MUL(bn, a[1], b[0]);
- OUT(output, tn, bn);
- /*
- * Exact division means we require the result to be an integer.
- */
- return (output[1] == 1);
- }
- static int max_p10(int n, int *p10_r)
- {
- /*
- * Find the smallest power of ten strictly greater than n.
- *
- * Special case: we must return at least 10, even if n is
- * zero. (This is because this function is used for finding
- * the power of ten by which to multiply a number being
- * concatenated to the front of n, and concatenating 1 to 0
- * should yield 10 and not 1.)
- */
- int p10 = 10;
- while (p10 <= (INT_MAX/10) && p10 <= n)
- p10 *= 10;
- if (p10 > INT_MAX/10)
- return false; /* integer overflow */
- *p10_r = p10;
- return true;
- }
- static int perform_concat(int *a, int *b, int *output)
- {
- int t1, t2, p10;
- /*
- * We can't concatenate anything which isn't a non-negative
- * integer.
- */
- if (a[1] != 1 || b[1] != 1 || a[0] < 0 || b[0] < 0)
- return false;
- /*
- * For concatenation, we can safely assume leading zeroes
- * aren't an issue. It isn't clear whether they `should' be
- * allowed, but it turns out not to matter: concatenating a
- * leading zero on to a number in order to harmlessly get rid
- * of the zero is never necessary because unwanted zeroes can
- * be disposed of by adding them to something instead. So we
- * disallow them always.
- *
- * The only other possibility is that you might want to
- * concatenate a leading zero on to something and then
- * concatenate another non-zero digit on to _that_ (to make,
- * for example, 106); but that's also unnecessary, because you
- * can make 106 just as easily by concatenating the 0 on to the
- * _end_ of the 1 first.
- */
- if (a[0] == 0)
- return false;
- if (!max_p10(b[0], &p10)) return false;
- MUL(t1, p10, a[0]);
- ADD(t2, t1, b[0]);
- OUT(output, t2, 1);
- return true;
- }
- #define IPOW(ret, x, y) do { \
- int ipow_limit = (y); \
- if ((x) == 1 || (x) == 0) ipow_limit = 1; \
- else if ((x) == -1) ipow_limit &= 1; \
- (ret) = 1; \
- while (ipow_limit-- > 0) { \
- int tmp; \
- MUL(tmp, ret, x); \
- ret = tmp; \
- } \
- } while (0)
- static int perform_exp(int *a, int *b, int *output)
- {
- int an, ad, xn, xd;
- /*
- * Exponentiation is permitted if the result is rational. This
- * means that:
- *
- * - first we see whether we can take the (denominator-of-b)th
- * root of a and get a rational; if not, we give up.
- *
- * - then we do take that root of a
- *
- * - then we multiply by itself (numerator-of-b) times.
- */
- if (b[1] > 1) {
- an = (int)(0.5 + pow(a[0], 1.0/b[1]));
- ad = (int)(0.5 + pow(a[1], 1.0/b[1]));
- IPOW(xn, an, b[1]);
- IPOW(xd, ad, b[1]);
- if (xn != a[0] || xd != a[1])
- return false;
- } else {
- an = a[0];
- ad = a[1];
- }
- if (b[0] >= 0) {
- IPOW(xn, an, b[0]);
- IPOW(xd, ad, b[0]);
- } else {
- IPOW(xd, an, -b[0]);
- IPOW(xn, ad, -b[0]);
- }
- if (xd == 0)
- return false;
- OUT(output, xn, xd);
- return true;
- }
- static int perform_factorial(int *a, int *b, int *output)
- {
- int ret, t, i;
- /*
- * Factorials of non-negative integers are permitted.
- */
- if (a[1] != 1 || a[0] < 0)
- return false;
- /*
- * However, a special case: we don't take a factorial of
- * anything which would thereby remain the same.
- */
- if (a[0] == 1 || a[0] == 2)
- return false;
- ret = 1;
- for (i = 1; i <= a[0]; i++) {
- MUL(t, ret, i);
- ret = t;
- }
- OUT(output, ret, 1);
- return true;
- }
- static int perform_decimal(int *a, int *b, int *output)
- {
- int p10;
- /*
- * Add a decimal digit to the front of a number;
- * fail if it's not an integer.
- * So, 1 --> 0.1, 15 --> 0.15,
- * or, rather, 1 --> 1/10, 15 --> 15/100,
- * x --> x / (smallest power of 10 > than x)
- *
- */
- if (a[1] != 1) return false;
- if (!max_p10(a[0], &p10)) return false;
- OUT(output, a[0], p10);
- return true;
- }
- static int perform_recur(int *a, int *b, int *output)
- {
- int p10, tn, bn;
- /*
- * This converts a number like .4 to .44444..., or .45 to .45454...
- * The input number must be -1 < a < 1.
- *
- * Calculate the smallest power of 10 that divides the denominator exactly,
- * returning if no such power of 10 exists. Then multiply the numerator
- * up accordingly, and the new denominator becomes that power of 10 - 1.
- */
- if (abs(a[0]) >= abs(a[1])) return false; /* -1 < a < 1 */
- p10 = 10;
- while (p10 <= (INT_MAX/10)) {
- if ((a[1] <= p10) && (p10 % a[1]) == 0) goto found;
- p10 *= 10;
- }
- return false;
- found:
- tn = a[0] * (p10 / a[1]);
- bn = p10 - 1;
- OUT(output, tn, bn);
- return true;
- }
- static int perform_root(int *a, int *b, int *output)
- {
- /*
- * A root B is: 1 iff a == 0
- * B ^ (1/A) otherwise
- */
- int ainv[2], res;
- if (a[0] == 0) {
- OUT(output, 1, 1);
- return true;
- }
- OUT(ainv, a[1], a[0]);
- res = perform_exp(b, ainv, output);
- return res;
- }
- static int perform_perc(int *a, int *b, int *output)
- {
- if (a[0] == 0) return false; /* 0% = 0, uninteresting. */
- if (a[1] > (INT_MAX/100)) return false;
- OUT(output, a[0], a[1]*100);
- return true;
- }
- static int perform_gamma(int *a, int *b, int *output)
- {
- int asub1[2];
- /*
- * gamma(a) = (a-1)!
- *
- * special case not caught by perform_fact: gamma(1) is 1 so
- * don't bother.
- */
- if (a[0] == 1 && a[1] == 1) return false;
- OUT(asub1, a[0]-a[1], a[1]);
- return perform_factorial(asub1, b, output);
- }
- static int perform_sqrt(int *a, int *b, int *output)
- {
- int half[2] = { 1, 2 };
- /*
- * sqrt(0) == 0, sqrt(1) == 1: don't perform unary noops.
- */
- if (a[0] == 0 || (a[0] == 1 && a[1] == 1)) return false;
- return perform_exp(a, half, output);
- }
- static const struct operation op_add = {
- true, "+", "+", 0, 10, 0, true, perform_add
- };
- static const struct operation op_sub = {
- true, "-", "-", 0, 10, 2, false, perform_sub
- };
- static const struct operation op_mul = {
- true, "*", "*", 0, 20, 0, true, perform_mul
- };
- static const struct operation op_div = {
- true, "/", "/", 0, 20, 2, false, perform_div
- };
- static const struct operation op_xdiv = {
- true, "/", "/", 0, 20, 2, false, perform_exact_div
- };
- static const struct operation op_concat = {
- false, "", "concat", OPFLAG_NEEDS_CONCAT | OPFLAG_KEEPS_CONCAT,
- 1000, 0, false, perform_concat
- };
- static const struct operation op_exp = {
- true, "^", "^", 0, 30, 1, false, perform_exp
- };
- static const struct operation op_factorial = {
- true, "!", "!", OPFLAG_UNARY, 40, 0, false, perform_factorial
- };
- static const struct operation op_decimal = {
- true, ".", ".", OPFLAG_UNARY | OPFLAG_UNARYPREFIX | OPFLAG_NEEDS_CONCAT | OPFLAG_KEEPS_CONCAT, 50, 0, false, perform_decimal
- };
- static const struct operation op_recur = {
- true, "...", "recur", OPFLAG_UNARY | OPFLAG_NEEDS_CONCAT, 45, 2, false, perform_recur
- };
- static const struct operation op_root = {
- true, "v~", "root", 0, 30, 1, false, perform_root
- };
- static const struct operation op_perc = {
- true, "%", "%", OPFLAG_UNARY | OPFLAG_NEEDS_CONCAT, 45, 1, false, perform_perc
- };
- static const struct operation op_gamma = {
- true, "gamma", "gamma", OPFLAG_UNARY | OPFLAG_UNARYPREFIX | OPFLAG_FN, 1, 3, false, perform_gamma
- };
- static const struct operation op_sqrt = {
- true, "v~", "sqrt", OPFLAG_UNARY | OPFLAG_UNARYPREFIX, 30, 1, false, perform_sqrt
- };
- /*
- * In Countdown, divisions resulting in fractions are disallowed.
- * http://www.askoxford.com/wordgames/countdown/rules/
- */
- static const struct operation *const ops_countdown[] = {
- &op_add, &op_mul, &op_sub, &op_xdiv, NULL
- };
- static const struct rules rules_countdown = {
- ops_countdown, false
- };
- /*
- * A slightly different rule set which handles the reasonably well
- * known puzzle of making 24 using two 3s and two 8s. For this we
- * need rational rather than integer division.
- */
- static const struct operation *const ops_3388[] = {
- &op_add, &op_mul, &op_sub, &op_div, NULL
- };
- static const struct rules rules_3388 = {
- ops_3388, true
- };
- /*
- * A still more permissive rule set usable for the four-4s problem
- * and similar things. Permits concatenation.
- */
- static const struct operation *const ops_four4s[] = {
- &op_add, &op_mul, &op_sub, &op_div, &op_concat, NULL
- };
- static const struct rules rules_four4s = {
- ops_four4s, true
- };
- /*
- * The most permissive ruleset I can think of. Permits
- * exponentiation, and also silly unary operators like factorials.
- */
- static const struct operation *const ops_anythinggoes[] = {
- &op_add, &op_mul, &op_sub, &op_div, &op_concat, &op_exp, &op_factorial,
- &op_decimal, &op_recur, &op_root, &op_perc, &op_gamma, &op_sqrt, NULL
- };
- static const struct rules rules_anythinggoes = {
- ops_anythinggoes, true
- };
- #define ratcmp(a,op,b) ( (long long)(a)[0] * (b)[1] op \
- (long long)(b)[0] * (a)[1] )
- static int addtoset(struct set *set, int newnumber[2])
- {
- int i, j;
- /* Find where we want to insert the new number */
- for (i = 0; i < set->nnumbers &&
- ratcmp(set->numbers+2*i, <, newnumber); i++);
- /* Move everything else up */
- for (j = set->nnumbers; j > i; j--) {
- set->numbers[2*j] = set->numbers[2*j-2];
- set->numbers[2*j+1] = set->numbers[2*j-1];
- }
- /* Insert the new number */
- set->numbers[2*i] = newnumber[0];
- set->numbers[2*i+1] = newnumber[1];
- set->nnumbers++;
- return i;
- }
- #define ensure(array, size, newlen, type) do { \
- if ((newlen) > (size)) { \
- (size) = (newlen) + 512; \
- (array) = sresize((array), (size), type); \
- } \
- } while (0)
- static int setcmp(void *av, void *bv)
- {
- struct set *a = (struct set *)av;
- struct set *b = (struct set *)bv;
- int i;
- if (a->nnumbers < b->nnumbers)
- return -1;
- else if (a->nnumbers > b->nnumbers)
- return +1;
- if (a->flags < b->flags)
- return -1;
- else if (a->flags > b->flags)
- return +1;
- for (i = 0; i < a->nnumbers; i++) {
- if (ratcmp(a->numbers+2*i, <, b->numbers+2*i))
- return -1;
- else if (ratcmp(a->numbers+2*i, >, b->numbers+2*i))
- return +1;
- }
- return 0;
- }
- static int outputcmp(void *av, void *bv)
- {
- struct output *a = (struct output *)av;
- struct output *b = (struct output *)bv;
- if (a->number < b->number)
- return -1;
- else if (a->number > b->number)
- return +1;
- return 0;
- }
- static int outputfindcmp(void *av, void *bv)
- {
- int *a = (int *)av;
- struct output *b = (struct output *)bv;
- if (*a < b->number)
- return -1;
- else if (*a > b->number)
- return +1;
- return 0;
- }
- static void addset(struct sets *s, struct set *set, int multiple,
- struct set *prev, int pa, int po, int pb, int pr)
- {
- struct set *s2;
- int npaths = (prev ? prev->npaths : 1);
- assert(set == s->setlists[s->nsets / SETLISTLEN] + s->nsets % SETLISTLEN);
- s2 = add234(s->settree, set);
- if (s2 == set) {
- /*
- * New set added to the tree.
- */
- set->a.prev = prev;
- set->a.pa = pa;
- set->a.po = po;
- set->a.pb = pb;
- set->a.pr = pr;
- set->npaths = npaths;
- s->nsets++;
- s->nnumbers += 2 * set->nnumbers;
- set->as = NULL;
- set->nas = set->assize = 0;
- } else {
- /*
- * Rediscovered an existing set. Update its npaths.
- */
- s2->npaths += npaths;
- /*
- * And optionally enter it as an additional ancestor.
- */
- if (multiple) {
- if (s2->nas >= s2->assize) {
- s2->assize = s2->nas * 3 / 2 + 4;
- s2->as = sresize(s2->as, s2->assize, struct ancestor);
- }
- s2->as[s2->nas].prev = prev;
- s2->as[s2->nas].pa = pa;
- s2->as[s2->nas].po = po;
- s2->as[s2->nas].pb = pb;
- s2->as[s2->nas].pr = pr;
- s2->nas++;
- }
- }
- }
- static struct set *newset(struct sets *s, int nnumbers, int flags)
- {
- struct set *sn;
- ensure(s->setlists, s->setlistsize, s->nsets/SETLISTLEN+1, struct set *);
- while (s->nsetlists <= s->nsets / SETLISTLEN)
- s->setlists[s->nsetlists++] = snewn(SETLISTLEN, struct set);
- sn = s->setlists[s->nsets / SETLISTLEN] + s->nsets % SETLISTLEN;
- if (s->nnumbers + nnumbers * 2 > s->nnumberlists * NUMBERLISTLEN)
- s->nnumbers = s->nnumberlists * NUMBERLISTLEN;
- ensure(s->numberlists, s->numberlistsize,
- s->nnumbers/NUMBERLISTLEN+1, int *);
- while (s->nnumberlists <= s->nnumbers / NUMBERLISTLEN)
- s->numberlists[s->nnumberlists++] = snewn(NUMBERLISTLEN, int);
- sn->numbers = s->numberlists[s->nnumbers / NUMBERLISTLEN] +
- s->nnumbers % NUMBERLISTLEN;
- /*
- * Start the set off empty.
- */
- sn->nnumbers = 0;
- sn->flags = flags;
- return sn;
- }
- static int addoutput(struct sets *s, struct set *ss, int index, int *n)
- {
- struct output *o, *o2;
- /*
- * Target numbers are always integers.
- */
- if (ss->numbers[2*index+1] != 1)
- return false;
- ensure(s->outputlists, s->outputlistsize, s->noutputs/OUTPUTLISTLEN+1,
- struct output *);
- while (s->noutputlists <= s->noutputs / OUTPUTLISTLEN)
- s->outputlists[s->noutputlists++] = snewn(OUTPUTLISTLEN,
- struct output);
- o = s->outputlists[s->noutputs / OUTPUTLISTLEN] +
- s->noutputs % OUTPUTLISTLEN;
- o->number = ss->numbers[2*index];
- o->set = ss;
- o->index = index;
- o->npaths = ss->npaths;
- o2 = add234(s->outputtree, o);
- if (o2 != o) {
- o2->npaths += o->npaths;
- } else {
- s->noutputs++;
- }
- *n = o->number;
- return true;
- }
- static struct sets *do_search(int ninputs, int *inputs,
- const struct rules *rules, int *target,
- int debug, int multiple)
- {
- struct sets *s;
- struct set *sn;
- int qpos, i;
- const struct operation *const *ops = rules->ops;
- s = snew(struct sets);
- s->setlists = NULL;
- s->nsets = s->nsetlists = s->setlistsize = 0;
- s->numberlists = NULL;
- s->nnumbers = s->nnumberlists = s->numberlistsize = 0;
- s->outputlists = NULL;
- s->noutputs = s->noutputlists = s->outputlistsize = 0;
- s->settree = newtree234(setcmp);
- s->outputtree = newtree234(outputcmp);
- s->ops = ops;
- /*
- * Start with the input set.
- */
- sn = newset(s, ninputs, SETFLAG_CONCAT);
- for (i = 0; i < ninputs; i++) {
- int newnumber[2];
- newnumber[0] = inputs[i];
- newnumber[1] = 1;
- addtoset(sn, newnumber);
- }
- addset(s, sn, multiple, NULL, 0, 0, 0, 0);
- /*
- * Now perform the breadth-first search: keep looping over sets
- * until we run out of steam.
- */
- qpos = 0;
- while (qpos < s->nsets) {
- struct set *ss = s->setlists[qpos / SETLISTLEN] + qpos % SETLISTLEN;
- struct set *sn;
- int i, j, k, m;
- if (debug) {
- int i;
- printf("processing set:");
- for (i = 0; i < ss->nnumbers; i++) {
- printf(" %d", ss->numbers[2*i]);
- if (ss->numbers[2*i+1] != 1)
- printf("/%d", ss->numbers[2*i+1]);
- }
- printf("\n");
- }
- /*
- * Record all the valid output numbers in this state. We
- * can always do this if there's only one number in the
- * state; otherwise, we can only do it if we aren't
- * required to use all the numbers in coming to our answer.
- */
- if (ss->nnumbers == 1 || !rules->use_all) {
- for (i = 0; i < ss->nnumbers; i++) {
- int n;
- if (addoutput(s, ss, i, &n) && target && n == *target)
- return s;
- }
- }
- /*
- * Try every possible operation from this state.
- */
- for (k = 0; ops[k] && ops[k]->perform; k++) {
- if ((ops[k]->flags & OPFLAG_NEEDS_CONCAT) &&
- !(ss->flags & SETFLAG_CONCAT))
- continue; /* can't use this operation here */
- for (i = 0; i < ss->nnumbers; i++) {
- int jlimit = (ops[k]->flags & OPFLAG_UNARY ? 1 : ss->nnumbers);
- for (j = 0; j < jlimit; j++) {
- int n[2], newnn = ss->nnumbers;
- int pa, po, pb, pr;
- if (!(ops[k]->flags & OPFLAG_UNARY)) {
- if (i == j)
- continue; /* can't combine a number with itself */
- if (i > j && ops[k]->commutes)
- continue; /* no need to do this both ways round */
- newnn--;
- }
- if (!ops[k]->perform(ss->numbers+2*i, ss->numbers+2*j, n))
- continue; /* operation failed */
- sn = newset(s, newnn, ss->flags);
- if (!(ops[k]->flags & OPFLAG_KEEPS_CONCAT))
- sn->flags &= ~SETFLAG_CONCAT;
- for (m = 0; m < ss->nnumbers; m++) {
- if (m == i || (!(ops[k]->flags & OPFLAG_UNARY) &&
- m == j))
- continue;
- sn->numbers[2*sn->nnumbers] = ss->numbers[2*m];
- sn->numbers[2*sn->nnumbers + 1] = ss->numbers[2*m + 1];
- sn->nnumbers++;
- }
- pa = i;
- if (ops[k]->flags & OPFLAG_UNARY)
- pb = sn->nnumbers+10;
- else
- pb = j;
- po = k;
- pr = addtoset(sn, n);
- addset(s, sn, multiple, ss, pa, po, pb, pr);
- if (debug) {
- int i;
- if (ops[k]->flags & OPFLAG_UNARYPREFIX)
- printf(" %s %d ->", ops[po]->dbgtext, pa);
- else if (ops[k]->flags & OPFLAG_UNARY)
- printf(" %d %s ->", pa, ops[po]->dbgtext);
- else
- printf(" %d %s %d ->", pa, ops[po]->dbgtext, pb);
- for (i = 0; i < sn->nnumbers; i++) {
- printf(" %d", sn->numbers[2*i]);
- if (sn->numbers[2*i+1] != 1)
- printf("/%d", sn->numbers[2*i+1]);
- }
- printf("\n");
- }
- }
- }
- }
- qpos++;
- }
- return s;
- }
- static void free_sets(struct sets *s)
- {
- int i;
- freetree234(s->settree);
- freetree234(s->outputtree);
- for (i = 0; i < s->nsetlists; i++)
- sfree(s->setlists[i]);
- sfree(s->setlists);
- for (i = 0; i < s->nnumberlists; i++)
- sfree(s->numberlists[i]);
- sfree(s->numberlists);
- for (i = 0; i < s->noutputlists; i++)
- sfree(s->outputlists[i]);
- sfree(s->outputlists);
- sfree(s);
- }
- /*
- * Print a text formula for producing a given output.
- */
- static void print_recurse(struct sets *s, struct set *ss, int pathindex,
- int index, int priority, int assoc, int child);
- static void print_recurse_inner(struct sets *s, struct set *ss,
- struct ancestor *a, int pathindex, int index,
- int priority, int assoc, int child)
- {
- if (a->prev && index != a->pr) {
- int pi;
- /*
- * This number was passed straight down from this set's
- * predecessor. Find its index in the previous set and
- * recurse to there.
- */
- pi = index;
- assert(pi != a->pr);
- if (pi > a->pr)
- pi--;
- if (pi >= min(a->pa, a->pb)) {
- pi++;
- if (pi >= max(a->pa, a->pb))
- pi++;
- }
- print_recurse(s, a->prev, pathindex, pi, priority, assoc, child);
- } else if (a->prev && index == a->pr &&
- s->ops[a->po]->display) {
- /*
- * This number was created by a displayed operator in the
- * transition from this set to its predecessor. Hence we
- * write an open paren, then recurse into the first
- * operand, then write the operator, then the second
- * operand, and finally close the paren.
- */
- const char *op;
- int parens, thispri, thisassoc;
- /*
- * Determine whether we need parentheses.
- */
- thispri = s->ops[a->po]->priority;
- thisassoc = s->ops[a->po]->assoc;
- parens = (thispri < priority ||
- (thispri == priority && (assoc & child)));
- if (parens)
- putchar('(');
- if (s->ops[a->po]->flags & OPFLAG_UNARYPREFIX)
- for (op = s->ops[a->po]->text; *op; op++)
- putchar(*op);
- if (s->ops[a->po]->flags & OPFLAG_FN)
- putchar('(');
- print_recurse(s, a->prev, pathindex, a->pa, thispri, thisassoc, 1);
- if (s->ops[a->po]->flags & OPFLAG_FN)
- putchar(')');
- if (!(s->ops[a->po]->flags & OPFLAG_UNARYPREFIX))
- for (op = s->ops[a->po]->text; *op; op++)
- putchar(*op);
- if (!(s->ops[a->po]->flags & OPFLAG_UNARY))
- print_recurse(s, a->prev, pathindex, a->pb, thispri, thisassoc, 2);
- if (parens)
- putchar(')');
- } else {
- /*
- * This number is either an original, or something formed
- * by a non-displayed operator (concatenation). Either way,
- * we display it as is.
- */
- printf("%d", ss->numbers[2*index]);
- if (ss->numbers[2*index+1] != 1)
- printf("/%d", ss->numbers[2*index+1]);
- }
- }
- static void print_recurse(struct sets *s, struct set *ss, int pathindex,
- int index, int priority, int assoc, int child)
- {
- if (!ss->a.prev || pathindex < ss->a.prev->npaths) {
- print_recurse_inner(s, ss, &ss->a, pathindex,
- index, priority, assoc, child);
- } else {
- int i;
- pathindex -= ss->a.prev->npaths;
- for (i = 0; i < ss->nas; i++) {
- if (pathindex < ss->as[i].prev->npaths) {
- print_recurse_inner(s, ss, &ss->as[i], pathindex,
- index, priority, assoc, child);
- break;
- }
- pathindex -= ss->as[i].prev->npaths;
- }
- }
- }
- static void print(int pathindex, struct sets *s, struct output *o)
- {
- print_recurse(s, o->set, pathindex, o->index, 0, 0, 0);
- }
- /*
- * gcc -g -O0 -o numgame numgame.c -I.. ../{malloc,tree234,nullfe}.c -lm
- */
- int main(int argc, char **argv)
- {
- int doing_opts = true;
- const struct rules *rules = NULL;
- char *pname = argv[0];
- int got_target = false, target = 0;
- int numbers[10], nnumbers = 0;
- int verbose = false;
- int pathcounts = false;
- int multiple = false;
- int debug_bfs = false;
- int got_range = false, rangemin = 0, rangemax = 0;
- struct output *o;
- struct sets *s;
- int i, start, limit;
- while (--argc) {
- char *p = *++argv;
- int c;
- if (doing_opts && *p == '-') {
- p++;
- if (!strcmp(p, "-")) {
- doing_opts = false;
- continue;
- } else if (*p == '-') {
- p++;
- if (!strcmp(p, "debug-bfs")) {
- debug_bfs = true;
- } else {
- fprintf(stderr, "%s: option '--%s' not recognised\n",
- pname, p);
- }
- } else while (p && *p) switch (c = *p++) {
- case 'C':
- rules = &rules_countdown;
- break;
- case 'B':
- rules = &rules_3388;
- break;
- case 'D':
- rules = &rules_four4s;
- break;
- case 'A':
- rules = &rules_anythinggoes;
- break;
- case 'v':
- verbose = true;
- break;
- case 'p':
- pathcounts = true;
- break;
- case 'm':
- multiple = true;
- break;
- case 't':
- case 'r':
- {
- char *v;
- if (*p) {
- v = p;
- p = NULL;
- } else if (--argc) {
- v = *++argv;
- } else {
- fprintf(stderr, "%s: option '-%c' expects an"
- " argument\n", pname, c);
- return 1;
- }
- switch (c) {
- case 't':
- got_target = true;
- target = atoi(v);
- break;
- case 'r':
- {
- char *sep = strchr(v, '-');
- got_range = true;
- if (sep) {
- rangemin = atoi(v);
- rangemax = atoi(sep+1);
- } else {
- rangemin = 0;
- rangemax = atoi(v);
- }
- }
- break;
- }
- }
- break;
- default:
- fprintf(stderr, "%s: option '-%c' not"
- " recognised\n", pname, c);
- return 1;
- }
- } else {
- if (nnumbers >= lenof(numbers)) {
- fprintf(stderr, "%s: internal limit of %d numbers exceeded\n",
- pname, (int)lenof(numbers));
- return 1;
- } else {
- numbers[nnumbers++] = atoi(p);
- }
- }
- }
- if (!rules) {
- fprintf(stderr, "%s: no rule set specified; use -C,-B,-D,-A\n", pname);
- return 1;
- }
- if (!nnumbers) {
- fprintf(stderr, "%s: no input numbers specified\n", pname);
- return 1;
- }
- if (got_range) {
- if (got_target) {
- fprintf(stderr, "%s: only one of -t and -r may be specified\n", pname);
- return 1;
- }
- if (rangemin >= rangemax) {
- fprintf(stderr, "%s: range not sensible (%d - %d)\n", pname, rangemin, rangemax);
- return 1;
- }
- }
- s = do_search(nnumbers, numbers, rules, (got_target ? &target : NULL),
- debug_bfs, multiple);
- if (got_target) {
- o = findrelpos234(s->outputtree, &target, outputfindcmp,
- REL234_LE, &start);
- if (!o)
- start = -1;
- o = findrelpos234(s->outputtree, &target, outputfindcmp,
- REL234_GE, &limit);
- if (!o)
- limit = -1;
- assert(start != -1 || limit != -1);
- if (start == -1)
- start = limit;
- else if (limit == -1)
- limit = start;
- limit++;
- } else if (got_range) {
- if (!findrelpos234(s->outputtree, &rangemin, outputfindcmp,
- REL234_GE, &start) ||
- !findrelpos234(s->outputtree, &rangemax, outputfindcmp,
- REL234_LE, &limit)) {
- printf("No solutions available in specified range %d-%d\n", rangemin, rangemax);
- return 1;
- }
- limit++;
- } else {
- start = 0;
- limit = count234(s->outputtree);
- }
- for (i = start; i < limit; i++) {
- char buf[256];
- o = index234(s->outputtree, i);
- sprintf(buf, "%d", o->number);
- if (pathcounts)
- sprintf(buf + strlen(buf), " [%d]", o->npaths);
- if (got_target || verbose) {
- int j, npaths;
- if (multiple)
- npaths = o->npaths;
- else
- npaths = 1;
- for (j = 0; j < npaths; j++) {
- printf("%s = ", buf);
- print(j, s, o);
- putchar('\n');
- }
- } else {
- printf("%s\n", buf);
- }
- }
- free_sets(s);
- return 0;
- }
- /* vim: set shiftwidth=4 tabstop=8: */
|