random.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. /*
  2. * random.c: Internal random number generator, guaranteed to work
  3. * the same way on all platforms. Used when generating an initial
  4. * game state from a random game seed; required to ensure that game
  5. * seeds can be exchanged between versions of a puzzle compiled for
  6. * different platforms.
  7. *
  8. * The generator is based on SHA-1. This is almost certainly
  9. * overkill, but I had the SHA-1 code kicking around and it was
  10. * easier to reuse it than to do anything else!
  11. */
  12. #include <assert.h>
  13. #include <string.h>
  14. #include <stdio.h>
  15. #include "puzzles.h"
  16. /* ----------------------------------------------------------------------
  17. * Core SHA algorithm: processes 16-word blocks into a message digest.
  18. */
  19. #define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )
  20. static void SHA_Core_Init(uint32 h[5])
  21. {
  22. h[0] = 0x67452301;
  23. h[1] = 0xefcdab89;
  24. h[2] = 0x98badcfe;
  25. h[3] = 0x10325476;
  26. h[4] = 0xc3d2e1f0;
  27. }
  28. static void SHATransform(uint32 * digest, uint32 * block)
  29. {
  30. uint32 w[80];
  31. uint32 a, b, c, d, e;
  32. int t;
  33. for (t = 0; t < 16; t++)
  34. w[t] = block[t];
  35. for (t = 16; t < 80; t++) {
  36. uint32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
  37. w[t] = rol(tmp, 1);
  38. }
  39. a = digest[0];
  40. b = digest[1];
  41. c = digest[2];
  42. d = digest[3];
  43. e = digest[4];
  44. for (t = 0; t < 20; t++) {
  45. uint32 tmp =
  46. rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
  47. e = d;
  48. d = c;
  49. c = rol(b, 30);
  50. b = a;
  51. a = tmp;
  52. }
  53. for (t = 20; t < 40; t++) {
  54. uint32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
  55. e = d;
  56. d = c;
  57. c = rol(b, 30);
  58. b = a;
  59. a = tmp;
  60. }
  61. for (t = 40; t < 60; t++) {
  62. uint32 tmp = rol(a,
  63. 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
  64. 0x8f1bbcdc;
  65. e = d;
  66. d = c;
  67. c = rol(b, 30);
  68. b = a;
  69. a = tmp;
  70. }
  71. for (t = 60; t < 80; t++) {
  72. uint32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
  73. e = d;
  74. d = c;
  75. c = rol(b, 30);
  76. b = a;
  77. a = tmp;
  78. }
  79. digest[0] += a;
  80. digest[1] += b;
  81. digest[2] += c;
  82. digest[3] += d;
  83. digest[4] += e;
  84. }
  85. /* ----------------------------------------------------------------------
  86. * Outer SHA algorithm: take an arbitrary length byte string,
  87. * convert it into 16-word blocks with the prescribed padding at
  88. * the end, and pass those blocks to the core SHA algorithm.
  89. */
  90. void SHA_Init(SHA_State * s)
  91. {
  92. SHA_Core_Init(s->h);
  93. s->blkused = 0;
  94. s->lenhi = s->lenlo = 0;
  95. }
  96. void SHA_Bytes(SHA_State * s, const void *p, int len)
  97. {
  98. const unsigned char *q = (const unsigned char *) p;
  99. uint32 wordblock[16];
  100. uint32 lenw = len;
  101. int i;
  102. /*
  103. * Update the length field.
  104. */
  105. s->lenlo += lenw;
  106. s->lenhi += (s->lenlo < lenw);
  107. if (s->blkused && s->blkused + len < 64) {
  108. /*
  109. * Trivial case: just add to the block.
  110. */
  111. memcpy(s->block + s->blkused, q, len);
  112. s->blkused += len;
  113. } else {
  114. /*
  115. * We must complete and process at least one block.
  116. */
  117. while (s->blkused + len >= 64) {
  118. memcpy(s->block + s->blkused, q, 64 - s->blkused);
  119. q += 64 - s->blkused;
  120. len -= 64 - s->blkused;
  121. /* Now process the block. Gather bytes big-endian into words */
  122. for (i = 0; i < 16; i++) {
  123. wordblock[i] =
  124. (((uint32) s->block[i * 4 + 0]) << 24) |
  125. (((uint32) s->block[i * 4 + 1]) << 16) |
  126. (((uint32) s->block[i * 4 + 2]) << 8) |
  127. (((uint32) s->block[i * 4 + 3]) << 0);
  128. }
  129. SHATransform(s->h, wordblock);
  130. s->blkused = 0;
  131. }
  132. memcpy(s->block, q, len);
  133. s->blkused = len;
  134. }
  135. }
  136. void SHA_Final(SHA_State * s, unsigned char *output)
  137. {
  138. int i;
  139. int pad;
  140. unsigned char c[64];
  141. uint32 lenhi, lenlo;
  142. if (s->blkused >= 56)
  143. pad = 56 + 64 - s->blkused;
  144. else
  145. pad = 56 - s->blkused;
  146. lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));
  147. lenlo = (s->lenlo << 3);
  148. memset(c, 0, pad);
  149. c[0] = 0x80;
  150. SHA_Bytes(s, &c, pad);
  151. c[0] = (unsigned char)((lenhi >> 24) & 0xFF);
  152. c[1] = (unsigned char)((lenhi >> 16) & 0xFF);
  153. c[2] = (unsigned char)((lenhi >> 8) & 0xFF);
  154. c[3] = (unsigned char)((lenhi >> 0) & 0xFF);
  155. c[4] = (unsigned char)((lenlo >> 24) & 0xFF);
  156. c[5] = (unsigned char)((lenlo >> 16) & 0xFF);
  157. c[6] = (unsigned char)((lenlo >> 8) & 0xFF);
  158. c[7] = (unsigned char)((lenlo >> 0) & 0xFF);
  159. SHA_Bytes(s, &c, 8);
  160. for (i = 0; i < 5; i++) {
  161. output[i * 4] = (unsigned char)((s->h[i] >> 24) & 0xFF);
  162. output[i * 4 + 1] = (unsigned char)((s->h[i] >> 16) & 0xFF);
  163. output[i * 4 + 2] = (unsigned char)((s->h[i] >> 8) & 0xFF);
  164. output[i * 4 + 3] = (unsigned char)((s->h[i]) & 0xFF);
  165. }
  166. }
  167. void SHA_Simple(const void *p, int len, unsigned char *output)
  168. {
  169. SHA_State s;
  170. SHA_Init(&s);
  171. SHA_Bytes(&s, p, len);
  172. SHA_Final(&s, output);
  173. }
  174. /* ----------------------------------------------------------------------
  175. * The random number generator.
  176. */
  177. struct random_state {
  178. unsigned char seedbuf[40];
  179. unsigned char databuf[20];
  180. int pos;
  181. };
  182. random_state *random_new(const char *seed, int len)
  183. {
  184. random_state *state;
  185. state = snew(random_state);
  186. SHA_Simple(seed, len, state->seedbuf);
  187. SHA_Simple(state->seedbuf, 20, state->seedbuf + 20);
  188. SHA_Simple(state->seedbuf, 40, state->databuf);
  189. state->pos = 0;
  190. return state;
  191. }
  192. random_state *random_copy(random_state *tocopy)
  193. {
  194. random_state *result;
  195. result = snew(random_state);
  196. memcpy(result->seedbuf, tocopy->seedbuf, sizeof(result->seedbuf));
  197. memcpy(result->databuf, tocopy->databuf, sizeof(result->databuf));
  198. result->pos = tocopy->pos;
  199. return result;
  200. }
  201. unsigned long random_bits(random_state *state, int bits)
  202. {
  203. unsigned long ret = 0;
  204. int n;
  205. for (n = 0; n < bits; n += 8) {
  206. if (state->pos >= 20) {
  207. int i;
  208. for (i = 0; i < 20; i++) {
  209. if (state->seedbuf[i] != 0xFF) {
  210. state->seedbuf[i]++;
  211. break;
  212. } else
  213. state->seedbuf[i] = 0;
  214. }
  215. SHA_Simple(state->seedbuf, 40, state->databuf);
  216. state->pos = 0;
  217. }
  218. ret = (ret << 8) | state->databuf[state->pos++];
  219. }
  220. /*
  221. * `(1UL << bits) - 1' is not good enough, since if bits==32 on a
  222. * 32-bit machine, behaviour is undefined and Intel has a nasty
  223. * habit of shifting left by zero instead. We'll shift by
  224. * bits-1 and then separately shift by one.
  225. */
  226. ret &= (1UL << (bits-1)) * 2 - 1;
  227. return ret;
  228. }
  229. unsigned long random_upto(random_state *state, unsigned long limit)
  230. {
  231. int bits = 0;
  232. unsigned long max, divisor, data;
  233. while ((limit >> bits) != 0)
  234. bits++;
  235. bits += 3;
  236. assert(bits < 32);
  237. max = 1L << bits;
  238. divisor = max / limit;
  239. max = limit * divisor;
  240. do {
  241. data = random_bits(state, bits);
  242. } while (data >= max);
  243. return data / divisor;
  244. }
  245. void random_free(random_state *state)
  246. {
  247. sfree(state);
  248. }
  249. char *random_state_encode(random_state *state)
  250. {
  251. char retbuf[256];
  252. int len = 0, i;
  253. for (i = 0; i < lenof(state->seedbuf); i++)
  254. len += sprintf(retbuf+len, "%02x", state->seedbuf[i]);
  255. for (i = 0; i < lenof(state->databuf); i++)
  256. len += sprintf(retbuf+len, "%02x", state->databuf[i]);
  257. len += sprintf(retbuf+len, "%02x", state->pos);
  258. return dupstr(retbuf);
  259. }
  260. random_state *random_state_decode(const char *input)
  261. {
  262. random_state *state;
  263. int pos, byte, digits;
  264. state = snew(random_state);
  265. memset(state->seedbuf, 0, sizeof(state->seedbuf));
  266. memset(state->databuf, 0, sizeof(state->databuf));
  267. state->pos = 0;
  268. byte = digits = 0;
  269. pos = 0;
  270. while (*input) {
  271. int v = *input++;
  272. if (v >= '0' && v <= '9')
  273. v = v - '0';
  274. else if (v >= 'A' && v <= 'F')
  275. v = v - 'A' + 10;
  276. else if (v >= 'a' && v <= 'f')
  277. v = v - 'a' + 10;
  278. else
  279. v = 0;
  280. byte = (byte << 4) | v;
  281. digits++;
  282. if (digits == 2) {
  283. /*
  284. * We have a byte. Put it somewhere.
  285. */
  286. if (pos < lenof(state->seedbuf))
  287. state->seedbuf[pos++] = byte;
  288. else if (pos < lenof(state->seedbuf) + lenof(state->databuf))
  289. state->databuf[pos++ - lenof(state->seedbuf)] = byte;
  290. else if (pos == lenof(state->seedbuf) + lenof(state->databuf) &&
  291. byte <= lenof(state->databuf))
  292. state->pos = byte;
  293. byte = digits = 0;
  294. }
  295. }
  296. return state;
  297. }