12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905 |
- /*
- * loopy.c:
- *
- * An implementation of the Nikoli game 'Loop the loop'.
- * (c) Mike Pinna, 2005, 2006
- * Substantially rewritten to allowing for more general types of grid.
- * (c) Lambros Lambrou 2008
- *
- * vim: set shiftwidth=4 :set textwidth=80:
- */
- /*
- * Possible future solver enhancements:
- *
- * - There's an interesting deductive technique which makes use
- * of topology rather than just graph theory. Each _face_ in
- * the grid is either inside or outside the loop; you can tell
- * that two faces are on the same side of the loop if they're
- * separated by a LINE_NO (or, more generally, by a path
- * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
- * and on the opposite side of the loop if they're separated by
- * a LINE_YES (or an odd number of LINE_YESes and no
- * LINE_UNKNOWNs). Oh, and any face separated from the outside
- * of the grid by a LINE_YES or a LINE_NO is on the inside or
- * outside respectively. So if you can track this for all
- * faces, you figure out the state of the line between a pair
- * once their relative insideness is known.
- * + The way I envisage this working is simply to keep a flip dsf
- * of all _faces_, which indicates whether they're on
- * opposite sides of the loop from one another. We also
- * include a special entry in the dsf for the infinite
- * exterior "face".
- * + So, the simple way to do this is to just go through the
- * edges: every time we see an edge in a state other than
- * LINE_UNKNOWN which separates two faces that aren't in the
- * same dsf class, we can rectify that by merging the
- * classes. Then, conversely, an edge in LINE_UNKNOWN state
- * which separates two faces that _are_ in the same dsf
- * class can immediately have its state determined.
- * + But you can go one better, if you're prepared to loop
- * over all _pairs_ of edges. Suppose we have edges A and B,
- * which respectively separate faces A1,A2 and B1,B2.
- * Suppose that A,B are in the same edge-dsf class and that
- * A1,B1 (wlog) are in the same face-dsf class; then we can
- * immediately place A2,B2 into the same face-dsf class (as
- * each other, not as A1 and A2) one way round or the other.
- * And conversely again, if A1,B1 are in the same face-dsf
- * class and so are A2,B2, then we can put A,B into the same
- * face-dsf class.
- * * Of course, this deduction requires a quadratic-time
- * loop over all pairs of edges in the grid, so it should
- * be reserved until there's nothing easier left to be
- * done.
- *
- * - The generalised grid support has made me (SGT) notice a
- * possible extension to the loop-avoidance code. When you have
- * a path of connected edges such that no other edges at all
- * are incident on any vertex in the middle of the path - or,
- * alternatively, such that any such edges are already known to
- * be LINE_NO - then you know those edges are either all
- * LINE_YES or all LINE_NO. Hence you can mentally merge the
- * entire path into a single long curly edge for the purposes
- * of loop avoidance, and look directly at whether or not the
- * extreme endpoints of the path are connected by some other
- * route. I find this coming up fairly often when I play on the
- * octagonal grid setting, so it might be worth implementing in
- * the solver.
- *
- * - (Just a speed optimisation.) Consider some todo list queue where every
- * time we modify something we mark it for consideration by other bits of
- * the solver, to save iteration over things that have already been done.
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <stddef.h>
- #include <string.h>
- #include <assert.h>
- #include <ctype.h>
- #ifdef NO_TGMATH_H
- # include <math.h>
- #else
- # include <tgmath.h>
- #endif
- #include "puzzles.h"
- #include "tree234.h"
- #include "grid.h"
- #include "loopgen.h"
- /* Debugging options */
- /*
- #define DEBUG_CACHES
- #define SHOW_WORKING
- #define DEBUG_DLINES
- */
- /* ----------------------------------------------------------------------
- * Struct, enum and function declarations
- */
- enum {
- COL_BACKGROUND,
- COL_FOREGROUND,
- COL_LINEUNKNOWN,
- COL_HIGHLIGHT,
- COL_MISTAKE,
- COL_SATISFIED,
- COL_FAINT,
- NCOLOURS
- };
- struct game_state {
- grid *game_grid; /* ref-counted (internally) */
- /* Put -1 in a face that doesn't get a clue */
- signed char *clues;
- /* Array of line states, to store whether each line is
- * YES, NO or UNKNOWN */
- char *lines;
- bool *line_errors;
- bool exactly_one_loop;
- bool solved;
- bool cheated;
- /* Used in game_text_format(), so that it knows what type of
- * grid it's trying to render as ASCII text. */
- int grid_type;
- };
- enum solver_status {
- SOLVER_SOLVED, /* This is the only solution the solver could find */
- SOLVER_MISTAKE, /* This is definitely not a solution */
- SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
- SOLVER_INCOMPLETE /* This may be a partial solution */
- };
- /* ------ Solver state ------ */
- typedef struct solver_state {
- game_state *state;
- enum solver_status solver_status;
- /* NB looplen is the number of dots that are joined together at a point, ie a
- * looplen of 1 means there are no lines to a particular dot */
- int *looplen;
- /* Difficulty level of solver. Used by solver functions that want to
- * vary their behaviour depending on the requested difficulty level. */
- int diff;
- /* caches */
- char *dot_yes_count;
- char *dot_no_count;
- char *face_yes_count;
- char *face_no_count;
- bool *dot_solved, *face_solved;
- DSF *dotdsf;
- /* Information for Normal level deductions:
- * For each dline, store a bitmask for whether we know:
- * (bit 0) at least one is YES
- * (bit 1) at most one is YES */
- char *dlines;
- /* Hard level information */
- DSF *linedsf;
- } solver_state;
- /*
- * Difficulty levels. I do some macro ickery here to ensure that my
- * enum and the various forms of my name list always match up.
- */
- #define DIFFLIST(A) \
- A(EASY,Easy,e) \
- A(NORMAL,Normal,n) \
- A(TRICKY,Tricky,t) \
- A(HARD,Hard,h)
- #define ENUM(upper,title,lower) DIFF_ ## upper,
- #define TITLE(upper,title,lower) #title,
- #define ENCODE(upper,title,lower) #lower
- #define CONFIG(upper,title,lower) ":" #title
- enum { DIFFLIST(ENUM) DIFF_MAX };
- static char const *const diffnames[] = { DIFFLIST(TITLE) };
- static char const diffchars[] = DIFFLIST(ENCODE);
- #define DIFFCONFIG DIFFLIST(CONFIG)
- /*
- * Solver routines, sorted roughly in order of computational cost.
- * The solver will run the faster deductions first, and slower deductions are
- * only invoked when the faster deductions are unable to make progress.
- * Each function is associated with a difficulty level, so that the generated
- * puzzles are solvable by applying only the functions with the chosen
- * difficulty level or lower.
- */
- #define SOLVERLIST(A) \
- A(trivial_deductions, DIFF_EASY) \
- A(dline_deductions, DIFF_NORMAL) \
- A(linedsf_deductions, DIFF_HARD) \
- A(loop_deductions, DIFF_EASY)
- #define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
- #define SOLVER_FN(fn,diff) &fn,
- #define SOLVER_DIFF(fn,diff) diff,
- SOLVERLIST(SOLVER_FN_DECL)
- static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) };
- static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) };
- static const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs);
- struct game_params {
- int w, h;
- int diff;
- int type;
- };
- /* line_drawstate is the same as line_state, but with the extra ERROR
- * possibility. The drawing code copies line_state to line_drawstate,
- * except in the case that the line is an error. */
- enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
- enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN,
- DS_LINE_NO, DS_LINE_ERROR };
- #define OPP(line_state) \
- (2 - line_state)
- struct game_drawstate {
- bool started;
- int tilesize;
- bool flashing;
- int *textx, *texty;
- char *lines;
- bool *clue_error;
- bool *clue_satisfied;
- };
- static const char *validate_desc(const game_params *params, const char *desc);
- static int dot_order(const game_state* state, int i, char line_type);
- static int face_order(const game_state* state, int i, char line_type);
- static solver_state *solve_game_rec(const solver_state *sstate);
- #ifdef DEBUG_CACHES
- static void check_caches(const solver_state* sstate);
- #else
- #define check_caches(s)
- #endif
- /*
- * Grid type config options available in Loopy.
- *
- * Annoyingly, we have to use an enum here which doesn't match up
- * exactly to the grid-type enum in grid.h. Values in params->types
- * are given by names such as LOOPY_GRID_SQUARE, which shouldn't be
- * confused with GRID_SQUARE which is the value you pass to grid_new()
- * and friends. So beware!
- *
- * (This is partly for historical reasons - Loopy's version of the
- * enum is encoded in game parameter strings, so we keep it for
- * backwards compatibility. But also, we need to store additional data
- * here alongside each enum value, such as names for the presets menu,
- * which isn't stored in grid.h; so we have to have our own list macro
- * here anyway, and C doesn't make it easy to enforce that that lines
- * up exactly with grid.h.)
- *
- * Do not add values to this list _except_ at the end, or old game ids
- * will stop working!
- */
- #define GRIDLIST(A) \
- A("Squares",SQUARE,3,3) \
- A("Triangular",TRIANGULAR,3,3) \
- A("Honeycomb",HONEYCOMB,3,3) \
- A("Snub-Square",SNUBSQUARE,3,3) \
- A("Cairo",CAIRO,3,4) \
- A("Great-Hexagonal",GREATHEXAGONAL,3,3) \
- A("Octagonal",OCTAGONAL,3,3) \
- A("Kites",KITE,3,3) \
- A("Floret",FLORET,1,2) \
- A("Dodecagonal",DODECAGONAL,2,2) \
- A("Great-Dodecagonal",GREATDODECAGONAL,2,2) \
- A("Penrose (kite/dart)",PENROSE_P2,3,3) \
- A("Penrose (rhombs)",PENROSE_P3,3,3) \
- A("Great-Great-Dodecagonal",GREATGREATDODECAGONAL,2,2) \
- A("Kagome",KAGOME,3,3) \
- A("Compass-Dodecagonal",COMPASSDODECAGONAL,2,2) \
- A("Hats",HATS,6,6) \
- A("Spectres",SPECTRES,6,6) \
- /* end of list */
- #define GRID_NAME(title,type,amin,omin) title,
- #define GRID_CONFIG(title,type,amin,omin) ":" title
- #define GRID_LOOPYTYPE(title,type,amin,omin) LOOPY_GRID_ ## type,
- #define GRID_GRIDTYPE(title,type,amin,omin) GRID_ ## type,
- #define GRID_SIZES(title,type,amin,omin) \
- {amin, omin, \
- "Width and height for this grid type must both be at least " #amin, \
- "At least one of width and height for this grid type must be at least " #omin,},
- enum { GRIDLIST(GRID_LOOPYTYPE) LOOPY_GRID_DUMMY_TERMINATOR };
- static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
- #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
- static grid_type grid_types[] = { GRIDLIST(GRID_GRIDTYPE) };
- #define NUM_GRID_TYPES (sizeof(grid_types) / sizeof(grid_types[0]))
- static const struct {
- int amin, omin;
- const char *aerr, *oerr;
- } grid_size_limits[] = { GRIDLIST(GRID_SIZES) };
- /* Generates a (dynamically allocated) new grid, according to the
- * type and size requested in params. Does nothing if the grid is already
- * generated. */
- static grid *loopy_generate_grid(const game_params *params,
- const char *grid_desc)
- {
- return grid_new(grid_types[params->type], params->w, params->h, grid_desc);
- }
- /* ----------------------------------------------------------------------
- * Preprocessor magic
- */
- /* General constants */
- #define PREFERRED_TILE_SIZE 32
- #define BORDER(tilesize) ((tilesize) / 2)
- #define FLASH_TIME 0.5F
- #define BIT_SET(field, bit) ((field) & (1<<(bit)))
- #define SET_BIT(field, bit) (BIT_SET(field, bit) ? false : \
- ((field) |= (1<<(bit)), true))
- #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
- ((field) &= ~(1<<(bit)), true) : false)
- #define CLUE2CHAR(c) \
- ((c < 0) ? ' ' : c < 10 ? c + '0' : c - 10 + 'A')
- /* ----------------------------------------------------------------------
- * General struct manipulation and other straightforward code
- */
- static game_state *dup_game(const game_state *state)
- {
- game_state *ret = snew(game_state);
- ret->game_grid = state->game_grid;
- ret->game_grid->refcount++;
- ret->solved = state->solved;
- ret->cheated = state->cheated;
- ret->clues = snewn(state->game_grid->num_faces, signed char);
- memcpy(ret->clues, state->clues, state->game_grid->num_faces);
- ret->lines = snewn(state->game_grid->num_edges, char);
- memcpy(ret->lines, state->lines, state->game_grid->num_edges);
- ret->line_errors = snewn(state->game_grid->num_edges, bool);
- memcpy(ret->line_errors, state->line_errors,
- state->game_grid->num_edges * sizeof(bool));
- ret->exactly_one_loop = state->exactly_one_loop;
- ret->grid_type = state->grid_type;
- return ret;
- }
- static void free_game(game_state *state)
- {
- if (state) {
- grid_free(state->game_grid);
- sfree(state->clues);
- sfree(state->lines);
- sfree(state->line_errors);
- sfree(state);
- }
- }
- static solver_state *new_solver_state(const game_state *state, int diff) {
- int i;
- int num_dots = state->game_grid->num_dots;
- int num_faces = state->game_grid->num_faces;
- int num_edges = state->game_grid->num_edges;
- solver_state *ret = snew(solver_state);
- ret->state = dup_game(state);
- ret->solver_status = SOLVER_INCOMPLETE;
- ret->diff = diff;
- ret->dotdsf = dsf_new(num_dots);
- ret->looplen = snewn(num_dots, int);
- for (i = 0; i < num_dots; i++) {
- ret->looplen[i] = 1;
- }
- ret->dot_solved = snewn(num_dots, bool);
- ret->face_solved = snewn(num_faces, bool);
- memset(ret->dot_solved, 0, num_dots * sizeof(bool));
- memset(ret->face_solved, 0, num_faces * sizeof(bool));
- ret->dot_yes_count = snewn(num_dots, char);
- memset(ret->dot_yes_count, 0, num_dots);
- ret->dot_no_count = snewn(num_dots, char);
- memset(ret->dot_no_count, 0, num_dots);
- ret->face_yes_count = snewn(num_faces, char);
- memset(ret->face_yes_count, 0, num_faces);
- ret->face_no_count = snewn(num_faces, char);
- memset(ret->face_no_count, 0, num_faces);
- if (diff < DIFF_NORMAL) {
- ret->dlines = NULL;
- } else {
- ret->dlines = snewn(2*num_edges, char);
- memset(ret->dlines, 0, 2*num_edges);
- }
- if (diff < DIFF_HARD) {
- ret->linedsf = NULL;
- } else {
- ret->linedsf = dsf_new_flip(state->game_grid->num_edges);
- }
- return ret;
- }
- static void free_solver_state(solver_state *sstate) {
- if (sstate) {
- free_game(sstate->state);
- dsf_free(sstate->dotdsf);
- sfree(sstate->looplen);
- sfree(sstate->dot_solved);
- sfree(sstate->face_solved);
- sfree(sstate->dot_yes_count);
- sfree(sstate->dot_no_count);
- sfree(sstate->face_yes_count);
- sfree(sstate->face_no_count);
- /* OK, because sfree(NULL) is a no-op */
- sfree(sstate->dlines);
- dsf_free(sstate->linedsf);
- sfree(sstate);
- }
- }
- static solver_state *dup_solver_state(const solver_state *sstate) {
- game_state *state = sstate->state;
- int num_dots = state->game_grid->num_dots;
- int num_faces = state->game_grid->num_faces;
- int num_edges = state->game_grid->num_edges;
- solver_state *ret = snew(solver_state);
- ret->state = state = dup_game(sstate->state);
- ret->solver_status = sstate->solver_status;
- ret->diff = sstate->diff;
- ret->dotdsf = dsf_new(num_dots);
- ret->looplen = snewn(num_dots, int);
- dsf_copy(ret->dotdsf, sstate->dotdsf);
- memcpy(ret->looplen, sstate->looplen,
- num_dots * sizeof(int));
- ret->dot_solved = snewn(num_dots, bool);
- ret->face_solved = snewn(num_faces, bool);
- memcpy(ret->dot_solved, sstate->dot_solved, num_dots * sizeof(bool));
- memcpy(ret->face_solved, sstate->face_solved, num_faces * sizeof(bool));
- ret->dot_yes_count = snewn(num_dots, char);
- memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
- ret->dot_no_count = snewn(num_dots, char);
- memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
- ret->face_yes_count = snewn(num_faces, char);
- memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
- ret->face_no_count = snewn(num_faces, char);
- memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
- if (sstate->dlines) {
- ret->dlines = snewn(2*num_edges, char);
- memcpy(ret->dlines, sstate->dlines,
- 2*num_edges);
- } else {
- ret->dlines = NULL;
- }
- if (sstate->linedsf) {
- ret->linedsf = dsf_new_flip(num_edges);
- dsf_copy(ret->linedsf, sstate->linedsf);
- } else {
- ret->linedsf = NULL;
- }
- return ret;
- }
- static game_params *default_params(void)
- {
- game_params *ret = snew(game_params);
- #ifdef SLOW_SYSTEM
- ret->h = 7;
- ret->w = 7;
- #else
- ret->h = 10;
- ret->w = 10;
- #endif
- ret->diff = DIFF_EASY;
- ret->type = 0;
- return ret;
- }
- static game_params *dup_params(const game_params *params)
- {
- game_params *ret = snew(game_params);
- *ret = *params; /* structure copy */
- return ret;
- }
- static const game_params loopy_presets_top[] = {
- #ifdef SMALL_SCREEN
- { 7, 7, DIFF_EASY, LOOPY_GRID_SQUARE },
- { 7, 7, DIFF_NORMAL, LOOPY_GRID_SQUARE },
- { 7, 7, DIFF_HARD, LOOPY_GRID_SQUARE },
- { 7, 7, DIFF_HARD, LOOPY_GRID_TRIANGULAR },
- { 5, 5, DIFF_HARD, LOOPY_GRID_SNUBSQUARE },
- { 7, 7, DIFF_HARD, LOOPY_GRID_CAIRO },
- { 5, 5, DIFF_HARD, LOOPY_GRID_KITE },
- { 6, 6, DIFF_HARD, LOOPY_GRID_PENROSE_P2 },
- { 6, 6, DIFF_HARD, LOOPY_GRID_PENROSE_P3 },
- #else
- { 7, 7, DIFF_EASY, LOOPY_GRID_SQUARE },
- { 10, 10, DIFF_EASY, LOOPY_GRID_SQUARE },
- { 7, 7, DIFF_NORMAL, LOOPY_GRID_SQUARE },
- { 10, 10, DIFF_NORMAL, LOOPY_GRID_SQUARE },
- { 7, 7, DIFF_HARD, LOOPY_GRID_SQUARE },
- { 10, 10, DIFF_HARD, LOOPY_GRID_SQUARE },
- { 12, 10, DIFF_HARD, LOOPY_GRID_TRIANGULAR },
- { 7, 7, DIFF_HARD, LOOPY_GRID_SNUBSQUARE },
- { 9, 9, DIFF_HARD, LOOPY_GRID_CAIRO },
- { 5, 5, DIFF_HARD, LOOPY_GRID_KITE },
- { 10, 10, DIFF_HARD, LOOPY_GRID_PENROSE_P2 },
- { 10, 10, DIFF_HARD, LOOPY_GRID_PENROSE_P3 },
- #endif
- };
- static const game_params loopy_presets_more[] = {
- #ifdef SMALL_SCREEN
- { 7, 7, DIFF_HARD, LOOPY_GRID_HONEYCOMB },
- { 5, 4, DIFF_HARD, LOOPY_GRID_GREATHEXAGONAL },
- { 5, 4, DIFF_HARD, LOOPY_GRID_KAGOME },
- { 5, 5, DIFF_HARD, LOOPY_GRID_OCTAGONAL },
- { 3, 3, DIFF_HARD, LOOPY_GRID_FLORET },
- { 3, 3, DIFF_HARD, LOOPY_GRID_DODECAGONAL },
- { 3, 3, DIFF_HARD, LOOPY_GRID_GREATDODECAGONAL },
- { 3, 2, DIFF_HARD, LOOPY_GRID_GREATGREATDODECAGONAL },
- { 3, 3, DIFF_HARD, LOOPY_GRID_COMPASSDODECAGONAL },
- { 6, 6, DIFF_HARD, LOOPY_GRID_HATS },
- { 6, 6, DIFF_HARD, LOOPY_GRID_SPECTRES },
- #else
- { 10, 10, DIFF_HARD, LOOPY_GRID_HONEYCOMB },
- { 5, 4, DIFF_HARD, LOOPY_GRID_GREATHEXAGONAL },
- { 5, 4, DIFF_HARD, LOOPY_GRID_KAGOME },
- { 7, 7, DIFF_HARD, LOOPY_GRID_OCTAGONAL },
- { 5, 5, DIFF_HARD, LOOPY_GRID_FLORET },
- { 5, 4, DIFF_HARD, LOOPY_GRID_DODECAGONAL },
- { 5, 4, DIFF_HARD, LOOPY_GRID_GREATDODECAGONAL },
- { 5, 3, DIFF_HARD, LOOPY_GRID_GREATGREATDODECAGONAL },
- { 5, 4, DIFF_HARD, LOOPY_GRID_COMPASSDODECAGONAL },
- { 10, 10, DIFF_HARD, LOOPY_GRID_HATS },
- { 10, 10, DIFF_HARD, LOOPY_GRID_SPECTRES },
- #endif
- };
- static void preset_menu_add_preset_with_title(struct preset_menu *menu,
- const game_params *params)
- {
- char buf[80];
- game_params *dup_params;
- sprintf(buf, "%dx%d %s - %s", params->h, params->w,
- gridnames[params->type], diffnames[params->diff]);
- dup_params = snew(game_params);
- *dup_params = *params;
- preset_menu_add_preset(menu, dupstr(buf), dup_params);
- }
- static struct preset_menu *game_preset_menu(void)
- {
- struct preset_menu *top, *more;
- int i;
- top = preset_menu_new();
- for (i = 0; i < lenof(loopy_presets_top); i++)
- preset_menu_add_preset_with_title(top, &loopy_presets_top[i]);
- more = preset_menu_add_submenu(top, dupstr("More..."));
- for (i = 0; i < lenof(loopy_presets_more); i++)
- preset_menu_add_preset_with_title(more, &loopy_presets_more[i]);
- return top;
- }
- static void free_params(game_params *params)
- {
- sfree(params);
- }
- static void decode_params(game_params *params, char const *string)
- {
- params->h = params->w = atoi(string);
- params->diff = DIFF_EASY;
- while (*string && isdigit((unsigned char)*string)) string++;
- if (*string == 'x') {
- string++;
- params->h = atoi(string);
- while (*string && isdigit((unsigned char)*string)) string++;
- }
- if (*string == 't') {
- string++;
- params->type = atoi(string);
- while (*string && isdigit((unsigned char)*string)) string++;
- }
- if (*string == 'd') {
- int i;
- string++;
- for (i = 0; i < DIFF_MAX; i++)
- if (*string == diffchars[i])
- params->diff = i;
- if (*string) string++;
- }
- }
- static char *encode_params(const game_params *params, bool full)
- {
- char str[80];
- sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
- if (full)
- sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
- return dupstr(str);
- }
- static config_item *game_configure(const game_params *params)
- {
- config_item *ret;
- char buf[80];
- ret = snewn(5, config_item);
- ret[0].name = "Width";
- ret[0].type = C_STRING;
- sprintf(buf, "%d", params->w);
- ret[0].u.string.sval = dupstr(buf);
- ret[1].name = "Height";
- ret[1].type = C_STRING;
- sprintf(buf, "%d", params->h);
- ret[1].u.string.sval = dupstr(buf);
- ret[2].name = "Grid type";
- ret[2].type = C_CHOICES;
- ret[2].u.choices.choicenames = GRID_CONFIGS;
- ret[2].u.choices.selected = params->type;
- ret[3].name = "Difficulty";
- ret[3].type = C_CHOICES;
- ret[3].u.choices.choicenames = DIFFCONFIG;
- ret[3].u.choices.selected = params->diff;
- ret[4].name = NULL;
- ret[4].type = C_END;
- return ret;
- }
- static game_params *custom_params(const config_item *cfg)
- {
- game_params *ret = snew(game_params);
- ret->w = atoi(cfg[0].u.string.sval);
- ret->h = atoi(cfg[1].u.string.sval);
- ret->type = cfg[2].u.choices.selected;
- ret->diff = cfg[3].u.choices.selected;
- return ret;
- }
- static const char *validate_params(const game_params *params, bool full)
- {
- const char *err;
- if (params->type < 0 || params->type >= NUM_GRID_TYPES)
- return "Illegal grid type";
- if (params->w < grid_size_limits[params->type].amin ||
- params->h < grid_size_limits[params->type].amin)
- return grid_size_limits[params->type].aerr;
- if (params->w < grid_size_limits[params->type].omin &&
- params->h < grid_size_limits[params->type].omin)
- return grid_size_limits[params->type].oerr;
- err = grid_validate_params(grid_types[params->type], params->w, params->h);
- if (err != NULL) return err;
- /*
- * This shouldn't be able to happen at all, since decode_params
- * and custom_params will never generate anything that isn't
- * within range.
- */
- assert(params->diff < DIFF_MAX);
- return NULL;
- }
- /* Returns a newly allocated string describing the current puzzle */
- static char *state_to_text(const game_state *state)
- {
- grid *g = state->game_grid;
- char *retval;
- int num_faces = g->num_faces;
- char *description = snewn(num_faces + 1, char);
- char *dp = description;
- int empty_count = 0;
- int i;
- for (i = 0; i < num_faces; i++) {
- if (state->clues[i] < 0) {
- if (empty_count > 25) {
- dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
- empty_count = 0;
- }
- empty_count++;
- } else {
- if (empty_count) {
- dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
- empty_count = 0;
- }
- dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
- }
- }
- if (empty_count)
- dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
- retval = dupstr(description);
- sfree(description);
- return retval;
- }
- #define GRID_DESC_SEP '_'
- /* Splits up a (optional) grid_desc from the game desc. Returns the
- * grid_desc (which needs freeing) and updates the desc pointer to
- * start of real desc, or returns NULL if no desc. */
- static char *extract_grid_desc(const char **desc)
- {
- char *sep = strchr(*desc, GRID_DESC_SEP), *gd;
- int gd_len;
- if (!sep) return NULL;
- gd_len = sep - (*desc);
- gd = snewn(gd_len+1, char);
- memcpy(gd, *desc, gd_len);
- gd[gd_len] = '\0';
- *desc = sep+1;
- return gd;
- }
- /* We require that the params pass the test in validate_params and that the
- * description fills the entire game area */
- static const char *validate_desc(const game_params *params, const char *desc)
- {
- int count = 0;
- grid *g;
- char *grid_desc;
- const char *ret;
- /* It's pretty inefficient to do this just for validation. All we need to
- * know is the precise number of faces. */
- grid_desc = extract_grid_desc(&desc);
- ret = grid_validate_desc(grid_types[params->type], params->w, params->h, grid_desc);
- if (ret) {
- sfree(grid_desc);
- return ret;
- }
- g = loopy_generate_grid(params, grid_desc);
- sfree(grid_desc);
- for (; *desc; ++desc) {
- if ((*desc >= '0' && *desc <= '9') || (*desc >= 'A' && *desc <= 'Z')) {
- count++;
- continue;
- }
- if (*desc >= 'a') {
- count += *desc - 'a' + 1;
- continue;
- }
- grid_free(g);
- return "Unknown character in description";
- }
- if (count < g->num_faces) {
- grid_free(g);
- return "Description too short for board size";
- }
- if (count > g->num_faces) {
- grid_free(g);
- return "Description too long for board size";
- }
- grid_free(g);
- return NULL;
- }
- /* Sums the lengths of the numbers in range [0,n) */
- /* See equivalent function in solo.c for justification of this. */
- static int len_0_to_n(int n)
- {
- int len = 1; /* Counting 0 as a bit of a special case */
- int i;
- for (i = 1; i < n; i *= 10) {
- len += max(n - i, 0);
- }
- return len;
- }
- static char *encode_solve_move(const game_state *state)
- {
- int len;
- char *ret, *p;
- int i;
- int num_edges = state->game_grid->num_edges;
- /* This is going to return a string representing the moves needed to set
- * every line in a grid to be the same as the ones in 'state'. The exact
- * length of this string is predictable. */
- len = 1; /* Count the 'S' prefix */
- /* Numbers in all lines */
- len += len_0_to_n(num_edges);
- /* For each line we also have a letter */
- len += num_edges;
- ret = snewn(len + 1, char);
- p = ret;
- p += sprintf(p, "S");
- for (i = 0; i < num_edges; i++) {
- switch (state->lines[i]) {
- case LINE_YES:
- p += sprintf(p, "%dy", i);
- break;
- case LINE_NO:
- p += sprintf(p, "%dn", i);
- break;
- }
- }
- /* No point in doing sums like that if they're going to be wrong */
- assert(strlen(ret) <= (size_t)len);
- return ret;
- }
- struct game_ui {
- /*
- * User preference: should grid lines in LINE_NO state be drawn
- * very faintly so users can still see where they are, or should
- * they be completely invisible?
- */
- bool draw_faint_lines;
- /*
- * User preference: when clicking an edge that has only one
- * possible edge connecting to one (or both) of its ends, should
- * that edge also change to the same state as the edge we just
- * clicked?
- */
- enum {
- AF_OFF, /* no, all grid edges are independent in the UI */
- AF_FIXED, /* yes, but only based on the grid itself */
- AF_ADAPTIVE /* yes, and consider edges user has already set to NO */
- } autofollow;
- };
- static void legacy_prefs_override(struct game_ui *ui_out)
- {
- static bool initialised = false;
- static int draw_faint_lines = -1;
- static int autofollow = -1;
- if (!initialised) {
- char *env;
- initialised = true;
- draw_faint_lines = getenv_bool("LOOPY_FAINT_LINES", -1);
- if ((env = getenv("LOOPY_AUTOFOLLOW")) != NULL) {
- if (!strcmp(env, "off"))
- autofollow = AF_OFF;
- else if (!strcmp(env, "fixed"))
- autofollow = AF_FIXED;
- else if (!strcmp(env, "adaptive"))
- autofollow = AF_ADAPTIVE;
- }
- }
- if (draw_faint_lines != -1)
- ui_out->draw_faint_lines = draw_faint_lines;
- if (autofollow != -1)
- ui_out->autofollow = autofollow;
- }
- static game_ui *new_ui(const game_state *state)
- {
- game_ui *ui = snew(game_ui);
- ui->draw_faint_lines = true;
- ui->autofollow = AF_OFF;
- legacy_prefs_override(ui);
- return ui;
- }
- static void free_ui(game_ui *ui)
- {
- sfree(ui);
- }
- static config_item *get_prefs(game_ui *ui)
- {
- config_item *ret;
- ret = snewn(3, config_item);
- ret[0].name = "Draw excluded grid lines faintly";
- ret[0].kw = "draw-faint-lines";
- ret[0].type = C_BOOLEAN;
- ret[0].u.boolean.bval = ui->draw_faint_lines;
- ret[1].name = "Auto-follow unique paths of edges";
- ret[1].kw = "auto-follow";
- ret[1].type = C_CHOICES;
- ret[1].u.choices.choicenames =
- ":No:Based on grid only:Based on grid and game state";
- ret[1].u.choices.choicekws = ":off:fixed:adaptive";
- ret[1].u.choices.selected = ui->autofollow;
- ret[2].name = NULL;
- ret[2].type = C_END;
- return ret;
- }
- static void set_prefs(game_ui *ui, const config_item *cfg)
- {
- ui->draw_faint_lines = cfg[0].u.boolean.bval;
- ui->autofollow = cfg[1].u.choices.selected;
- }
- static void game_changed_state(game_ui *ui, const game_state *oldstate,
- const game_state *newstate)
- {
- }
- static void game_compute_size(const game_params *params, int tilesize,
- const game_ui *ui, int *x, int *y)
- {
- int grid_width, grid_height, rendered_width, rendered_height;
- int g_tilesize;
- grid_compute_size(grid_types[params->type], params->w, params->h,
- &g_tilesize, &grid_width, &grid_height);
- /* multiply first to minimise rounding error on integer division */
- rendered_width = grid_width * tilesize / g_tilesize;
- rendered_height = grid_height * tilesize / g_tilesize;
- *x = rendered_width + 2 * BORDER(tilesize) + 1;
- *y = rendered_height + 2 * BORDER(tilesize) + 1;
- }
- static void game_set_size(drawing *dr, game_drawstate *ds,
- const game_params *params, int tilesize)
- {
- ds->tilesize = tilesize;
- }
- static float *game_colours(frontend *fe, int *ncolours)
- {
- float *ret = snewn(3 * NCOLOURS, float);
- frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
- ret[COL_FOREGROUND * 3 + 0] = 0.0F;
- ret[COL_FOREGROUND * 3 + 1] = 0.0F;
- ret[COL_FOREGROUND * 3 + 2] = 0.0F;
- /*
- * We want COL_LINEUNKNOWN to be a yellow which is a bit darker
- * than the background. (I previously set it to 0.8,0.8,0, but
- * found that this went badly with the 0.8,0.8,0.8 favoured as a
- * background by the Java frontend.)
- */
- ret[COL_LINEUNKNOWN * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
- ret[COL_LINEUNKNOWN * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
- ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
- ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
- ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
- ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
- ret[COL_MISTAKE * 3 + 0] = 1.0F;
- ret[COL_MISTAKE * 3 + 1] = 0.0F;
- ret[COL_MISTAKE * 3 + 2] = 0.0F;
- ret[COL_SATISFIED * 3 + 0] = 0.0F;
- ret[COL_SATISFIED * 3 + 1] = 0.0F;
- ret[COL_SATISFIED * 3 + 2] = 0.0F;
- /* We want the faint lines to be a bit darker than the background.
- * Except if the background is pretty dark already; then it ought to be a
- * bit lighter. Oy vey.
- */
- ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
- ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
- ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F;
- *ncolours = NCOLOURS;
- return ret;
- }
- static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
- {
- struct game_drawstate *ds = snew(struct game_drawstate);
- int num_faces = state->game_grid->num_faces;
- int num_edges = state->game_grid->num_edges;
- int i;
- ds->tilesize = 0;
- ds->started = false;
- ds->lines = snewn(num_edges, char);
- ds->clue_error = snewn(num_faces, bool);
- ds->clue_satisfied = snewn(num_faces, bool);
- ds->textx = snewn(num_faces, int);
- ds->texty = snewn(num_faces, int);
- ds->flashing = false;
- memset(ds->lines, LINE_UNKNOWN, num_edges);
- memset(ds->clue_error, 0, num_faces * sizeof(bool));
- memset(ds->clue_satisfied, 0, num_faces * sizeof(bool));
- for (i = 0; i < num_faces; i++)
- ds->textx[i] = ds->texty[i] = -1;
- return ds;
- }
- static void game_free_drawstate(drawing *dr, game_drawstate *ds)
- {
- sfree(ds->textx);
- sfree(ds->texty);
- sfree(ds->clue_error);
- sfree(ds->clue_satisfied);
- sfree(ds->lines);
- sfree(ds);
- }
- static float game_anim_length(const game_state *oldstate,
- const game_state *newstate, int dir, game_ui *ui)
- {
- return 0.0F;
- }
- static bool game_can_format_as_text_now(const game_params *params)
- {
- if (params->type != 0)
- return false;
- return true;
- }
- static char *game_text_format(const game_state *state)
- {
- int w, h, W, H;
- int x, y, i;
- int cell_size;
- char *ret;
- grid *g = state->game_grid;
- grid_face *f;
- assert(state->grid_type == 0);
- /* Work out the basic size unit */
- f = g->faces[0]; /* first face */
- assert(f->order == 4);
- /* The dots are ordered clockwise, so the two opposite
- * corners are guaranteed to span the square */
- cell_size = abs(f->dots[0]->x - f->dots[2]->x);
- w = (g->highest_x - g->lowest_x) / cell_size;
- h = (g->highest_y - g->lowest_y) / cell_size;
- /* Create a blank "canvas" to "draw" on */
- W = 2 * w + 2;
- H = 2 * h + 1;
- ret = snewn(W * H + 1, char);
- for (y = 0; y < H; y++) {
- for (x = 0; x < W-1; x++) {
- ret[y*W + x] = ' ';
- }
- ret[y*W + W-1] = '\n';
- }
- ret[H*W] = '\0';
- /* Fill in edge info */
- for (i = 0; i < g->num_edges; i++) {
- grid_edge *e = g->edges[i];
- /* Cell coordinates, from (0,0) to (w-1,h-1) */
- int x1 = (e->dot1->x - g->lowest_x) / cell_size;
- int x2 = (e->dot2->x - g->lowest_x) / cell_size;
- int y1 = (e->dot1->y - g->lowest_y) / cell_size;
- int y2 = (e->dot2->y - g->lowest_y) / cell_size;
- /* Midpoint, in canvas coordinates (canvas coordinates are just twice
- * cell coordinates) */
- x = x1 + x2;
- y = y1 + y2;
- switch (state->lines[i]) {
- case LINE_YES:
- ret[y*W + x] = (y1 == y2) ? '-' : '|';
- break;
- case LINE_NO:
- ret[y*W + x] = 'x';
- break;
- case LINE_UNKNOWN:
- break; /* already a space */
- default:
- assert(!"Illegal line state");
- }
- }
- /* Fill in clues */
- for (i = 0; i < g->num_faces; i++) {
- int x1, x2, y1, y2;
- f = g->faces[i];
- assert(f->order == 4);
- /* Cell coordinates, from (0,0) to (w-1,h-1) */
- x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
- x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
- y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
- y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
- /* Midpoint, in canvas coordinates */
- x = x1 + x2;
- y = y1 + y2;
- ret[y*W + x] = CLUE2CHAR(state->clues[i]);
- }
- return ret;
- }
- /* ----------------------------------------------------------------------
- * Debug code
- */
- #ifdef DEBUG_CACHES
- static void check_caches(const solver_state* sstate)
- {
- int i;
- const game_state *state = sstate->state;
- const grid *g = state->game_grid;
- for (i = 0; i < g->num_dots; i++) {
- assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
- assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
- }
- for (i = 0; i < g->num_faces; i++) {
- assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
- assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
- }
- }
- #if 0
- #define check_caches(s) \
- do { \
- fprintf(stderr, "check_caches at line %d\n", __LINE__); \
- check_caches(s); \
- } while (0)
- #endif
- #endif /* DEBUG_CACHES */
- /* ----------------------------------------------------------------------
- * Solver utility functions
- */
- /* Sets the line (with index i) to the new state 'line_new', and updates
- * the cached counts of any affected faces and dots.
- * Returns true if this actually changed the line's state. */
- static bool solver_set_line(solver_state *sstate, int i,
- enum line_state line_new
- #ifdef SHOW_WORKING
- , const char *reason
- #endif
- )
- {
- game_state *state = sstate->state;
- grid *g;
- grid_edge *e;
- assert(line_new != LINE_UNKNOWN);
- check_caches(sstate);
- if (state->lines[i] == line_new) {
- return false; /* nothing changed */
- }
- state->lines[i] = line_new;
- #ifdef SHOW_WORKING
- fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
- i, line_new == LINE_YES ? "YES" : "NO",
- reason);
- #endif
- g = state->game_grid;
- e = g->edges[i];
- /* Update the cache for both dots and both faces affected by this. */
- if (line_new == LINE_YES) {
- sstate->dot_yes_count[e->dot1->index]++;
- sstate->dot_yes_count[e->dot2->index]++;
- if (e->face1) {
- sstate->face_yes_count[e->face1->index]++;
- }
- if (e->face2) {
- sstate->face_yes_count[e->face2->index]++;
- }
- } else {
- sstate->dot_no_count[e->dot1->index]++;
- sstate->dot_no_count[e->dot2->index]++;
- if (e->face1) {
- sstate->face_no_count[e->face1->index]++;
- }
- if (e->face2) {
- sstate->face_no_count[e->face2->index]++;
- }
- }
- check_caches(sstate);
- return true;
- }
- #ifdef SHOW_WORKING
- #define solver_set_line(a, b, c) \
- solver_set_line(a, b, c, __FUNCTION__)
- #endif
- /*
- * Merge two dots due to the existence of an edge between them.
- * Updates the dsf tracking equivalence classes, and keeps track of
- * the length of path each dot is currently a part of.
- * Returns true if the dots were already linked, ie if they are part of a
- * closed loop, and false otherwise.
- */
- static bool merge_dots(solver_state *sstate, int edge_index)
- {
- int i, j, len;
- grid *g = sstate->state->game_grid;
- grid_edge *e = g->edges[edge_index];
- i = e->dot1->index;
- j = e->dot2->index;
- i = dsf_canonify(sstate->dotdsf, i);
- j = dsf_canonify(sstate->dotdsf, j);
- if (i == j) {
- return true;
- } else {
- len = sstate->looplen[i] + sstate->looplen[j];
- dsf_merge(sstate->dotdsf, i, j);
- i = dsf_canonify(sstate->dotdsf, i);
- sstate->looplen[i] = len;
- return false;
- }
- }
- /* Merge two lines because the solver has deduced that they must be either
- * identical or opposite. Returns true if this is new information, otherwise
- * false. */
- static bool merge_lines(solver_state *sstate, int i, int j, bool inverse
- #ifdef SHOW_WORKING
- , const char *reason
- #endif
- )
- {
- bool inv_tmp;
- assert(i < sstate->state->game_grid->num_edges);
- assert(j < sstate->state->game_grid->num_edges);
- i = dsf_canonify_flip(sstate->linedsf, i, &inv_tmp);
- inverse ^= inv_tmp;
- j = dsf_canonify_flip(sstate->linedsf, j, &inv_tmp);
- inverse ^= inv_tmp;
- dsf_merge_flip(sstate->linedsf, i, j, inverse);
- #ifdef SHOW_WORKING
- if (i != j) {
- fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
- __FUNCTION__, i, j,
- inverse ? "inverse " : "", reason);
- }
- #endif
- return (i != j);
- }
- #ifdef SHOW_WORKING
- #define merge_lines(a, b, c, d) \
- merge_lines(a, b, c, d, __FUNCTION__)
- #endif
- /* Count the number of lines of a particular type currently going into the
- * given dot. */
- static int dot_order(const game_state* state, int dot, char line_type)
- {
- int n = 0;
- grid *g = state->game_grid;
- grid_dot *d = g->dots[dot];
- int i;
- for (i = 0; i < d->order; i++) {
- grid_edge *e = d->edges[i];
- if (state->lines[e->index] == line_type)
- ++n;
- }
- return n;
- }
- /* Count the number of lines of a particular type currently surrounding the
- * given face */
- static int face_order(const game_state* state, int face, char line_type)
- {
- int n = 0;
- grid *g = state->game_grid;
- grid_face *f = g->faces[face];
- int i;
- for (i = 0; i < f->order; i++) {
- grid_edge *e = f->edges[i];
- if (state->lines[e->index] == line_type)
- ++n;
- }
- return n;
- }
- /* Set all lines bordering a dot of type old_type to type new_type
- * Return value tells caller whether this function actually did anything */
- static bool dot_setall(solver_state *sstate, int dot,
- char old_type, char new_type)
- {
- bool retval = false, r;
- game_state *state = sstate->state;
- grid *g;
- grid_dot *d;
- int i;
- if (old_type == new_type)
- return false;
- g = state->game_grid;
- d = g->dots[dot];
- for (i = 0; i < d->order; i++) {
- int line_index = d->edges[i]->index;
- if (state->lines[line_index] == old_type) {
- r = solver_set_line(sstate, line_index, new_type);
- assert(r);
- retval = true;
- }
- }
- return retval;
- }
- /* Set all lines bordering a face of type old_type to type new_type */
- static bool face_setall(solver_state *sstate, int face,
- char old_type, char new_type)
- {
- bool retval = false, r;
- game_state *state = sstate->state;
- grid *g;
- grid_face *f;
- int i;
- if (old_type == new_type)
- return false;
- g = state->game_grid;
- f = g->faces[face];
- for (i = 0; i < f->order; i++) {
- int line_index = f->edges[i]->index;
- if (state->lines[line_index] == old_type) {
- r = solver_set_line(sstate, line_index, new_type);
- assert(r);
- retval = true;
- }
- }
- return retval;
- }
- /* ----------------------------------------------------------------------
- * Loop generation and clue removal
- */
- static void add_full_clues(game_state *state, random_state *rs)
- {
- signed char *clues = state->clues;
- grid *g = state->game_grid;
- char *board = snewn(g->num_faces, char);
- int i;
- generate_loop(g, board, rs, NULL, NULL);
- /* Fill out all the clues by initialising to 0, then iterating over
- * all edges and incrementing each clue as we find edges that border
- * between BLACK/WHITE faces. While we're at it, we verify that the
- * algorithm does work, and there aren't any GREY faces still there. */
- memset(clues, 0, g->num_faces);
- for (i = 0; i < g->num_edges; i++) {
- grid_edge *e = g->edges[i];
- grid_face *f1 = e->face1;
- grid_face *f2 = e->face2;
- enum face_colour c1 = FACE_COLOUR(f1);
- enum face_colour c2 = FACE_COLOUR(f2);
- assert(c1 != FACE_GREY);
- assert(c2 != FACE_GREY);
- if (c1 != c2) {
- if (f1) clues[f1->index]++;
- if (f2) clues[f2->index]++;
- }
- }
- sfree(board);
- }
- static bool game_has_unique_soln(const game_state *state, int diff)
- {
- bool ret;
- solver_state *sstate_new;
- solver_state *sstate = new_solver_state(state, diff);
- sstate_new = solve_game_rec(sstate);
- assert(sstate_new->solver_status != SOLVER_MISTAKE);
- ret = (sstate_new->solver_status == SOLVER_SOLVED);
- free_solver_state(sstate_new);
- free_solver_state(sstate);
- return ret;
- }
- /* Remove clues one at a time at random. */
- static game_state *remove_clues(game_state *state, random_state *rs,
- int diff)
- {
- int *face_list;
- int num_faces = state->game_grid->num_faces;
- game_state *ret = dup_game(state), *saved_ret;
- int n;
- /* We need to remove some clues. We'll do this by forming a list of all
- * available clues, shuffling it, then going along one at a
- * time clearing each clue in turn for which doing so doesn't render the
- * board unsolvable. */
- face_list = snewn(num_faces, int);
- for (n = 0; n < num_faces; ++n) {
- face_list[n] = n;
- }
- shuffle(face_list, num_faces, sizeof(int), rs);
- for (n = 0; n < num_faces; ++n) {
- saved_ret = dup_game(ret);
- ret->clues[face_list[n]] = -1;
- if (game_has_unique_soln(ret, diff)) {
- free_game(saved_ret);
- } else {
- free_game(ret);
- ret = saved_ret;
- }
- }
- sfree(face_list);
- return ret;
- }
- static char *new_game_desc(const game_params *params, random_state *rs,
- char **aux, bool interactive)
- {
- /* solution and description both use run-length encoding in obvious ways */
- char *retval, *game_desc, *grid_desc;
- grid *g;
- game_state *state = snew(game_state);
- game_state *state_new;
- grid_desc = grid_new_desc(grid_types[params->type], params->w, params->h, rs);
- state->game_grid = g = loopy_generate_grid(params, grid_desc);
- state->clues = snewn(g->num_faces, signed char);
- state->lines = snewn(g->num_edges, char);
- state->line_errors = snewn(g->num_edges, bool);
- state->exactly_one_loop = false;
- state->grid_type = params->type;
- newboard_please:
- memset(state->lines, LINE_UNKNOWN, g->num_edges);
- memset(state->line_errors, 0, g->num_edges * sizeof(bool));
- state->solved = false;
- state->cheated = false;
- /* Get a new random solvable board with all its clues filled in. Yes, this
- * can loop for ever if the params are suitably unfavourable, but
- * preventing games smaller than 4x4 seems to stop this happening */
- do {
- add_full_clues(state, rs);
- } while (!game_has_unique_soln(state, params->diff));
- state_new = remove_clues(state, rs, params->diff);
- free_game(state);
- state = state_new;
- if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
- #ifdef SHOW_WORKING
- fprintf(stderr, "Rejecting board, it is too easy\n");
- #endif
- goto newboard_please;
- }
- game_desc = state_to_text(state);
- free_game(state);
- if (grid_desc) {
- retval = snewn(strlen(grid_desc) + 1 + strlen(game_desc) + 1, char);
- sprintf(retval, "%s%c%s", grid_desc, (int)GRID_DESC_SEP, game_desc);
- sfree(grid_desc);
- sfree(game_desc);
- } else {
- retval = game_desc;
- }
- assert(!validate_desc(params, retval));
- return retval;
- }
- static game_state *new_game(midend *me, const game_params *params,
- const char *desc)
- {
- int i;
- game_state *state = snew(game_state);
- int empties_to_make = 0;
- int n,n2;
- const char *dp;
- char *grid_desc;
- grid *g;
- int num_faces, num_edges;
- grid_desc = extract_grid_desc(&desc);
- state->game_grid = g = loopy_generate_grid(params, grid_desc);
- if (grid_desc) sfree(grid_desc);
- dp = desc;
- num_faces = g->num_faces;
- num_edges = g->num_edges;
- state->clues = snewn(num_faces, signed char);
- state->lines = snewn(num_edges, char);
- state->line_errors = snewn(num_edges, bool);
- state->exactly_one_loop = false;
- state->solved = state->cheated = false;
- state->grid_type = params->type;
- for (i = 0; i < num_faces; i++) {
- if (empties_to_make) {
- empties_to_make--;
- state->clues[i] = -1;
- continue;
- }
- assert(*dp);
- n = *dp - '0';
- n2 = *dp - 'A' + 10;
- if (n >= 0 && n < 10) {
- state->clues[i] = n;
- } else if (n2 >= 10 && n2 < 36) {
- state->clues[i] = n2;
- } else {
- n = *dp - 'a' + 1;
- assert(n > 0);
- state->clues[i] = -1;
- empties_to_make = n - 1;
- }
- ++dp;
- }
- memset(state->lines, LINE_UNKNOWN, num_edges);
- memset(state->line_errors, 0, num_edges * sizeof(bool));
- return state;
- }
- /* Calculates the line_errors data, and checks if the current state is a
- * solution */
- static bool check_completion(game_state *state)
- {
- grid *g = state->game_grid;
- int i;
- bool ret;
- DSF *dsf;
- int *component_state;
- int nsilly, nloop, npath, largest_comp, largest_size, total_pathsize;
- enum { COMP_NONE, COMP_LOOP, COMP_PATH, COMP_SILLY, COMP_EMPTY };
- memset(state->line_errors, 0, g->num_edges * sizeof(bool));
- /*
- * Find loops in the grid, and determine whether the puzzle is
- * solved.
- *
- * Loopy is a bit more complicated than most puzzles that care
- * about loop detection. In most of them, loops are simply
- * _forbidden_; so the obviously right way to do
- * error-highlighting during play is to light up a graph edge red
- * iff it is part of a loop, which is exactly what the centralised
- * findloop.c makes easy.
- *
- * But Loopy is unusual in that you're _supposed_ to be making a
- * loop - and yet _some_ loops are not the right loop. So we need
- * to be more discriminating, by identifying loops one by one and
- * then thinking about which ones to highlight, and so findloop.c
- * isn't quite the right tool for the job in this case.
- *
- * Worse still, consider situations in which the grid contains a
- * loop and also some non-loop edges: there are some cases like
- * this in which the user's intuitive expectation would be to
- * highlight the loop (if you're only about half way through the
- * puzzle and have accidentally made a little loop in some corner
- * of the grid), and others in which they'd be more likely to
- * expect you to highlight the non-loop edges (if you've just
- * closed off a whole loop that you thought was the entire
- * solution, but forgot some disconnected edges in a corner
- * somewhere). So while it's easy enough to check whether the
- * solution is _right_, highlighting the wrong parts is a tricky
- * problem for this puzzle!
- *
- * I'd quite like, in some situations, to identify the largest
- * loop among the player's YES edges, and then light up everything
- * other than that. But finding the longest cycle in a graph is an
- * NP-complete problem (because, in particular, it must return a
- * Hamilton cycle if one exists).
- *
- * However, I think we can make the problem tractable by
- * exercising the Puzzles principle that it isn't absolutely
- * necessary to highlight _all_ errors: the key point is that by
- * the time the user has filled in the whole grid, they should
- * either have seen a completion flash, or have _some_ error
- * highlight showing them why the solution isn't right. So in
- * principle it would be *just about* good enough to highlight
- * just one error in the whole grid, if there was really no better
- * way. But we'd like to highlight as many errors as possible.
- *
- * In this case, I think the simple approach is to make use of the
- * fact that no vertex may have degree > 2, and that's really
- * simple to detect. So the plan goes like this:
- *
- * - Form the dsf of connected components of the graph vertices.
- *
- * - Highlight an error at any vertex with degree > 2. (It so
- * happens that we do this by lighting up all the edges
- * incident to that vertex, but that's an output detail.)
- *
- * - Any component that contains such a vertex is now excluded
- * from further consideration, because it already has a
- * highlight.
- *
- * - The remaining components have no vertex with degree > 2, and
- * hence they all consist of either a simple loop, or a simple
- * path with two endpoints.
- *
- * - For these purposes, group together all the paths and imagine
- * them to be a single component (because in most normal
- * situations the player will gradually build up the solution
- * _not_ all in one connected segment, but as lots of separate
- * little path pieces that gradually connect to each other).
- *
- * - After doing that, if there is exactly one (sensible)
- * component - be it a collection of paths or a loop - then
- * highlight no further edge errors. (The former case is normal
- * during play, and the latter is a potentially solved puzzle.)
- *
- * - Otherwise, find the largest of the sensible components,
- * leave that one unhighlighted, and light the rest up in red.
- */
- dsf = dsf_new(g->num_dots);
- /* Build the dsf. */
- for (i = 0; i < g->num_edges; i++) {
- if (state->lines[i] == LINE_YES) {
- grid_edge *e = g->edges[i];
- int d1 = e->dot1->index, d2 = e->dot2->index;
- dsf_merge(dsf, d1, d2);
- }
- }
- /* Initialise a state variable for each connected component. */
- component_state = snewn(g->num_dots, int);
- for (i = 0; i < g->num_dots; i++) {
- if (dsf_canonify(dsf, i) == i)
- component_state[i] = COMP_LOOP;
- else
- component_state[i] = COMP_NONE;
- }
- /* Check for dots with degree > 3. Here we also spot dots of
- * degree 1 in which the user has marked all the non-edges as
- * LINE_NO, because those are also clear vertex-level errors, so
- * we give them the same treatment of excluding their connected
- * component from the subsequent loop analysis. */
- for (i = 0; i < g->num_dots; i++) {
- int comp = dsf_canonify(dsf, i);
- int yes = dot_order(state, i, LINE_YES);
- int unknown = dot_order(state, i, LINE_UNKNOWN);
- if ((yes == 1 && unknown == 0) || (yes >= 3)) {
- /* violation, so mark all YES edges as errors */
- grid_dot *d = g->dots[i];
- int j;
- for (j = 0; j < d->order; j++) {
- int e = d->edges[j]->index;
- if (state->lines[e] == LINE_YES)
- state->line_errors[e] = true;
- }
- /* And mark this component as not worthy of further
- * consideration. */
- component_state[comp] = COMP_SILLY;
- } else if (yes == 0) {
- /* A completely isolated dot must also be excluded it from
- * the subsequent loop highlighting pass, but we tag it
- * with a different enum value to avoid it counting
- * towards the components that inhibit returning a win
- * status. */
- component_state[comp] = COMP_EMPTY;
- } else if (yes == 1) {
- /* A dot with degree 1 that didn't fall into the 'clearly
- * erroneous' case above indicates that this connected
- * component will be a path rather than a loop - unless
- * something worse elsewhere in the component has
- * classified it as silly. */
- if (component_state[comp] != COMP_SILLY)
- component_state[comp] = COMP_PATH;
- }
- }
- /* Count up the components. Also, find the largest sensible
- * component. (Tie-breaking condition is derived from the order of
- * vertices in the grid data structure, which is fairly arbitrary
- * but at least stays stable throughout the game.) */
- nsilly = nloop = npath = 0;
- total_pathsize = 0;
- largest_comp = largest_size = -1;
- for (i = 0; i < g->num_dots; i++) {
- if (component_state[i] == COMP_SILLY) {
- nsilly++;
- } else if (component_state[i] == COMP_PATH) {
- total_pathsize += dsf_size(dsf, i);
- npath = 1;
- } else if (component_state[i] == COMP_LOOP) {
- int this_size;
- nloop++;
- if ((this_size = dsf_size(dsf, i)) > largest_size) {
- largest_comp = i;
- largest_size = this_size;
- }
- }
- }
- if (largest_size < total_pathsize) {
- largest_comp = -1; /* means the paths */
- largest_size = total_pathsize;
- }
- if (nloop > 0 && nloop + npath > 1) {
- /*
- * If there are at least two sensible components including at
- * least one loop, highlight all edges in every sensible
- * component that is not the largest one.
- */
- for (i = 0; i < g->num_edges; i++) {
- if (state->lines[i] == LINE_YES) {
- grid_edge *e = g->edges[i];
- int d1 = e->dot1->index; /* either endpoint is good enough */
- int comp = dsf_canonify(dsf, d1);
- if ((component_state[comp] == COMP_PATH &&
- -1 != largest_comp) ||
- (component_state[comp] == COMP_LOOP &&
- comp != largest_comp))
- state->line_errors[i] = true;
- }
- }
- }
- if (nloop == 1 && npath == 0 && nsilly == 0) {
- /*
- * If there is exactly one component and it is a loop, then
- * the puzzle is potentially complete, so check the clues.
- */
- ret = true;
- for (i = 0; i < g->num_faces; i++) {
- int c = state->clues[i];
- if (c >= 0 && face_order(state, i, LINE_YES) != c) {
- ret = false;
- break;
- }
- }
- /*
- * Also, whether or not the puzzle is actually complete, set
- * the flag that says this game_state has exactly one loop and
- * nothing else, which will be used to vary the semantics of
- * clue highlighting at display time.
- */
- state->exactly_one_loop = true;
- } else {
- ret = false;
- state->exactly_one_loop = false;
- }
- sfree(component_state);
- dsf_free(dsf);
- return ret;
- }
- /* ----------------------------------------------------------------------
- * Solver logic
- *
- * Our solver modes operate as follows. Each mode also uses the modes above it.
- *
- * Easy Mode
- * Just implement the rules of the game.
- *
- * Normal and Tricky Modes
- * For each (adjacent) pair of lines through each dot we store a bit for
- * whether at least one of them is on and whether at most one is on. (If we
- * know both or neither is on that's already stored more directly.)
- *
- * Advanced Mode
- * Use flip dsf data structure to make equivalence classes of lines that are
- * known identical to or opposite to one another.
- */
- /* DLines:
- * For general grids, we consider "dlines" to be pairs of lines joined
- * at a dot. The lines must be adjacent around the dot, so we can think of
- * a dline as being a dot+face combination. Or, a dot+edge combination where
- * the second edge is taken to be the next clockwise edge from the dot.
- * Original loopy code didn't have this extra restriction of the lines being
- * adjacent. From my tests with square grids, this extra restriction seems to
- * take little, if anything, away from the quality of the puzzles.
- * A dline can be uniquely identified by an edge/dot combination, given that
- * a dline-pair always goes clockwise around its common dot. The edge/dot
- * combination can be represented by an edge/bool combination - if bool is
- * true, use edge->dot1 else use edge->dot2. So the total number of dlines is
- * exactly twice the number of edges in the grid - although the dlines
- * spanning the infinite face are not all that useful to the solver.
- * Note that, by convention, a dline goes clockwise around its common dot,
- * which means the dline goes anti-clockwise around its common face.
- */
- /* Helper functions for obtaining an index into an array of dlines, given
- * various information. We assume the grid layout conventions about how
- * the various lists are interleaved - see grid_make_consistent() for
- * details. */
- /* i points to the first edge of the dline pair, reading clockwise around
- * the dot. */
- static int dline_index_from_dot(grid *g, grid_dot *d, int i)
- {
- grid_edge *e = d->edges[i];
- int ret;
- #ifdef DEBUG_DLINES
- grid_edge *e2;
- int i2 = i+1;
- if (i2 == d->order) i2 = 0;
- e2 = d->edges[i2];
- #endif
- ret = 2 * (e->index) + ((e->dot1 == d) ? 1 : 0);
- #ifdef DEBUG_DLINES
- printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
- (int)(d->index), i, (int)(e->index), (int)(e2 ->index), ret);
- #endif
- return ret;
- }
- /* i points to the second edge of the dline pair, reading clockwise around
- * the face. That is, the edges of the dline, starting at edge{i}, read
- * anti-clockwise around the face. By layout conventions, the common dot
- * of the dline will be f->dots[i] */
- static int dline_index_from_face(grid *g, grid_face *f, int i)
- {
- grid_edge *e = f->edges[i];
- grid_dot *d = f->dots[i];
- int ret;
- #ifdef DEBUG_DLINES
- grid_edge *e2;
- int i2 = i - 1;
- if (i2 < 0) i2 += f->order;
- e2 = f->edges[i2];
- #endif
- ret = 2 * (e->index) + ((e->dot1 == d) ? 1 : 0);
- #ifdef DEBUG_DLINES
- printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
- (int)(f->index), i, (int)(e->index), (int)(e2->index), ret);
- #endif
- return ret;
- }
- static bool is_atleastone(const char *dline_array, int index)
- {
- return BIT_SET(dline_array[index], 0);
- }
- static bool set_atleastone(char *dline_array, int index)
- {
- return SET_BIT(dline_array[index], 0);
- }
- static bool is_atmostone(const char *dline_array, int index)
- {
- return BIT_SET(dline_array[index], 1);
- }
- static bool set_atmostone(char *dline_array, int index)
- {
- return SET_BIT(dline_array[index], 1);
- }
- static void array_setall(char *array, char from, char to, int len)
- {
- char *p = array, *p_old = p;
- int len_remaining = len;
- while ((p = memchr(p, from, len_remaining))) {
- *p = to;
- len_remaining -= p - p_old;
- p_old = p;
- }
- }
- /* Helper, called when doing dline dot deductions, in the case where we
- * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
- * them (because of dline atmostone/atleastone).
- * On entry, edge points to the first of these two UNKNOWNs. This function
- * will find the opposite UNKNOWNS (if they are adjacent to one another)
- * and set their corresponding dline to atleastone. (Setting atmostone
- * already happens in earlier dline deductions) */
- static bool dline_set_opp_atleastone(solver_state *sstate,
- grid_dot *d, int edge)
- {
- game_state *state = sstate->state;
- grid *g = state->game_grid;
- int N = d->order;
- int opp, opp2;
- for (opp = 0; opp < N; opp++) {
- int opp_dline_index;
- if (opp == edge || opp == edge+1 || opp == edge-1)
- continue;
- if (opp == 0 && edge == N-1)
- continue;
- if (opp == N-1 && edge == 0)
- continue;
- opp2 = opp + 1;
- if (opp2 == N) opp2 = 0;
- /* Check if opp, opp2 point to LINE_UNKNOWNs */
- if (state->lines[d->edges[opp]->index] != LINE_UNKNOWN)
- continue;
- if (state->lines[d->edges[opp2]->index] != LINE_UNKNOWN)
- continue;
- /* Found opposite UNKNOWNS and they're next to each other */
- opp_dline_index = dline_index_from_dot(g, d, opp);
- return set_atleastone(sstate->dlines, opp_dline_index);
- }
- return false;
- }
- /* Set pairs of lines around this face which are known to be identical, to
- * the given line_state */
- static bool face_setall_identical(solver_state *sstate, int face_index,
- enum line_state line_new)
- {
- /* can[dir] contains the canonical line associated with the line in
- * direction dir from the square in question. Similarly inv[dir] is
- * whether or not the line in question is inverse to its canonical
- * element. */
- bool retval = false;
- game_state *state = sstate->state;
- grid *g = state->game_grid;
- grid_face *f = g->faces[face_index];
- int N = f->order;
- int i, j;
- int can1, can2;
- bool inv1, inv2;
- for (i = 0; i < N; i++) {
- int line1_index = f->edges[i]->index;
- if (state->lines[line1_index] != LINE_UNKNOWN)
- continue;
- for (j = i + 1; j < N; j++) {
- int line2_index = f->edges[j]->index;
- if (state->lines[line2_index] != LINE_UNKNOWN)
- continue;
- /* Found two UNKNOWNS */
- can1 = dsf_canonify_flip(sstate->linedsf, line1_index, &inv1);
- can2 = dsf_canonify_flip(sstate->linedsf, line2_index, &inv2);
- if (can1 == can2 && inv1 == inv2) {
- solver_set_line(sstate, line1_index, line_new);
- solver_set_line(sstate, line2_index, line_new);
- }
- }
- }
- return retval;
- }
- /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
- * return the edge indices into e. */
- static void find_unknowns(game_state *state,
- grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
- int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
- int *e /* Returned edge indices */)
- {
- int c = 0;
- while (c < expected_count) {
- int line_index = (*edge_list)->index;
- if (state->lines[line_index] == LINE_UNKNOWN) {
- e[c] = line_index;
- c++;
- }
- ++edge_list;
- }
- }
- /* If we have a list of edges, and we know whether the number of YESs should
- * be odd or even, and there are only a few UNKNOWNs, we can do some simple
- * linedsf deductions. This can be used for both face and dot deductions.
- * Returns the difficulty level of the next solver that should be used,
- * or DIFF_MAX if no progress was made. */
- static int parity_deductions(solver_state *sstate,
- grid_edge **edge_list, /* Edge list (from a face or a dot) */
- int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
- int unknown_count)
- {
- game_state *state = sstate->state;
- int diff = DIFF_MAX;
- DSF *linedsf = sstate->linedsf;
- if (unknown_count == 2) {
- /* Lines are known alike/opposite, depending on inv. */
- int e[2];
- find_unknowns(state, edge_list, 2, e);
- if (merge_lines(sstate, e[0], e[1], total_parity))
- diff = min(diff, DIFF_HARD);
- } else if (unknown_count == 3) {
- int e[3];
- int can[3]; /* canonical edges */
- bool inv[3]; /* whether can[x] is inverse to e[x] */
- find_unknowns(state, edge_list, 3, e);
- can[0] = dsf_canonify_flip(linedsf, e[0], inv);
- can[1] = dsf_canonify_flip(linedsf, e[1], inv+1);
- can[2] = dsf_canonify_flip(linedsf, e[2], inv+2);
- if (can[0] == can[1]) {
- if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
- LINE_YES : LINE_NO))
- diff = min(diff, DIFF_EASY);
- }
- if (can[0] == can[2]) {
- if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
- LINE_YES : LINE_NO))
- diff = min(diff, DIFF_EASY);
- }
- if (can[1] == can[2]) {
- if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
- LINE_YES : LINE_NO))
- diff = min(diff, DIFF_EASY);
- }
- } else if (unknown_count == 4) {
- int e[4];
- int can[4]; /* canonical edges */
- bool inv[4]; /* whether can[x] is inverse to e[x] */
- find_unknowns(state, edge_list, 4, e);
- can[0] = dsf_canonify_flip(linedsf, e[0], inv);
- can[1] = dsf_canonify_flip(linedsf, e[1], inv+1);
- can[2] = dsf_canonify_flip(linedsf, e[2], inv+2);
- can[3] = dsf_canonify_flip(linedsf, e[3], inv+3);
- if (can[0] == can[1]) {
- if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
- diff = min(diff, DIFF_HARD);
- } else if (can[0] == can[2]) {
- if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
- diff = min(diff, DIFF_HARD);
- } else if (can[0] == can[3]) {
- if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
- diff = min(diff, DIFF_HARD);
- } else if (can[1] == can[2]) {
- if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
- diff = min(diff, DIFF_HARD);
- } else if (can[1] == can[3]) {
- if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
- diff = min(diff, DIFF_HARD);
- } else if (can[2] == can[3]) {
- if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
- diff = min(diff, DIFF_HARD);
- }
- }
- return diff;
- }
- /*
- * These are the main solver functions.
- *
- * Their return values are diff values corresponding to the lowest mode solver
- * that would notice the work that they have done. For example if the normal
- * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
- * easy mode solver might be able to make progress using that. It doesn't make
- * sense for one of them to return a diff value higher than that of the
- * function itself.
- *
- * Each function returns the lowest value it can, as early as possible, in
- * order to try and pass as much work as possible back to the lower level
- * solvers which progress more quickly.
- */
- /* PROPOSED NEW DESIGN:
- * We have a work queue consisting of 'events' notifying us that something has
- * happened that a particular solver mode might be interested in. For example
- * the hard mode solver might do something that helps the normal mode solver at
- * dot [x,y] in which case it will enqueue an event recording this fact. Then
- * we pull events off the work queue, and hand each in turn to the solver that
- * is interested in them. If a solver reports that it failed we pass the same
- * event on to progressively more advanced solvers and the loop detector. Once
- * we've exhausted an event, or it has helped us progress, we drop it and
- * continue to the next one. The events are sorted first in order of solver
- * complexity (easy first) then order of insertion (oldest first).
- * Once we run out of events we loop over each permitted solver in turn
- * (easiest first) until either a deduction is made (and an event therefore
- * emerges) or no further deductions can be made (in which case we've failed).
- *
- * QUESTIONS:
- * * How do we 'loop over' a solver when both dots and squares are concerned.
- * Answer: first all squares then all dots.
- */
- static int trivial_deductions(solver_state *sstate)
- {
- int i, current_yes, current_no;
- game_state *state = sstate->state;
- grid *g = state->game_grid;
- int diff = DIFF_MAX;
- /* Per-face deductions */
- for (i = 0; i < g->num_faces; i++) {
- grid_face *f = g->faces[i];
- if (sstate->face_solved[i])
- continue;
- current_yes = sstate->face_yes_count[i];
- current_no = sstate->face_no_count[i];
- if (current_yes + current_no == f->order) {
- sstate->face_solved[i] = true;
- continue;
- }
- if (state->clues[i] < 0)
- continue;
- /*
- * This code checks whether the numeric clue on a face is so
- * large as to permit all its remaining LINE_UNKNOWNs to be
- * filled in as LINE_YES, or alternatively so small as to
- * permit them all to be filled in as LINE_NO.
- */
- if (state->clues[i] < current_yes) {
- sstate->solver_status = SOLVER_MISTAKE;
- return DIFF_EASY;
- }
- if (state->clues[i] == current_yes) {
- if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
- diff = min(diff, DIFF_EASY);
- sstate->face_solved[i] = true;
- continue;
- }
- if (f->order - state->clues[i] < current_no) {
- sstate->solver_status = SOLVER_MISTAKE;
- return DIFF_EASY;
- }
- if (f->order - state->clues[i] == current_no) {
- if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
- diff = min(diff, DIFF_EASY);
- sstate->face_solved[i] = true;
- continue;
- }
- if (f->order - state->clues[i] == current_no + 1 &&
- f->order - current_yes - current_no > 2) {
- /*
- * One small refinement to the above: we also look for any
- * adjacent pair of LINE_UNKNOWNs around the face with
- * some LINE_YES incident on it from elsewhere. If we find
- * one, then we know that pair of LINE_UNKNOWNs can't
- * _both_ be LINE_YES, and hence that pushes us one line
- * closer to being able to determine all the rest.
- */
- int j, k, e1, e2, e, d;
- for (j = 0; j < f->order; j++) {
- e1 = f->edges[j]->index;
- e2 = f->edges[j+1 < f->order ? j+1 : 0]->index;
- if (g->edges[e1]->dot1 == g->edges[e2]->dot1 ||
- g->edges[e1]->dot1 == g->edges[e2]->dot2) {
- d = g->edges[e1]->dot1->index;
- } else {
- assert(g->edges[e1]->dot2 == g->edges[e2]->dot1 ||
- g->edges[e1]->dot2 == g->edges[e2]->dot2);
- d = g->edges[e1]->dot2->index;
- }
- if (state->lines[e1] == LINE_UNKNOWN &&
- state->lines[e2] == LINE_UNKNOWN) {
- for (k = 0; k < g->dots[d]->order; k++) {
- int e = g->dots[d]->edges[k]->index;
- if (state->lines[e] == LINE_YES)
- goto found; /* multi-level break */
- }
- }
- }
- continue;
- found:
- /*
- * If we get here, we've found such a pair of edges, and
- * they're e1 and e2.
- */
- for (j = 0; j < f->order; j++) {
- e = f->edges[j]->index;
- if (state->lines[e] == LINE_UNKNOWN && e != e1 && e != e2) {
- bool r = solver_set_line(sstate, e, LINE_YES);
- assert(r);
- diff = min(diff, DIFF_EASY);
- }
- }
- }
- }
- check_caches(sstate);
- /* Per-dot deductions */
- for (i = 0; i < g->num_dots; i++) {
- grid_dot *d = g->dots[i];
- int yes, no, unknown;
- if (sstate->dot_solved[i])
- continue;
- yes = sstate->dot_yes_count[i];
- no = sstate->dot_no_count[i];
- unknown = d->order - yes - no;
- if (yes == 0) {
- if (unknown == 0) {
- sstate->dot_solved[i] = true;
- } else if (unknown == 1) {
- dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
- diff = min(diff, DIFF_EASY);
- sstate->dot_solved[i] = true;
- }
- } else if (yes == 1) {
- if (unknown == 0) {
- sstate->solver_status = SOLVER_MISTAKE;
- return DIFF_EASY;
- } else if (unknown == 1) {
- dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
- diff = min(diff, DIFF_EASY);
- }
- } else if (yes == 2) {
- if (unknown > 0) {
- dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
- diff = min(diff, DIFF_EASY);
- }
- sstate->dot_solved[i] = true;
- } else {
- sstate->solver_status = SOLVER_MISTAKE;
- return DIFF_EASY;
- }
- }
- check_caches(sstate);
- return diff;
- }
- static int dline_deductions(solver_state *sstate)
- {
- game_state *state = sstate->state;
- grid *g = state->game_grid;
- char *dlines = sstate->dlines;
- int i;
- int diff = DIFF_MAX;
- /* ------ Face deductions ------ */
- /* Given a set of dline atmostone/atleastone constraints, need to figure
- * out if we can deduce any further info. For more general faces than
- * squares, this turns out to be a tricky problem.
- * The approach taken here is to define (per face) NxN matrices:
- * "maxs" and "mins".
- * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
- * for the possible number of edges that are YES between positions j and k
- * going clockwise around the face. Can think of j and k as marking dots
- * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
- * edge1 joins dot1 to dot2 etc).
- * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
- * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
- * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
- * the dline atmostone/atleastone status for edges j and j+1.
- *
- * Then we calculate the remaining entries recursively. We definitely
- * know that
- * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
- * This is because any valid placement of YESs between j and k must give
- * a valid placement between j and u, and also between u and k.
- * I believe it's sufficient to use just the two values of u:
- * j+1 and j+2. Seems to work well in practice - the bounds we compute
- * are rigorous, even if they might not be best-possible.
- *
- * Once we have maxs and mins calculated, we can make inferences about
- * each dline{j,j+1} by looking at the possible complementary edge-counts
- * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
- * As well as dlines, we can make similar inferences about single edges.
- * For example, consider a pentagon with clue 3, and we know at most one
- * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
- * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
- * that final edge would have to be YES to make the count up to 3.
- */
- /* Much quicker to allocate arrays on the stack than the heap, so
- * define the largest possible face size, and base our array allocations
- * on that. We check this with an assertion, in case someone decides to
- * make a grid which has larger faces than this. Note, this algorithm
- * could get quite expensive if there are many large faces. */
- #define MAX_FACE_SIZE 14
- for (i = 0; i < g->num_faces; i++) {
- int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
- int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
- grid_face *f = g->faces[i];
- int N = f->order;
- int j,m;
- int clue = state->clues[i];
- assert(N <= MAX_FACE_SIZE);
- if (sstate->face_solved[i])
- continue;
- if (clue < 0) continue;
- /* Calculate the (j,j+1) entries */
- for (j = 0; j < N; j++) {
- int edge_index = f->edges[j]->index;
- int dline_index;
- enum line_state line1 = state->lines[edge_index];
- enum line_state line2;
- int tmp;
- int k = j + 1;
- if (k >= N) k = 0;
- maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
- mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
- /* Calculate the (j,j+2) entries */
- dline_index = dline_index_from_face(g, f, k);
- edge_index = f->edges[k]->index;
- line2 = state->lines[edge_index];
- k++;
- if (k >= N) k = 0;
- /* max */
- tmp = 2;
- if (line1 == LINE_NO) tmp--;
- if (line2 == LINE_NO) tmp--;
- if (tmp == 2 && is_atmostone(dlines, dline_index))
- tmp = 1;
- maxs[j][k] = tmp;
- /* min */
- tmp = 0;
- if (line1 == LINE_YES) tmp++;
- if (line2 == LINE_YES) tmp++;
- if (tmp == 0 && is_atleastone(dlines, dline_index))
- tmp = 1;
- mins[j][k] = tmp;
- }
- /* Calculate the (j,j+m) entries for m between 3 and N-1 */
- for (m = 3; m < N; m++) {
- for (j = 0; j < N; j++) {
- int k = j + m;
- int u = j + 1;
- int v = j + 2;
- int tmp;
- if (k >= N) k -= N;
- if (u >= N) u -= N;
- if (v >= N) v -= N;
- maxs[j][k] = maxs[j][u] + maxs[u][k];
- mins[j][k] = mins[j][u] + mins[u][k];
- tmp = maxs[j][v] + maxs[v][k];
- maxs[j][k] = min(maxs[j][k], tmp);
- tmp = mins[j][v] + mins[v][k];
- mins[j][k] = max(mins[j][k], tmp);
- }
- }
- /* See if we can make any deductions */
- for (j = 0; j < N; j++) {
- int k;
- grid_edge *e = f->edges[j];
- int line_index = e->index;
- int dline_index;
- if (state->lines[line_index] != LINE_UNKNOWN)
- continue;
- k = j + 1;
- if (k >= N) k = 0;
- /* minimum YESs in the complement of this edge */
- if (mins[k][j] > clue) {
- sstate->solver_status = SOLVER_MISTAKE;
- return DIFF_EASY;
- }
- if (mins[k][j] == clue) {
- /* setting this edge to YES would make at least
- * (clue+1) edges - contradiction */
- solver_set_line(sstate, line_index, LINE_NO);
- diff = min(diff, DIFF_EASY);
- }
- if (maxs[k][j] < clue - 1) {
- sstate->solver_status = SOLVER_MISTAKE;
- return DIFF_EASY;
- }
- if (maxs[k][j] == clue - 1) {
- /* Only way to satisfy the clue is to set edge{j} as YES */
- solver_set_line(sstate, line_index, LINE_YES);
- diff = min(diff, DIFF_EASY);
- }
- /* More advanced deduction that allows propagation along diagonal
- * chains of faces connected by dots, for example, 3-2-...-2-3
- * in square grids. */
- if (sstate->diff >= DIFF_TRICKY) {
- /* Now see if we can make dline deduction for edges{j,j+1} */
- e = f->edges[k];
- if (state->lines[e->index] != LINE_UNKNOWN)
- /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
- * Dlines where one of the edges is known, are handled in the
- * dot-deductions */
- continue;
-
- dline_index = dline_index_from_face(g, f, k);
- k++;
- if (k >= N) k = 0;
-
- /* minimum YESs in the complement of this dline */
- if (mins[k][j] > clue - 2) {
- /* Adding 2 YESs would break the clue */
- if (set_atmostone(dlines, dline_index))
- diff = min(diff, DIFF_NORMAL);
- }
- /* maximum YESs in the complement of this dline */
- if (maxs[k][j] < clue) {
- /* Adding 2 NOs would mean not enough YESs */
- if (set_atleastone(dlines, dline_index))
- diff = min(diff, DIFF_NORMAL);
- }
- }
- }
- }
- if (diff < DIFF_NORMAL)
- return diff;
- /* ------ Dot deductions ------ */
- for (i = 0; i < g->num_dots; i++) {
- grid_dot *d = g->dots[i];
- int N = d->order;
- int yes, no, unknown;
- int j;
- if (sstate->dot_solved[i])
- continue;
- yes = sstate->dot_yes_count[i];
- no = sstate->dot_no_count[i];
- unknown = N - yes - no;
- for (j = 0; j < N; j++) {
- int k;
- int dline_index;
- int line1_index, line2_index;
- enum line_state line1, line2;
- k = j + 1;
- if (k >= N) k = 0;
- dline_index = dline_index_from_dot(g, d, j);
- line1_index = d->edges[j]->index;
- line2_index = d->edges[k] ->index;
- line1 = state->lines[line1_index];
- line2 = state->lines[line2_index];
- /* Infer dline state from line state */
- if (line1 == LINE_NO || line2 == LINE_NO) {
- if (set_atmostone(dlines, dline_index))
- diff = min(diff, DIFF_NORMAL);
- }
- if (line1 == LINE_YES || line2 == LINE_YES) {
- if (set_atleastone(dlines, dline_index))
- diff = min(diff, DIFF_NORMAL);
- }
- /* Infer line state from dline state */
- if (is_atmostone(dlines, dline_index)) {
- if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
- solver_set_line(sstate, line2_index, LINE_NO);
- diff = min(diff, DIFF_EASY);
- }
- if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
- solver_set_line(sstate, line1_index, LINE_NO);
- diff = min(diff, DIFF_EASY);
- }
- }
- if (is_atleastone(dlines, dline_index)) {
- if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
- solver_set_line(sstate, line2_index, LINE_YES);
- diff = min(diff, DIFF_EASY);
- }
- if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
- solver_set_line(sstate, line1_index, LINE_YES);
- diff = min(diff, DIFF_EASY);
- }
- }
- /* Deductions that depend on the numbers of lines.
- * Only bother if both lines are UNKNOWN, otherwise the
- * easy-mode solver (or deductions above) would have taken
- * care of it. */
- if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
- continue;
- if (yes == 0 && unknown == 2) {
- /* Both these unknowns must be identical. If we know
- * atmostone or atleastone, we can make progress. */
- if (is_atmostone(dlines, dline_index)) {
- solver_set_line(sstate, line1_index, LINE_NO);
- solver_set_line(sstate, line2_index, LINE_NO);
- diff = min(diff, DIFF_EASY);
- }
- if (is_atleastone(dlines, dline_index)) {
- solver_set_line(sstate, line1_index, LINE_YES);
- solver_set_line(sstate, line2_index, LINE_YES);
- diff = min(diff, DIFF_EASY);
- }
- }
- if (yes == 1) {
- if (set_atmostone(dlines, dline_index))
- diff = min(diff, DIFF_NORMAL);
- if (unknown == 2) {
- if (set_atleastone(dlines, dline_index))
- diff = min(diff, DIFF_NORMAL);
- }
- }
- /* More advanced deduction that allows propagation along diagonal
- * chains of faces connected by dots, for example: 3-2-...-2-3
- * in square grids. */
- if (sstate->diff >= DIFF_TRICKY) {
- /* If we have atleastone set for this dline, infer
- * atmostone for each "opposite" dline (that is, each
- * dline without edges in common with this one).
- * Again, this test is only worth doing if both these
- * lines are UNKNOWN. For if one of these lines were YES,
- * the (yes == 1) test above would kick in instead. */
- if (is_atleastone(dlines, dline_index)) {
- int opp;
- for (opp = 0; opp < N; opp++) {
- int opp_dline_index;
- if (opp == j || opp == j+1 || opp == j-1)
- continue;
- if (j == 0 && opp == N-1)
- continue;
- if (j == N-1 && opp == 0)
- continue;
- opp_dline_index = dline_index_from_dot(g, d, opp);
- if (set_atmostone(dlines, opp_dline_index))
- diff = min(diff, DIFF_NORMAL);
- }
- if (yes == 0 && is_atmostone(dlines, dline_index)) {
- /* This dline has *exactly* one YES and there are no
- * other YESs. This allows more deductions. */
- if (unknown == 3) {
- /* Third unknown must be YES */
- for (opp = 0; opp < N; opp++) {
- int opp_index;
- if (opp == j || opp == k)
- continue;
- opp_index = d->edges[opp]->index;
- if (state->lines[opp_index] == LINE_UNKNOWN) {
- solver_set_line(sstate, opp_index,
- LINE_YES);
- diff = min(diff, DIFF_EASY);
- }
- }
- } else if (unknown == 4) {
- /* Exactly one of opposite UNKNOWNS is YES. We've
- * already set atmostone, so set atleastone as
- * well.
- */
- if (dline_set_opp_atleastone(sstate, d, j))
- diff = min(diff, DIFF_NORMAL);
- }
- }
- }
- }
- }
- }
- return diff;
- }
- static int linedsf_deductions(solver_state *sstate)
- {
- game_state *state = sstate->state;
- grid *g = state->game_grid;
- char *dlines = sstate->dlines;
- int i;
- int diff = DIFF_MAX;
- int diff_tmp;
- /* ------ Face deductions ------ */
- /* A fully-general linedsf deduction seems overly complicated
- * (I suspect the problem is NP-complete, though in practice it might just
- * be doable because faces are limited in size).
- * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
- * known to be identical. If setting them both to YES (or NO) would break
- * the clue, set them to NO (or YES). */
- for (i = 0; i < g->num_faces; i++) {
- int N, yes, no, unknown;
- int clue;
- if (sstate->face_solved[i])
- continue;
- clue = state->clues[i];
- if (clue < 0)
- continue;
- N = g->faces[i]->order;
- yes = sstate->face_yes_count[i];
- if (yes + 1 == clue) {
- if (face_setall_identical(sstate, i, LINE_NO))
- diff = min(diff, DIFF_EASY);
- }
- no = sstate->face_no_count[i];
- if (no + 1 == N - clue) {
- if (face_setall_identical(sstate, i, LINE_YES))
- diff = min(diff, DIFF_EASY);
- }
- /* Reload YES count, it might have changed */
- yes = sstate->face_yes_count[i];
- unknown = N - no - yes;
- /* Deductions with small number of LINE_UNKNOWNs, based on overall
- * parity of lines. */
- diff_tmp = parity_deductions(sstate, g->faces[i]->edges,
- (clue - yes) % 2, unknown);
- diff = min(diff, diff_tmp);
- }
- /* ------ Dot deductions ------ */
- for (i = 0; i < g->num_dots; i++) {
- grid_dot *d = g->dots[i];
- int N = d->order;
- int j;
- int yes, no, unknown;
- /* Go through dlines, and do any dline<->linedsf deductions wherever
- * we find two UNKNOWNS. */
- for (j = 0; j < N; j++) {
- int dline_index = dline_index_from_dot(g, d, j);
- int line1_index;
- int line2_index;
- int can1, can2;
- bool inv1, inv2;
- int j2;
- line1_index = d->edges[j]->index;
- if (state->lines[line1_index] != LINE_UNKNOWN)
- continue;
- j2 = j + 1;
- if (j2 == N) j2 = 0;
- line2_index = d->edges[j2]->index;
- if (state->lines[line2_index] != LINE_UNKNOWN)
- continue;
- /* Infer dline flags from linedsf */
- can1 = dsf_canonify_flip(sstate->linedsf, line1_index, &inv1);
- can2 = dsf_canonify_flip(sstate->linedsf, line2_index, &inv2);
- if (can1 == can2 && inv1 != inv2) {
- /* These are opposites, so set dline atmostone/atleastone */
- if (set_atmostone(dlines, dline_index))
- diff = min(diff, DIFF_NORMAL);
- if (set_atleastone(dlines, dline_index))
- diff = min(diff, DIFF_NORMAL);
- continue;
- }
- /* Infer linedsf from dline flags */
- if (is_atmostone(dlines, dline_index)
- && is_atleastone(dlines, dline_index)) {
- if (merge_lines(sstate, line1_index, line2_index, true))
- diff = min(diff, DIFF_HARD);
- }
- }
- /* Deductions with small number of LINE_UNKNOWNs, based on overall
- * parity of lines. */
- yes = sstate->dot_yes_count[i];
- no = sstate->dot_no_count[i];
- unknown = N - yes - no;
- diff_tmp = parity_deductions(sstate, d->edges,
- yes % 2, unknown);
- diff = min(diff, diff_tmp);
- }
- /* ------ Edge dsf deductions ------ */
- /* If the state of a line is known, deduce the state of its canonical line
- * too, and vice versa. */
- for (i = 0; i < g->num_edges; i++) {
- int can;
- bool inv;
- enum line_state s;
- can = dsf_canonify_flip(sstate->linedsf, i, &inv);
- if (can == i)
- continue;
- s = sstate->state->lines[can];
- if (s != LINE_UNKNOWN) {
- if (solver_set_line(sstate, i, inv ? OPP(s) : s))
- diff = min(diff, DIFF_EASY);
- } else {
- s = sstate->state->lines[i];
- if (s != LINE_UNKNOWN) {
- if (solver_set_line(sstate, can, inv ? OPP(s) : s))
- diff = min(diff, DIFF_EASY);
- }
- }
- }
- return diff;
- }
- static int loop_deductions(solver_state *sstate)
- {
- int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
- game_state *state = sstate->state;
- grid *g = state->game_grid;
- int shortest_chainlen = g->num_dots;
- int dots_connected;
- bool progress = false;
- int i;
- /*
- * Go through the grid and update for all the new edges.
- * Since merge_dots() is idempotent, the simplest way to
- * do this is just to update for _all_ the edges.
- * Also, while we're here, we count the edges.
- */
- for (i = 0; i < g->num_edges; i++) {
- if (state->lines[i] == LINE_YES) {
- merge_dots(sstate, i);
- edgecount++;
- }
- }
- /*
- * Count the clues, count the satisfied clues, and count the
- * satisfied-minus-one clues.
- */
- for (i = 0; i < g->num_faces; i++) {
- int c = state->clues[i];
- if (c >= 0) {
- int o = sstate->face_yes_count[i];
- if (o == c)
- satclues++;
- else if (o == c-1)
- sm1clues++;
- clues++;
- }
- }
- for (i = 0; i < g->num_dots; ++i) {
- dots_connected =
- sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
- if (dots_connected > 1)
- shortest_chainlen = min(shortest_chainlen, dots_connected);
- }
- assert(sstate->solver_status == SOLVER_INCOMPLETE);
- if (satclues == clues && shortest_chainlen == edgecount) {
- sstate->solver_status = SOLVER_SOLVED;
- /* This discovery clearly counts as progress, even if we haven't
- * just added any lines or anything */
- progress = true;
- goto finished_loop_deductionsing;
- }
- /*
- * Now go through looking for LINE_UNKNOWN edges which
- * connect two dots that are already in the same
- * equivalence class. If we find one, test to see if the
- * loop it would create is a solution.
- */
- for (i = 0; i < g->num_edges; i++) {
- grid_edge *e = g->edges[i];
- int d1 = e->dot1->index;
- int d2 = e->dot2->index;
- int eqclass, val;
- if (state->lines[i] != LINE_UNKNOWN)
- continue;
- eqclass = dsf_canonify(sstate->dotdsf, d1);
- if (eqclass != dsf_canonify(sstate->dotdsf, d2))
- continue;
- val = LINE_NO; /* loop is bad until proven otherwise */
- /*
- * This edge would form a loop. Next
- * question: how long would the loop be?
- * Would it equal the total number of edges
- * (plus the one we'd be adding if we added
- * it)?
- */
- if (sstate->looplen[eqclass] == edgecount + 1) {
- int sm1_nearby;
- /*
- * This edge would form a loop which
- * took in all the edges in the entire
- * grid. So now we need to work out
- * whether it would be a valid solution
- * to the puzzle, which means we have to
- * check if it satisfies all the clues.
- * This means that every clue must be
- * either satisfied or satisfied-minus-
- * 1, and also that the number of
- * satisfied-minus-1 clues must be at
- * most two and they must lie on either
- * side of this edge.
- */
- sm1_nearby = 0;
- if (e->face1) {
- int f = e->face1->index;
- int c = state->clues[f];
- if (c >= 0 && sstate->face_yes_count[f] == c - 1)
- sm1_nearby++;
- }
- if (e->face2) {
- int f = e->face2->index;
- int c = state->clues[f];
- if (c >= 0 && sstate->face_yes_count[f] == c - 1)
- sm1_nearby++;
- }
- if (sm1clues == sm1_nearby &&
- sm1clues + satclues == clues) {
- val = LINE_YES; /* loop is good! */
- }
- }
- /*
- * Right. Now we know that adding this edge
- * would form a loop, and we know whether
- * that loop would be a viable solution or
- * not.
- *
- * If adding this edge produces a solution,
- * then we know we've found _a_ solution but
- * we don't know that it's _the_ solution -
- * if it were provably the solution then
- * we'd have deduced this edge some time ago
- * without the need to do loop detection. So
- * in this state we return SOLVER_AMBIGUOUS,
- * which has the effect that hitting Solve
- * on a user-provided puzzle will fill in a
- * solution but using the solver to
- * construct new puzzles won't consider this
- * a reasonable deduction for the user to
- * make.
- */
- progress = solver_set_line(sstate, i, val);
- assert(progress);
- if (val == LINE_YES) {
- sstate->solver_status = SOLVER_AMBIGUOUS;
- goto finished_loop_deductionsing;
- }
- }
- finished_loop_deductionsing:
- return progress ? DIFF_EASY : DIFF_MAX;
- }
- /* This will return a dynamically allocated solver_state containing the (more)
- * solved grid */
- static solver_state *solve_game_rec(const solver_state *sstate_start)
- {
- solver_state *sstate;
- /* Index of the solver we should call next. */
- int i = 0;
-
- /* As a speed-optimisation, we avoid re-running solvers that we know
- * won't make any progress. This happens when a high-difficulty
- * solver makes a deduction that can only help other high-difficulty
- * solvers.
- * For example: if a new 'dline' flag is set by dline_deductions, the
- * trivial_deductions solver cannot do anything with this information.
- * If we've already run the trivial_deductions solver (because it's
- * earlier in the list), there's no point running it again.
- *
- * Therefore: if a solver is earlier in the list than "threshold_index",
- * we don't bother running it if it's difficulty level is less than
- * "threshold_diff".
- */
- int threshold_diff = 0;
- int threshold_index = 0;
-
- sstate = dup_solver_state(sstate_start);
- check_caches(sstate);
- while (i < NUM_SOLVERS) {
- if (sstate->solver_status == SOLVER_MISTAKE)
- return sstate;
- if (sstate->solver_status == SOLVER_SOLVED ||
- sstate->solver_status == SOLVER_AMBIGUOUS) {
- /* solver finished */
- break;
- }
- if ((solver_diffs[i] >= threshold_diff || i >= threshold_index)
- && solver_diffs[i] <= sstate->diff) {
- /* current_solver is eligible, so use it */
- int next_diff = solver_fns[i](sstate);
- if (next_diff != DIFF_MAX) {
- /* solver made progress, so use new thresholds and
- * start again at top of list. */
- threshold_diff = next_diff;
- threshold_index = i;
- i = 0;
- continue;
- }
- }
- /* current_solver is ineligible, or failed to make progress, so
- * go to the next solver in the list */
- i++;
- }
- if (sstate->solver_status == SOLVER_SOLVED ||
- sstate->solver_status == SOLVER_AMBIGUOUS) {
- /* s/LINE_UNKNOWN/LINE_NO/g */
- array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
- sstate->state->game_grid->num_edges);
- return sstate;
- }
- return sstate;
- }
- static char *solve_game(const game_state *state, const game_state *currstate,
- const char *aux, const char **error)
- {
- char *soln = NULL;
- solver_state *sstate, *new_sstate;
- sstate = new_solver_state(state, DIFF_MAX);
- new_sstate = solve_game_rec(sstate);
- if (new_sstate->solver_status == SOLVER_SOLVED) {
- soln = encode_solve_move(new_sstate->state);
- } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
- soln = encode_solve_move(new_sstate->state);
- /**error = "Solver found ambiguous solutions"; */
- } else {
- soln = encode_solve_move(new_sstate->state);
- /**error = "Solver failed"; */
- }
- free_solver_state(new_sstate);
- free_solver_state(sstate);
- return soln;
- }
- /* ----------------------------------------------------------------------
- * Drawing and mouse-handling
- */
- static char *interpret_move(const game_state *state, game_ui *ui,
- const game_drawstate *ds,
- int x, int y, int button)
- {
- grid *g = state->game_grid;
- grid_edge *e;
- int i;
- char *movebuf;
- int movelen, movesize;
- char button_char = ' ';
- enum line_state old_state;
- button &= ~MOD_MASK;
- /* Convert mouse-click (x,y) to grid coordinates */
- x -= BORDER(ds->tilesize);
- y -= BORDER(ds->tilesize);
- x = x * g->tilesize / ds->tilesize;
- y = y * g->tilesize / ds->tilesize;
- x += g->lowest_x;
- y += g->lowest_y;
- e = grid_nearest_edge(g, x, y);
- if (e == NULL)
- return NULL;
- i = e->index;
- /* I think it's only possible to play this game with mouse clicks, sorry */
- /* Maybe will add mouse drag support some time */
- old_state = state->lines[i];
- switch (button) {
- case LEFT_BUTTON:
- switch (old_state) {
- case LINE_UNKNOWN:
- button_char = 'y';
- break;
- case LINE_YES:
- #ifdef STYLUS_BASED
- button_char = 'n';
- break;
- #endif
- case LINE_NO:
- button_char = 'u';
- break;
- }
- break;
- case MIDDLE_BUTTON:
- button_char = 'u';
- break;
- case RIGHT_BUTTON:
- switch (old_state) {
- case LINE_UNKNOWN:
- button_char = 'n';
- break;
- case LINE_NO:
- #ifdef STYLUS_BASED
- button_char = 'y';
- break;
- #endif
- case LINE_YES:
- button_char = 'u';
- break;
- }
- break;
- default:
- return NULL;
- }
- movelen = 0;
- movesize = 80;
- movebuf = snewn(movesize, char);
- movelen = sprintf(movebuf, "%d%c", i, (int)button_char);
- if (ui->autofollow != AF_OFF) {
- int dotid;
- for (dotid = 0; dotid < 2; dotid++) {
- grid_dot *dot = (dotid == 0 ? e->dot1 : e->dot2);
- grid_edge *e_this = e;
- while (1) {
- int j, n_found;
- grid_edge *e_next = NULL;
- for (j = n_found = 0; j < dot->order; j++) {
- grid_edge *e_candidate = dot->edges[j];
- int i_candidate = e_candidate->index;
- if (e_candidate != e_this &&
- (ui->autofollow == AF_FIXED ||
- state->lines[i] == LINE_NO ||
- state->lines[i_candidate] != LINE_NO)) {
- e_next = e_candidate;
- n_found++;
- }
- }
- if (n_found != 1 ||
- state->lines[e_next->index] != state->lines[i])
- break;
- if (e_next == e) {
- /*
- * Special case: we might have come all the way
- * round a loop and found our way back to the same
- * edge we started from. In that situation, we
- * must terminate not only this while loop, but
- * the 'for' outside it that was tracing in both
- * directions from the starting edge, because if
- * we let it trace in the second direction then
- * we'll only find ourself traversing the same
- * loop in the other order and generate an encoded
- * move string that mentions the same set of edges
- * twice.
- */
- goto autofollow_done;
- }
- dot = (e_next->dot1 != dot ? e_next->dot1 : e_next->dot2);
- if (movelen > movesize - 40) {
- movesize = movesize * 5 / 4 + 128;
- movebuf = sresize(movebuf, movesize, char);
- }
- e_this = e_next;
- movelen += sprintf(movebuf+movelen, "%d%c",
- (int)(e_this->index), button_char);
- }
- autofollow_done:;
- }
- }
- return sresize(movebuf, movelen+1, char);
- }
- static game_state *execute_move(const game_state *state, const char *move)
- {
- int i;
- game_state *newstate = dup_game(state);
- if (move[0] == 'S') {
- move++;
- newstate->cheated = true;
- }
- while (*move) {
- i = atoi(move);
- if (i < 0 || i >= newstate->game_grid->num_edges)
- goto fail;
- move += strspn(move, "1234567890");
- switch (*(move++)) {
- case 'y':
- newstate->lines[i] = LINE_YES;
- break;
- case 'n':
- newstate->lines[i] = LINE_NO;
- break;
- case 'u':
- newstate->lines[i] = LINE_UNKNOWN;
- break;
- default:
- goto fail;
- }
- }
- /*
- * Check for completion.
- */
- if (check_completion(newstate))
- newstate->solved = true;
- return newstate;
- fail:
- free_game(newstate);
- return NULL;
- }
- /* ----------------------------------------------------------------------
- * Drawing routines.
- */
- /* Convert from grid coordinates to screen coordinates */
- static void grid_to_screen(const game_drawstate *ds, const grid *g,
- int grid_x, int grid_y, int *x, int *y)
- {
- *x = grid_x - g->lowest_x;
- *y = grid_y - g->lowest_y;
- *x = *x * ds->tilesize / g->tilesize;
- *y = *y * ds->tilesize / g->tilesize;
- *x += BORDER(ds->tilesize);
- *y += BORDER(ds->tilesize);
- }
- /* Returns (into x,y) position of centre of face for rendering the text clue.
- */
- static void face_text_pos(const game_drawstate *ds, const grid *g,
- grid_face *f, int *xret, int *yret)
- {
- int faceindex = f->index;
- /*
- * Return the cached position for this face, if we've already
- * worked it out.
- */
- if (ds->textx[faceindex] >= 0) {
- *xret = ds->textx[faceindex];
- *yret = ds->texty[faceindex];
- return;
- }
- /*
- * Otherwise, use the incentre computed by grid.c and convert it
- * to screen coordinates.
- */
- grid_find_incentre(f);
- grid_to_screen(ds, g, f->ix, f->iy,
- &ds->textx[faceindex], &ds->texty[faceindex]);
- *xret = ds->textx[faceindex];
- *yret = ds->texty[faceindex];
- }
- static void face_text_bbox(game_drawstate *ds, grid *g, grid_face *f,
- int *x, int *y, int *w, int *h)
- {
- int xx, yy;
- face_text_pos(ds, g, f, &xx, &yy);
- /* There seems to be a certain amount of trial-and-error involved
- * in working out the correct bounding-box for the text. */
- *x = xx - ds->tilesize * 5 / 4 - 1;
- *y = yy - ds->tilesize/4 - 3;
- *w = ds->tilesize * 5 / 2 + 2;
- *h = ds->tilesize/2 + 5;
- }
- static void game_redraw_clue(drawing *dr, game_drawstate *ds,
- const game_state *state, int i)
- {
- grid *g = state->game_grid;
- grid_face *f = g->faces[i];
- int x, y;
- char c[20];
- sprintf(c, "%d", state->clues[i]);
- face_text_pos(ds, g, f, &x, &y);
- draw_text(dr, x, y,
- FONT_VARIABLE, ds->tilesize/2,
- ALIGN_VCENTRE | ALIGN_HCENTRE,
- ds->clue_error[i] ? COL_MISTAKE :
- ds->clue_satisfied[i] ? COL_SATISFIED : COL_FOREGROUND, c);
- }
- static void edge_bbox(game_drawstate *ds, grid *g, grid_edge *e,
- int *x, int *y, int *w, int *h)
- {
- int x1 = e->dot1->x;
- int y1 = e->dot1->y;
- int x2 = e->dot2->x;
- int y2 = e->dot2->y;
- int xmin, xmax, ymin, ymax;
- grid_to_screen(ds, g, x1, y1, &x1, &y1);
- grid_to_screen(ds, g, x2, y2, &x2, &y2);
- /* Allow extra margin for dots, and thickness of lines */
- xmin = min(x1, x2) - (ds->tilesize + 15) / 16;
- xmax = max(x1, x2) + (ds->tilesize + 15) / 16;
- ymin = min(y1, y2) - (ds->tilesize + 15) / 16;
- ymax = max(y1, y2) + (ds->tilesize + 15) / 16;
- *x = xmin;
- *y = ymin;
- *w = xmax - xmin + 1;
- *h = ymax - ymin + 1;
- }
- static void dot_bbox(game_drawstate *ds, grid *g, grid_dot *d,
- int *x, int *y, int *w, int *h)
- {
- int x1, y1;
- int xmin, xmax, ymin, ymax;
- grid_to_screen(ds, g, d->x, d->y, &x1, &y1);
- xmin = x1 - (ds->tilesize * 5 + 63) / 64;
- xmax = x1 + (ds->tilesize * 5 + 63) / 64;
- ymin = y1 - (ds->tilesize * 5 + 63) / 64;
- ymax = y1 + (ds->tilesize * 5 + 63) / 64;
- *x = xmin;
- *y = ymin;
- *w = xmax - xmin + 1;
- *h = ymax - ymin + 1;
- }
- static const int loopy_line_redraw_phases[] = {
- COL_FAINT, COL_LINEUNKNOWN, COL_FOREGROUND, COL_HIGHLIGHT, COL_MISTAKE
- };
- #define NPHASES lenof(loopy_line_redraw_phases)
- static void game_redraw_line(drawing *dr, game_drawstate *ds,const game_ui *ui,
- const game_state *state, int i, int phase)
- {
- grid *g = state->game_grid;
- grid_edge *e = g->edges[i];
- int x1, x2, y1, y2;
- int line_colour;
- if (state->line_errors[i])
- line_colour = COL_MISTAKE;
- else if (state->lines[i] == LINE_UNKNOWN)
- line_colour = COL_LINEUNKNOWN;
- else if (state->lines[i] == LINE_NO)
- line_colour = COL_FAINT;
- else if (ds->flashing)
- line_colour = COL_HIGHLIGHT;
- else
- line_colour = COL_FOREGROUND;
- if (line_colour != loopy_line_redraw_phases[phase])
- return;
- /* Convert from grid to screen coordinates */
- grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
- grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
- if (line_colour == COL_FAINT) {
- if (ui->draw_faint_lines)
- draw_thick_line(dr, ds->tilesize/24.0,
- x1 + 0.5, y1 + 0.5,
- x2 + 0.5, y2 + 0.5,
- line_colour);
- } else {
- draw_thick_line(dr, ds->tilesize*3/32.0,
- x1 + 0.5, y1 + 0.5,
- x2 + 0.5, y2 + 0.5,
- line_colour);
- }
- }
- static void game_redraw_dot(drawing *dr, game_drawstate *ds,
- const game_state *state, int i)
- {
- grid *g = state->game_grid;
- grid_dot *d = g->dots[i];
- int x, y;
- grid_to_screen(ds, g, d->x, d->y, &x, &y);
- draw_circle(dr, x, y, ds->tilesize*2.5/32.0, COL_FOREGROUND, COL_FOREGROUND);
- }
- static bool boxes_intersect(int x0, int y0, int w0, int h0,
- int x1, int y1, int w1, int h1)
- {
- /*
- * Two intervals intersect iff neither is wholly on one side of
- * the other. Two boxes intersect iff their horizontal and
- * vertical intervals both intersect.
- */
- return (x0 < x1+w1 && x1 < x0+w0 && y0 < y1+h1 && y1 < y0+h0);
- }
- static void game_redraw_in_rect(drawing *dr, game_drawstate *ds,
- const game_ui *ui, const game_state *state,
- int x, int y, int w, int h)
- {
- grid *g = state->game_grid;
- int i, phase;
- int bx, by, bw, bh;
- clip(dr, x, y, w, h);
- draw_rect(dr, x, y, w, h, COL_BACKGROUND);
- for (i = 0; i < g->num_faces; i++) {
- if (state->clues[i] >= 0) {
- face_text_bbox(ds, g, g->faces[i], &bx, &by, &bw, &bh);
- if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
- game_redraw_clue(dr, ds, state, i);
- }
- }
- for (phase = 0; phase < NPHASES; phase++) {
- for (i = 0; i < g->num_edges; i++) {
- edge_bbox(ds, g, g->edges[i], &bx, &by, &bw, &bh);
- if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
- game_redraw_line(dr, ds, ui, state, i, phase);
- }
- }
- for (i = 0; i < g->num_dots; i++) {
- dot_bbox(ds, g, g->dots[i], &bx, &by, &bw, &bh);
- if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
- game_redraw_dot(dr, ds, state, i);
- }
- unclip(dr);
- draw_update(dr, x, y, w, h);
- }
- static void game_redraw(drawing *dr, game_drawstate *ds,
- const game_state *oldstate, const game_state *state,
- int dir, const game_ui *ui,
- float animtime, float flashtime)
- {
- #define REDRAW_OBJECTS_LIMIT 16 /* Somewhat arbitrary tradeoff */
- grid *g = state->game_grid;
- int border = BORDER(ds->tilesize);
- int i;
- bool flash_changed;
- bool redraw_everything = false;
- int edges[REDRAW_OBJECTS_LIMIT], nedges = 0;
- int faces[REDRAW_OBJECTS_LIMIT], nfaces = 0;
- /* Redrawing is somewhat involved.
- *
- * An update can theoretically affect an arbitrary number of edges
- * (consider, for example, completing or breaking a cycle which doesn't
- * satisfy all the clues -- we'll switch many edges between error and
- * normal states). On the other hand, redrawing the whole grid takes a
- * while, making the game feel sluggish, and many updates are actually
- * quite well localized.
- *
- * This redraw algorithm attempts to cope with both situations gracefully
- * and correctly. For localized changes, we set a clip rectangle, fill
- * it with background, and then redraw (a plausible but conservative
- * guess at) the objects which intersect the rectangle; if several
- * objects need redrawing, we'll do them individually. However, if lots
- * of objects are affected, we'll just redraw everything.
- *
- * The reason for all of this is that it's just not safe to do the redraw
- * piecemeal. If you try to draw an antialiased diagonal line over
- * itself, you get a slightly thicker antialiased diagonal line, which
- * looks rather ugly after a while.
- *
- * So, we take two passes over the grid. The first attempts to work out
- * what needs doing, and the second actually does it.
- */
- if (!ds->started) {
- redraw_everything = true;
- /*
- * But we must still go through the upcoming loops, so that we
- * set up stuff in ds correctly for the initial redraw.
- */
- }
- /* First, trundle through the faces. */
- for (i = 0; i < g->num_faces; i++) {
- grid_face *f = g->faces[i];
- int sides = f->order;
- int yes_order, no_order;
- bool clue_mistake;
- bool clue_satisfied;
- int n = state->clues[i];
- if (n < 0)
- continue;
- yes_order = face_order(state, i, LINE_YES);
- if (state->exactly_one_loop) {
- /*
- * Special case: if the set of LINE_YES edges in the grid
- * consists of exactly one loop and nothing else, then we
- * switch to treating LINE_UNKNOWN the same as LINE_NO for
- * purposes of clue checking.
- *
- * This is because some people like to play Loopy without
- * using the right-click, i.e. never setting anything to
- * LINE_NO. Without this special case, if a person playing
- * in that style fills in what they think is a correct
- * solution loop but in fact it has an underfilled clue,
- * then we will display no victory flash and also no error
- * highlight explaining why not. With this special case,
- * we light up underfilled clues at the instant the loop
- * is closed. (Of course, *overfilled* clues are fine
- * either way.)
- *
- * (It might still be considered unfortunate that we can't
- * warn this style of player any earlier, if they make a
- * mistake very near the beginning which doesn't show up
- * until they close the last edge of the loop. One other
- * thing we _could_ do here is to treat any LINE_UNKNOWN
- * as LINE_NO if either of its endpoints has yes-degree 2,
- * reflecting the fact that setting that line to YES would
- * be an obvious error. But I don't think even that could
- * catch _all_ clue errors in a timely manner; I think
- * there are some that won't be displayed until the loop
- * is filled in, even so, and there's no way to avoid that
- * with complete reliability except to switch to being a
- * player who sets things to LINE_NO.)
- */
- no_order = sides - yes_order;
- } else {
- no_order = face_order(state, i, LINE_NO);
- }
- clue_mistake = (yes_order > n || no_order > (sides-n));
- clue_satisfied = (yes_order == n && no_order == (sides-n));
- if (clue_mistake != ds->clue_error[i] ||
- clue_satisfied != ds->clue_satisfied[i]) {
- ds->clue_error[i] = clue_mistake;
- ds->clue_satisfied[i] = clue_satisfied;
- if (nfaces == REDRAW_OBJECTS_LIMIT)
- redraw_everything = true;
- else
- faces[nfaces++] = i;
- }
- }
- /* Work out what the flash state needs to be. */
- if (flashtime > 0 &&
- (flashtime <= FLASH_TIME/3 ||
- flashtime >= FLASH_TIME*2/3)) {
- flash_changed = !ds->flashing;
- ds->flashing = true;
- } else {
- flash_changed = ds->flashing;
- ds->flashing = false;
- }
- /* Now, trundle through the edges. */
- for (i = 0; i < g->num_edges; i++) {
- char new_ds =
- state->line_errors[i] ? DS_LINE_ERROR : state->lines[i];
- if (new_ds != ds->lines[i] ||
- (flash_changed && state->lines[i] == LINE_YES)) {
- ds->lines[i] = new_ds;
- if (nedges == REDRAW_OBJECTS_LIMIT)
- redraw_everything = true;
- else
- edges[nedges++] = i;
- }
- }
- /* Pass one is now done. Now we do the actual drawing. */
- if (redraw_everything) {
- int grid_width = g->highest_x - g->lowest_x;
- int grid_height = g->highest_y - g->lowest_y;
- int w = grid_width * ds->tilesize / g->tilesize;
- int h = grid_height * ds->tilesize / g->tilesize;
- game_redraw_in_rect(dr, ds, ui, state,
- 0, 0, w + 2*border + 1, h + 2*border + 1);
- } else {
- /* Right. Now we roll up our sleeves. */
- for (i = 0; i < nfaces; i++) {
- grid_face *f = g->faces[faces[i]];
- int x, y, w, h;
- face_text_bbox(ds, g, f, &x, &y, &w, &h);
- game_redraw_in_rect(dr, ds, ui, state, x, y, w, h);
- }
- for (i = 0; i < nedges; i++) {
- grid_edge *e = g->edges[edges[i]];
- int x, y, w, h;
- edge_bbox(ds, g, e, &x, &y, &w, &h);
- game_redraw_in_rect(dr, ds, ui, state, x, y, w, h);
- }
- }
- ds->started = true;
- }
- static float game_flash_length(const game_state *oldstate,
- const game_state *newstate, int dir, game_ui *ui)
- {
- if (!oldstate->solved && newstate->solved &&
- !oldstate->cheated && !newstate->cheated) {
- return FLASH_TIME;
- }
- return 0.0F;
- }
- static void game_get_cursor_location(const game_ui *ui,
- const game_drawstate *ds,
- const game_state *state,
- const game_params *params,
- int *x, int *y, int *w, int *h)
- {
- }
- static int game_status(const game_state *state)
- {
- return state->solved ? +1 : 0;
- }
- static void game_print_size(const game_params *params, const game_ui *ui,
- float *x, float *y)
- {
- int pw, ph;
- /*
- * I'll use 7mm "squares" by default.
- */
- game_compute_size(params, 700, ui, &pw, &ph);
- *x = pw / 100.0F;
- *y = ph / 100.0F;
- }
- static void game_print(drawing *dr, const game_state *state, const game_ui *ui,
- int tilesize)
- {
- int ink = print_mono_colour(dr, 0);
- int i;
- game_drawstate ads, *ds = &ads;
- grid *g = state->game_grid;
- ds->tilesize = tilesize;
- ds->textx = snewn(g->num_faces, int);
- ds->texty = snewn(g->num_faces, int);
- for (i = 0; i < g->num_faces; i++)
- ds->textx[i] = ds->texty[i] = -1;
- for (i = 0; i < g->num_dots; i++) {
- int x, y;
- grid_to_screen(ds, g, g->dots[i]->x, g->dots[i]->y, &x, &y);
- draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
- }
- /*
- * Clues.
- */
- for (i = 0; i < g->num_faces; i++) {
- grid_face *f = g->faces[i];
- int clue = state->clues[i];
- if (clue >= 0) {
- char c[20];
- int x, y;
- sprintf(c, "%d", state->clues[i]);
- face_text_pos(ds, g, f, &x, &y);
- draw_text(dr, x, y,
- FONT_VARIABLE, ds->tilesize / 2,
- ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
- }
- }
- /*
- * Lines.
- */
- for (i = 0; i < g->num_edges; i++) {
- int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
- grid_edge *e = g->edges[i];
- int x1, y1, x2, y2;
- grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
- grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
- if (state->lines[i] == LINE_YES)
- {
- /* (dx, dy) points from (x1, y1) to (x2, y2).
- * The line is then "fattened" in a perpendicular
- * direction to create a thin rectangle. */
- double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
- double dx = (x2 - x1) / d;
- double dy = (y2 - y1) / d;
- int points[8];
- dx = (dx * ds->tilesize) / thickness;
- dy = (dy * ds->tilesize) / thickness;
- points[0] = x1 + (int)dy;
- points[1] = y1 - (int)dx;
- points[2] = x1 - (int)dy;
- points[3] = y1 + (int)dx;
- points[4] = x2 - (int)dy;
- points[5] = y2 + (int)dx;
- points[6] = x2 + (int)dy;
- points[7] = y2 - (int)dx;
- draw_polygon(dr, points, 4, ink, ink);
- }
- else
- {
- /* Draw a dotted line */
- int divisions = 6;
- int j;
- for (j = 1; j < divisions; j++) {
- /* Weighted average */
- int x = (x1 * (divisions -j) + x2 * j) / divisions;
- int y = (y1 * (divisions -j) + y2 * j) / divisions;
- draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
- }
- }
- }
- sfree(ds->textx);
- sfree(ds->texty);
- }
- #ifdef COMBINED
- #define thegame loopy
- #endif
- const struct game thegame = {
- "Loopy", "games.loopy", "loopy",
- default_params,
- NULL, game_preset_menu,
- decode_params,
- encode_params,
- free_params,
- dup_params,
- true, game_configure, custom_params,
- validate_params,
- new_game_desc,
- validate_desc,
- new_game,
- dup_game,
- free_game,
- true, solve_game,
- true, game_can_format_as_text_now, game_text_format,
- get_prefs, set_prefs,
- new_ui,
- free_ui,
- NULL, /* encode_ui */
- NULL, /* decode_ui */
- NULL, /* game_request_keys */
- game_changed_state,
- NULL, /* current_key_label */
- interpret_move,
- execute_move,
- PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
- game_colours,
- game_new_drawstate,
- game_free_drawstate,
- game_redraw,
- game_anim_length,
- game_flash_length,
- game_get_cursor_location,
- game_status,
- true, false, game_print_size, game_print,
- false /* wants_statusbar */,
- false, NULL, /* timing_state */
- 0, /* mouse_priorities */
- };
- #ifdef STANDALONE_SOLVER
- /*
- * Half-hearted standalone solver. It can't output the solution to
- * anything but a square puzzle, and it can't log the deductions
- * it makes either. But it can solve square puzzles, and more
- * importantly it can use its solver to grade the difficulty of
- * any puzzle you give it.
- */
- #include <stdarg.h>
- int main(int argc, char **argv)
- {
- game_params *p;
- game_state *s;
- char *id = NULL, *desc;
- const char *err;
- bool grade = false;
- int ret, diff;
- #if 0 /* verbose solver not supported here (yet) */
- bool really_verbose = false;
- #endif
- while (--argc > 0) {
- char *p = *++argv;
- #if 0 /* verbose solver not supported here (yet) */
- if (!strcmp(p, "-v")) {
- really_verbose = true;
- } else
- #endif
- if (!strcmp(p, "-g")) {
- grade = true;
- } else if (*p == '-') {
- fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
- return 1;
- } else {
- id = p;
- }
- }
- if (!id) {
- fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
- return 1;
- }
- desc = strchr(id, ':');
- if (!desc) {
- fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
- return 1;
- }
- *desc++ = '\0';
- p = default_params();
- decode_params(p, id);
- err = validate_desc(p, desc);
- if (err) {
- fprintf(stderr, "%s: %s\n", argv[0], err);
- return 1;
- }
- s = new_game(NULL, p, desc);
- /*
- * When solving an Easy puzzle, we don't want to bother the
- * user with Hard-level deductions. For this reason, we grade
- * the puzzle internally before doing anything else.
- */
- ret = -1; /* placate optimiser */
- for (diff = 0; diff < DIFF_MAX; diff++) {
- solver_state *sstate_new;
- solver_state *sstate = new_solver_state((game_state *)s, diff);
- sstate_new = solve_game_rec(sstate);
- if (sstate_new->solver_status == SOLVER_MISTAKE)
- ret = 0;
- else if (sstate_new->solver_status == SOLVER_SOLVED)
- ret = 1;
- else
- ret = 2;
- free_solver_state(sstate_new);
- free_solver_state(sstate);
- if (ret < 2)
- break;
- }
- if (diff == DIFF_MAX) {
- if (grade)
- printf("Difficulty rating: harder than Hard, or ambiguous\n");
- else
- printf("Unable to find a unique solution\n");
- } else {
- if (grade) {
- if (ret == 0)
- printf("Difficulty rating: impossible (no solution exists)\n");
- else if (ret == 1)
- printf("Difficulty rating: %s\n", diffnames[diff]);
- } else {
- solver_state *sstate_new;
- solver_state *sstate = new_solver_state((game_state *)s, diff);
- /* If we supported a verbose solver, we'd set verbosity here */
- sstate_new = solve_game_rec(sstate);
- if (sstate_new->solver_status == SOLVER_MISTAKE)
- printf("Puzzle is inconsistent\n");
- else {
- assert(sstate_new->solver_status == SOLVER_SOLVED);
- if (s->grid_type == 0) {
- fputs(game_text_format(sstate_new->state), stdout);
- } else {
- printf("Unable to output non-square grids\n");
- }
- }
- free_solver_state(sstate_new);
- free_solver_state(sstate);
- }
- }
- return 0;
- }
- #endif
- /* vim: set shiftwidth=4 tabstop=8: */
|