123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- #!/usr/bin/perl
- # Read an input image, crop its border to a standard width, and
- # convert it into a square output image. Parameters are:
- #
- # - the required total image size
- # - the output border thickness
- # - the input image file name
- # - the output image file name.
- ($convert, $osize, $oborder, $infile, $outfile) = @ARGV;
- # Determine the input image's size.
- $ident = `identify -format "%w %h" $infile`;
- $ident =~ /(\d+) (\d+)/ or die "unable to get size for $infile\n";
- ($w, $h) = ($1, $2);
- # Read the input image data.
- $data = [];
- open IDATA, "-|", $convert, "-depth", "8", $infile, "rgb:-";
- push @$data, $rgb while (read IDATA,$rgb,3,0) == 3;
- close IDATA;
- # Check we have the right amount of data.
- $xl = $w * $h;
- $al = scalar @$data;
- die "wrong amount of image data ($al, expected $xl) from $infile\n"
- unless $al == $xl;
- # Find the background colour, by looking around the entire border
- # and finding the most popular pixel colour.
- for ($i = 0; $i < $w; $i++) {
- $pcount{$data->[$i]}++; # top row
- $pcount{$data->[($h-1)*$w+$i]}++; # bottom row
- }
- for ($i = 1; $i < $h-1; $i++) {
- $pcount{$data->[$i*$w]}++; # left column
- $pcount{$data->[$i*$w+$w-1]}++; # right column
- }
- @plist = sort { $pcount{$b} <=> $pcount{$a} } keys %pcount;
- $back = $plist[0];
- # Crop rows and columns off the image to find the central rectangle
- # of non-background stuff.
- $ystart = 0;
- $ystart++ while $ystart < $h - 1 and scalar(grep { $_ ne $back } map { $data->[$ystart*$w+$_] } 0 .. ($w-1)) == 0;
- $yend = $h-1;
- $yend-- while $yend > $ystart and scalar(grep { $_ ne $back } map { $data->[$yend*$w+$_] } 0 .. ($w-1)) == 0;
- $xstart = 0;
- $xstart++ while $xstart < $w - 1 and scalar(grep { $_ ne $back } map { $data->[$_*$w+$xstart] } 0 .. ($h-1)) == 0;
- $xend = $w-1;
- $xend-- while $xend > $xstart and scalar(grep { $_ ne $back } map { $data->[$_*$w+$xend] } 0 .. ($h-1)) == 0;
- # Decide how much border we're going to put back on to make the
- # image perfectly square.
- $hexpand = ($yend-$ystart) - ($xend-$xstart);
- if ($hexpand > 0) {
- $left = int($hexpand / 2);
- $xstart -= $left;
- $xend += $hexpand - $left;
- } elsif ($hexpand < 0) {
- $vexpand = -$hexpand;
- $top = int($vexpand / 2);
- $ystart -= $top;
- $yend += $vexpand - $top;
- }
- $ow = $xend - $xstart + 1;
- $oh = $yend - $ystart + 1;
- die "internal computation problem" if $ow != $oh; # should be square
- # And decide how much _more_ border goes on to add the bit around
- # the edge.
- $realow = int($ow * ($osize / ($osize - 2*$oborder)));
- $extra = $realow - $ow;
- $left = int($extra / 2);
- $xstart -= $left;
- $xend += $extra - $left;
- $top = int($extra / 2);
- $ystart -= $top;
- $yend += $extra - $top;
- $ow = $xend - $xstart + 1;
- $oh = $yend - $ystart + 1;
- die "internal computation problem" if $ow != $oh; # should be square
- # Now write out the resulting image, and resize it appropriately.
- open IDATA, "|-", $convert, "-size", "${ow}x${oh}", "-depth", "8", "-resize", "${osize}x${osize}!", "rgb:-", $outfile;
- for ($y = $ystart; $y <= $yend; $y++) {
- for ($x = $xstart; $x <= $xend; $x++) {
- if ($x >= 0 && $x < $w && $y >= 0 && $y < $h) {
- print IDATA $data->[$y*$w+$x];
- } else {
- print IDATA $back;
- }
- }
- }
- close IDATA;
|