123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581 |
- /*
- * untangle.c: Game about planar graphs. You are given a graph
- * represented by points and straight lines, with some lines
- * crossing; your task is to drag the points into a configuration
- * where none of the lines cross.
- *
- * Cloned from a Flash game called `Planarity', by John Tantalo.
- * <http://home.cwru.edu/~jnt5/Planarity> at the time of writing
- * this. The Flash game had a fixed set of levels; my added value,
- * as usual, is automatic generation of random games to order.
- */
- /*
- * TODO:
- *
- * - This puzzle, perhaps uniquely among the collection, could use
- * support for non-aspect-ratio-preserving resizes. This would
- * require some sort of fairly large redesign, unfortunately (since
- * it would invalidate the basic assumption that puzzles' size
- * requirements are adequately expressed by a single scalar tile
- * size), and probably complicate the rest of the puzzles' API as a
- * result. So I'm not sure I really want to do it.
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <assert.h>
- #include <ctype.h>
- #include <limits.h>
- #ifdef NO_TGMATH_H
- # include <math.h>
- #else
- # include <tgmath.h>
- #endif
- #if HAVE_STDINT_H
- # include <stdint.h>
- #endif
- #include "puzzles.h"
- #include "tree234.h"
- #define CIRCLE_RADIUS 6
- #define DRAG_THRESHOLD (CIRCLE_RADIUS * 2)
- #define PREFERRED_TILESIZE 64
- #define FLASH_TIME 0.30F
- #define ANIM_TIME 0.13F
- #define SOLVEANIM_TIME 0.50F
- enum {
- COL_SYSBACKGROUND,
- COL_BACKGROUND,
- COL_LINE,
- #ifdef SHOW_CROSSINGS
- COL_CROSSEDLINE,
- #endif
- COL_OUTLINE,
- COL_POINT,
- COL_DRAGPOINT,
- COL_NEIGHBOUR,
- COL_FLASH1,
- COL_FLASH2,
- NCOLOURS
- };
- typedef struct point {
- /*
- * Points are stored using rational coordinates, with the same
- * denominator for both coordinates.
- */
- long x, y, d;
- } point;
- typedef struct edge {
- /*
- * This structure is implicitly associated with a particular
- * point set, so all it has to do is to store two point
- * indices. It is required to store them in the order (lower,
- * higher), i.e. a < b always.
- */
- int a, b;
- } edge;
- struct game_params {
- int n; /* number of points */
- };
- struct graph {
- int refcount; /* for deallocation */
- tree234 *edges; /* stores `edge' structures */
- };
- struct game_state {
- game_params params;
- int w, h; /* extent of coordinate system only */
- point *pts;
- #ifdef SHOW_CROSSINGS
- int *crosses; /* mark edges which are crossed */
- #endif
- struct graph *graph;
- bool completed, cheated, just_solved;
- };
- static int edgecmpC(const void *av, const void *bv)
- {
- const edge *a = (const edge *)av;
- const edge *b = (const edge *)bv;
- if (a->a < b->a)
- return -1;
- else if (a->a > b->a)
- return +1;
- else if (a->b < b->b)
- return -1;
- else if (a->b > b->b)
- return +1;
- return 0;
- }
- static int edgecmp(void *av, void *bv) { return edgecmpC(av, bv); }
- static game_params *default_params(void)
- {
- game_params *ret = snew(game_params);
- ret->n = 10;
- return ret;
- }
- static bool game_fetch_preset(int i, char **name, game_params **params)
- {
- game_params *ret;
- int n;
- char buf[80];
- switch (i) {
- case 0: n = 6; break;
- case 1: n = 10; break;
- case 2: n = 15; break;
- case 3: n = 20; break;
- case 4: n = 25; break;
- default: return false;
- }
- sprintf(buf, "%d points", n);
- *name = dupstr(buf);
- *params = ret = snew(game_params);
- ret->n = n;
- return true;
- }
- static void free_params(game_params *params)
- {
- sfree(params);
- }
- static game_params *dup_params(const game_params *params)
- {
- game_params *ret = snew(game_params);
- *ret = *params; /* structure copy */
- return ret;
- }
- static void decode_params(game_params *params, char const *string)
- {
- params->n = atoi(string);
- }
- static char *encode_params(const game_params *params, bool full)
- {
- char buf[80];
- sprintf(buf, "%d", params->n);
- return dupstr(buf);
- }
- static config_item *game_configure(const game_params *params)
- {
- config_item *ret;
- char buf[80];
- ret = snewn(3, config_item);
- ret[0].name = "Number of points";
- ret[0].type = C_STRING;
- sprintf(buf, "%d", params->n);
- ret[0].u.string.sval = dupstr(buf);
- ret[1].name = NULL;
- ret[1].type = C_END;
- return ret;
- }
- static game_params *custom_params(const config_item *cfg)
- {
- game_params *ret = snew(game_params);
- ret->n = atoi(cfg[0].u.string.sval);
- return ret;
- }
- static const char *validate_params(const game_params *params, bool full)
- {
- if (params->n < 4)
- return "Number of points must be at least four";
- if (params->n > INT_MAX / 3)
- return "Number of points must not be unreasonably large";
- return NULL;
- }
- /* ----------------------------------------------------------------------
- * Small number of 64-bit integer arithmetic operations, to prevent
- * integer overflow at the very core of cross().
- */
- #if !HAVE_STDINT_H
- /* For prehistoric C implementations, do this the hard way */
- typedef struct {
- long hi;
- unsigned long lo;
- } int64;
- #define greater64(i,j) ( (i).hi>(j).hi || ((i).hi==(j).hi && (i).lo>(j).lo))
- #define sign64(i) ((i).hi < 0 ? -1 : (i).hi==0 && (i).lo==0 ? 0 : +1)
- static int64 mulu32to64(unsigned long x, unsigned long y)
- {
- unsigned long a, b, c, d, t;
- int64 ret;
- a = (x & 0xFFFF) * (y & 0xFFFF);
- b = (x & 0xFFFF) * (y >> 16);
- c = (x >> 16) * (y & 0xFFFF);
- d = (x >> 16) * (y >> 16);
- ret.lo = a;
- ret.hi = d + (b >> 16) + (c >> 16);
- t = (b & 0xFFFF) << 16;
- ret.lo += t;
- if (ret.lo < t)
- ret.hi++;
- t = (c & 0xFFFF) << 16;
- ret.lo += t;
- if (ret.lo < t)
- ret.hi++;
- #ifdef DIAGNOSTIC_VIA_LONGLONG
- assert(((unsigned long long)ret.hi << 32) + ret.lo ==
- (unsigned long long)x * y);
- #endif
- return ret;
- }
- static int64 mul32to64(long x, long y)
- {
- int sign = +1;
- int64 ret;
- #ifdef DIAGNOSTIC_VIA_LONGLONG
- long long realret = (long long)x * y;
- #endif
- if (x < 0)
- x = -x, sign = -sign;
- if (y < 0)
- y = -y, sign = -sign;
- ret = mulu32to64(x, y);
- if (sign < 0) {
- ret.hi = -ret.hi;
- ret.lo = -ret.lo;
- if (ret.lo)
- ret.hi--;
- }
- #ifdef DIAGNOSTIC_VIA_LONGLONG
- assert(((unsigned long long)ret.hi << 32) + ret.lo == realret);
- #endif
- return ret;
- }
- static int64 dotprod64(long a, long b, long p, long q)
- {
- int64 ab, pq;
- ab = mul32to64(a, b);
- pq = mul32to64(p, q);
- ab.hi += pq.hi;
- ab.lo += pq.lo;
- if (ab.lo < pq.lo)
- ab.hi++;
- return ab;
- }
- #else /* HAVE_STDINT_H */
- typedef int64_t int64;
- #define greater64(i,j) ((i) > (j))
- #define sign64(i) ((i) < 0 ? -1 : (i)==0 ? 0 : +1)
- #define mulu32to64(x,y) ((int64_t)(unsigned long)(x) * (unsigned long)(y))
- #define mul32to64(x,y) ((int64_t)(long)(x) * (long)(y))
- static int64 dotprod64(long a, long b, long p, long q)
- {
- return (int64)a * b + (int64)p * q;
- }
- #endif /* HAVE_STDINT_H */
- /*
- * Determine whether the line segments between a1 and a2, and
- * between b1 and b2, intersect. We count it as an intersection if
- * any of the endpoints lies _on_ the other line.
- */
- static bool cross(point a1, point a2, point b1, point b2)
- {
- long b1x, b1y, b2x, b2y, px, py;
- int64 d1, d2, d3;
- /*
- * The condition for crossing is that b1 and b2 are on opposite
- * sides of the line a1-a2, and vice versa. We determine this
- * by taking the dot product of b1-a1 with a vector
- * perpendicular to a2-a1, and similarly with b2-a1, and seeing
- * if they have different signs.
- */
- /*
- * Construct the vector b1-a1. We don't have to worry too much
- * about the denominator, because we're only going to check the
- * sign of this vector; we just need to get the numerator
- * right.
- */
- b1x = b1.x * a1.d - a1.x * b1.d;
- b1y = b1.y * a1.d - a1.y * b1.d;
- /* Now construct b2-a1, and a vector perpendicular to a2-a1,
- * in the same way. */
- b2x = b2.x * a1.d - a1.x * b2.d;
- b2y = b2.y * a1.d - a1.y * b2.d;
- px = a1.y * a2.d - a2.y * a1.d;
- py = a2.x * a1.d - a1.x * a2.d;
- /* Take the dot products. Here we resort to 64-bit arithmetic. */
- d1 = dotprod64(b1x, px, b1y, py);
- d2 = dotprod64(b2x, px, b2y, py);
- /* If they have the same non-zero sign, the lines do not cross. */
- if ((sign64(d1) > 0 && sign64(d2) > 0) ||
- (sign64(d1) < 0 && sign64(d2) < 0))
- return false;
- /*
- * If the dot products are both exactly zero, then the two line
- * segments are collinear. At this point the intersection
- * condition becomes whether or not they overlap within their
- * line.
- */
- if (sign64(d1) == 0 && sign64(d2) == 0) {
- /* Construct the vector a2-a1. */
- px = a2.x * a1.d - a1.x * a2.d;
- py = a2.y * a1.d - a1.y * a2.d;
- /* Determine the dot products of b1-a1 and b2-a1 with this. */
- d1 = dotprod64(b1x, px, b1y, py);
- d2 = dotprod64(b2x, px, b2y, py);
- /* If they're both strictly negative, the lines do not cross. */
- if (sign64(d1) < 0 && sign64(d2) < 0)
- return false;
- /* Otherwise, take the dot product of a2-a1 with itself. If
- * the other two dot products both exceed this, the lines do
- * not cross. */
- d3 = dotprod64(px, px, py, py);
- if (greater64(d1, d3) && greater64(d2, d3))
- return false;
- }
- /*
- * We've eliminated the only important special case, and we
- * have determined that b1 and b2 are on opposite sides of the
- * line a1-a2. Now do the same thing the other way round and
- * we're done.
- */
- b1x = a1.x * b1.d - b1.x * a1.d;
- b1y = a1.y * b1.d - b1.y * a1.d;
- b2x = a2.x * b1.d - b1.x * a2.d;
- b2y = a2.y * b1.d - b1.y * a2.d;
- px = b1.y * b2.d - b2.y * b1.d;
- py = b2.x * b1.d - b1.x * b2.d;
- d1 = dotprod64(b1x, px, b1y, py);
- d2 = dotprod64(b2x, px, b2y, py);
- if ((sign64(d1) > 0 && sign64(d2) > 0) ||
- (sign64(d1) < 0 && sign64(d2) < 0))
- return false;
- /*
- * The lines must cross.
- */
- return true;
- }
- static unsigned long squarert(unsigned long n) {
- unsigned long d, a, b, di;
- d = n;
- a = 0;
- b = 1L << 30; /* largest available power of 4 */
- do {
- a >>= 1;
- di = 2*a + b;
- if (di <= d) {
- d -= di;
- a += b;
- }
- b >>= 2;
- } while (b);
- return a;
- }
- /*
- * Our solutions are arranged on a square grid big enough that n
- * points occupy about 1/POINTDENSITY of the grid.
- */
- #define POINTDENSITY 3
- #define MAXDEGREE 4
- #define COORDLIMIT(n) squarert((n) * POINTDENSITY)
- static void addedge(tree234 *edges, int a, int b)
- {
- edge *e = snew(edge);
- assert(a != b);
- e->a = min(a, b);
- e->b = max(a, b);
- if (add234(edges, e) != e)
- /* Duplicate edge. */
- sfree(e);
- }
- static bool isedge(tree234 *edges, int a, int b)
- {
- edge e;
- assert(a != b);
- e.a = min(a, b);
- e.b = max(a, b);
- return find234(edges, &e, NULL) != NULL;
- }
- typedef struct vertex {
- int param;
- int vindex;
- } vertex;
- static int vertcmpC(const void *av, const void *bv)
- {
- const vertex *a = (const vertex *)av;
- const vertex *b = (const vertex *)bv;
- if (a->param < b->param)
- return -1;
- else if (a->param > b->param)
- return +1;
- else if (a->vindex < b->vindex)
- return -1;
- else if (a->vindex > b->vindex)
- return +1;
- return 0;
- }
- static int vertcmp(void *av, void *bv) { return vertcmpC(av, bv); }
- /*
- * Construct point coordinates for n points arranged in a circle,
- * within the bounding box (0,0) to (w,w).
- */
- static void make_circle(point *pts, int n, int w)
- {
- long d, r, c, i;
- /*
- * First, decide on a denominator. Although in principle it
- * would be nice to set this really high so as to finely
- * distinguish all the points on the circle, I'm going to set
- * it at a fixed size to prevent integer overflow problems.
- */
- d = PREFERRED_TILESIZE;
- /*
- * Leave a little space outside the circle.
- */
- c = d * w / 2;
- r = d * w * 3 / 7;
- /*
- * Place the points.
- */
- for (i = 0; i < n; i++) {
- double angle = i * 2 * PI / n;
- double x = r * sin(angle), y = - r * cos(angle);
- pts[i].x = (long)(c + x + 0.5);
- pts[i].y = (long)(c + y + 0.5);
- pts[i].d = d;
- }
- }
- static char *new_game_desc(const game_params *params, random_state *rs,
- char **aux, bool interactive)
- {
- int n = params->n, i;
- long w, h, j, k, m;
- point *pts, *pts2;
- long *tmp;
- tree234 *edges, *vertices;
- edge *e, *e2;
- vertex *v, *vs, *vlist;
- char *ret;
- w = h = COORDLIMIT(n);
- /*
- * Choose n points from this grid.
- */
- pts = snewn(n, point);
- tmp = snewn(w*h, long);
- for (i = 0; i < w*h; i++)
- tmp[i] = i;
- shuffle(tmp, w*h, sizeof(*tmp), rs);
- for (i = 0; i < n; i++) {
- pts[i].x = tmp[i] % w;
- pts[i].y = tmp[i] / w;
- pts[i].d = 1;
- }
- sfree(tmp);
- /*
- * Now start adding edges between the points.
- *
- * At all times, we attempt to add an edge to the lowest-degree
- * vertex we currently have, and we try the other vertices as
- * candidate second endpoints in order of distance from this
- * one. We stop as soon as we find an edge which
- *
- * (a) does not increase any vertex's degree beyond MAXDEGREE
- * (b) does not cross any existing edges
- * (c) does not intersect any actual point.
- */
- vs = snewn(n, vertex);
- vertices = newtree234(vertcmp);
- for (i = 0; i < n; i++) {
- v = vs + i;
- v->param = 0; /* in this tree, param is the degree */
- v->vindex = i;
- add234(vertices, v);
- }
- edges = newtree234(edgecmp);
- vlist = snewn(n, vertex);
- while (1) {
- bool added = false;
- for (i = 0; i < n; i++) {
- v = index234(vertices, i);
- j = v->vindex;
- if (v->param >= MAXDEGREE)
- break; /* nothing left to add! */
- /*
- * Sort the other vertices into order of their distance
- * from this one. Don't bother looking below i, because
- * we've already tried those edges the other way round.
- * Also here we rule out target vertices with too high
- * a degree, and (of course) ones to which we already
- * have an edge.
- */
- m = 0;
- for (k = i+1; k < n; k++) {
- vertex *kv = index234(vertices, k);
- int ki = kv->vindex;
- int dx, dy;
- if (kv->param >= MAXDEGREE || isedge(edges, ki, j))
- continue;
- vlist[m].vindex = ki;
- dx = pts[ki].x - pts[j].x;
- dy = pts[ki].y - pts[j].y;
- vlist[m].param = dx*dx + dy*dy;
- m++;
- }
- qsort(vlist, m, sizeof(*vlist), vertcmpC);
- for (k = 0; k < m; k++) {
- int p;
- int ki = vlist[k].vindex;
- /*
- * Check to see whether this edge intersects any
- * existing edge or point.
- */
- for (p = 0; p < n; p++)
- if (p != ki && p != j && cross(pts[ki], pts[j],
- pts[p], pts[p]))
- break;
- if (p < n)
- continue;
- for (p = 0; (e = index234(edges, p)) != NULL; p++)
- if (e->a != ki && e->a != j &&
- e->b != ki && e->b != j &&
- cross(pts[ki], pts[j], pts[e->a], pts[e->b]))
- break;
- if (e)
- continue;
- /*
- * We're done! Add this edge, modify the degrees of
- * the two vertices involved, and break.
- */
- addedge(edges, j, ki);
- added = true;
- del234(vertices, vs+j);
- vs[j].param++;
- add234(vertices, vs+j);
- del234(vertices, vs+ki);
- vs[ki].param++;
- add234(vertices, vs+ki);
- break;
- }
- if (k < m)
- break;
- }
- if (!added)
- break; /* we're done. */
- }
- /*
- * That's our graph. Now shuffle the points, making sure that
- * they come out with at least one crossed line when arranged
- * in a circle (so that the puzzle isn't immediately solved!).
- */
- tmp = snewn(n, long);
- for (i = 0; i < n; i++)
- tmp[i] = i;
- pts2 = snewn(n, point);
- make_circle(pts2, n, w);
- while (1) {
- shuffle(tmp, n, sizeof(*tmp), rs);
- for (i = 0; (e = index234(edges, i)) != NULL; i++) {
- for (j = i+1; (e2 = index234(edges, j)) != NULL; j++) {
- if (e2->a == e->a || e2->a == e->b ||
- e2->b == e->a || e2->b == e->b)
- continue;
- if (cross(pts2[tmp[e2->a]], pts2[tmp[e2->b]],
- pts2[tmp[e->a]], pts2[tmp[e->b]]))
- break;
- }
- if (e2)
- break;
- }
- if (e)
- break; /* we've found a crossing */
- }
- /*
- * We're done. Now encode the graph in a string format. Let's
- * use a comma-separated list of dash-separated vertex number
- * pairs, numbered from zero. We'll sort the list to prevent
- * side channels.
- */
- ret = NULL;
- {
- const char *sep;
- char buf[80];
- int retlen;
- edge *ea;
- retlen = 0;
- m = count234(edges);
- ea = snewn(m, edge);
- for (i = 0; (e = index234(edges, i)) != NULL; i++) {
- assert(i < m);
- ea[i].a = min(tmp[e->a], tmp[e->b]);
- ea[i].b = max(tmp[e->a], tmp[e->b]);
- retlen += 1 + sprintf(buf, "%d-%d", ea[i].a, ea[i].b);
- }
- assert(i == m);
- qsort(ea, m, sizeof(*ea), edgecmpC);
- ret = snewn(retlen, char);
- sep = "";
- k = 0;
- for (i = 0; i < m; i++) {
- k += sprintf(ret + k, "%s%d-%d", sep, ea[i].a, ea[i].b);
- sep = ",";
- }
- assert(k < retlen);
- sfree(ea);
- }
- /*
- * Encode the solution we started with as an aux_info string.
- */
- {
- char buf[80];
- char *auxstr;
- int auxlen;
- auxlen = 2; /* leading 'S' and trailing '\0' */
- for (i = 0; i < n; i++) {
- j = tmp[i];
- pts2[j] = pts[i];
- if (pts2[j].d & 1) {
- pts2[j].x *= 2;
- pts2[j].y *= 2;
- pts2[j].d *= 2;
- }
- pts2[j].x += pts2[j].d / 2;
- pts2[j].y += pts2[j].d / 2;
- auxlen += sprintf(buf, ";P%d:%ld,%ld/%ld", i,
- pts2[j].x, pts2[j].y, pts2[j].d);
- }
- k = 0;
- auxstr = snewn(auxlen, char);
- auxstr[k++] = 'S';
- for (i = 0; i < n; i++)
- k += sprintf(auxstr+k, ";P%d:%ld,%ld/%ld", i,
- pts2[i].x, pts2[i].y, pts2[i].d);
- assert(k < auxlen);
- *aux = auxstr;
- }
- sfree(pts2);
- sfree(tmp);
- sfree(vlist);
- freetree234(vertices);
- sfree(vs);
- while ((e = delpos234(edges, 0)) != NULL)
- sfree(e);
- freetree234(edges);
- sfree(pts);
- return ret;
- }
- static const char *validate_desc(const game_params *params, const char *desc)
- {
- int a, b;
- while (*desc) {
- a = atoi(desc);
- if (a < 0 || a >= params->n)
- return "Number out of range in game description";
- while (*desc && isdigit((unsigned char)*desc)) desc++;
- if (*desc != '-')
- return "Expected '-' after number in game description";
- desc++; /* eat dash */
- b = atoi(desc);
- if (b < 0 || b >= params->n)
- return "Number out of range in game description";
- while (*desc && isdigit((unsigned char)*desc)) desc++;
- if (*desc) {
- if (*desc != ',')
- return "Expected ',' after number in game description";
- desc++; /* eat comma */
- }
- if (a == b)
- return "Node linked to itself in game description";
- }
- return NULL;
- }
- static void mark_crossings(game_state *state)
- {
- bool ok = true;
- int i, j;
- edge *e, *e2;
- #ifdef SHOW_CROSSINGS
- for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++)
- state->crosses[i] = false;
- #endif
- /*
- * Check correctness: for every pair of edges, see whether they
- * cross.
- */
- for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
- for (j = i+1; (e2 = index234(state->graph->edges, j)) != NULL; j++) {
- if (e2->a == e->a || e2->a == e->b ||
- e2->b == e->a || e2->b == e->b)
- continue;
- if (cross(state->pts[e2->a], state->pts[e2->b],
- state->pts[e->a], state->pts[e->b])) {
- ok = false;
- #ifdef SHOW_CROSSINGS
- state->crosses[i] = state->crosses[j] = true;
- #else
- goto done; /* multi-level break - sorry */
- #endif
- }
- }
- }
- /*
- * e == NULL if we've gone through all the edge pairs
- * without finding a crossing.
- */
- #ifndef SHOW_CROSSINGS
- done:
- #endif
- if (ok)
- state->completed = true;
- }
- static game_state *new_game(midend *me, const game_params *params,
- const char *desc)
- {
- int n = params->n;
- game_state *state = snew(game_state);
- int a, b;
- state->params = *params;
- state->w = state->h = COORDLIMIT(n);
- state->pts = snewn(n, point);
- make_circle(state->pts, n, state->w);
- state->graph = snew(struct graph);
- state->graph->refcount = 1;
- state->graph->edges = newtree234(edgecmp);
- state->completed = state->cheated = state->just_solved = false;
- while (*desc) {
- a = atoi(desc);
- assert(a >= 0 && a < params->n);
- while (*desc && isdigit((unsigned char)*desc)) desc++;
- assert(*desc == '-');
- desc++; /* eat dash */
- b = atoi(desc);
- assert(b >= 0 && b < params->n);
- while (*desc && isdigit((unsigned char)*desc)) desc++;
- if (*desc) {
- assert(*desc == ',');
- desc++; /* eat comma */
- }
- addedge(state->graph->edges, a, b);
- }
- #ifdef SHOW_CROSSINGS
- state->crosses = snewn(count234(state->graph->edges), int);
- mark_crossings(state); /* sets up `crosses' and `completed' */
- #endif
- return state;
- }
- static game_state *dup_game(const game_state *state)
- {
- int n = state->params.n;
- game_state *ret = snew(game_state);
- ret->params = state->params;
- ret->w = state->w;
- ret->h = state->h;
- ret->pts = snewn(n, point);
- memcpy(ret->pts, state->pts, n * sizeof(point));
- ret->graph = state->graph;
- ret->graph->refcount++;
- ret->completed = state->completed;
- ret->cheated = state->cheated;
- ret->just_solved = state->just_solved;
- #ifdef SHOW_CROSSINGS
- ret->crosses = snewn(count234(ret->graph->edges), int);
- memcpy(ret->crosses, state->crosses,
- count234(ret->graph->edges) * sizeof(int));
- #endif
- return ret;
- }
- static void free_game(game_state *state)
- {
- if (--state->graph->refcount <= 0) {
- edge *e;
- while ((e = delpos234(state->graph->edges, 0)) != NULL)
- sfree(e);
- freetree234(state->graph->edges);
- sfree(state->graph);
- }
- sfree(state->pts);
- sfree(state);
- }
- static char *solve_game(const game_state *state, const game_state *currstate,
- const char *aux, const char **error)
- {
- int n = state->params.n;
- int matrix[4];
- point *pts;
- int i, j, besti;
- float bestd;
- char buf[80], *ret;
- int retlen, retsize;
- if (!aux) {
- *error = "Solution not known for this puzzle";
- return NULL;
- }
- /*
- * Decode the aux_info to get the original point positions.
- */
- pts = snewn(n, point);
- aux++; /* eat 'S' */
- for (i = 0; i < n; i++) {
- int p, k;
- long x, y, d;
- int ret = sscanf(aux, ";P%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k);
- if (ret != 4 || p != i) {
- *error = "Internal error: aux_info badly formatted";
- sfree(pts);
- return NULL;
- }
- pts[i].x = x;
- pts[i].y = y;
- pts[i].d = d;
- aux += k;
- }
- /*
- * Now go through eight possible symmetries of the point set.
- * For each one, work out the sum of the Euclidean distances
- * between the points' current positions and their new ones.
- *
- * We're squaring distances here, which means we're at risk of
- * integer overflow. Fortunately, there's no real need to be
- * massively careful about rounding errors, since this is a
- * non-essential bit of the code; so I'll just work in floats
- * internally.
- */
- besti = -1;
- bestd = 0.0F;
- for (i = 0; i < 8; i++) {
- float d;
- matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
- matrix[i & 1] = (i & 2) ? +1 : -1;
- matrix[3-(i&1)] = (i & 4) ? +1 : -1;
- d = 0.0F;
- for (j = 0; j < n; j++) {
- float px = (float)pts[j].x / pts[j].d;
- float py = (float)pts[j].y / pts[j].d;
- float sx = (float)currstate->pts[j].x / currstate->pts[j].d;
- float sy = (float)currstate->pts[j].y / currstate->pts[j].d;
- float cx = (float)currstate->w / 2;
- float cy = (float)currstate->h / 2;
- float ox, oy, dx, dy;
- px -= cx;
- py -= cy;
- ox = matrix[0] * px + matrix[1] * py;
- oy = matrix[2] * px + matrix[3] * py;
- ox += cx;
- oy += cy;
- dx = ox - sx;
- dy = oy - sy;
- d += dx*dx + dy*dy;
- }
- if (besti < 0 || bestd > d) {
- besti = i;
- bestd = d;
- }
- }
- assert(besti >= 0);
- /*
- * Now we know which symmetry is closest to the points' current
- * positions. Use it.
- */
- matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
- matrix[besti & 1] = (besti & 2) ? +1 : -1;
- matrix[3-(besti&1)] = (besti & 4) ? +1 : -1;
- retsize = 256;
- ret = snewn(retsize, char);
- retlen = 0;
- ret[retlen++] = 'S';
- ret[retlen] = '\0';
- for (i = 0; i < n; i++) {
- float px = (float)pts[i].x / pts[i].d;
- float py = (float)pts[i].y / pts[i].d;
- float cx = (float)currstate->w / 2;
- float cy = (float)currstate->h / 2;
- float ox, oy;
- int extra;
- px -= cx;
- py -= cy;
- ox = matrix[0] * px + matrix[1] * py;
- oy = matrix[2] * px + matrix[3] * py;
- ox += cx;
- oy += cy;
- /*
- * Use a fixed denominator of 2, because we know the
- * original points were on an integer grid offset by 1/2.
- */
- pts[i].d = 2;
- ox *= pts[i].d;
- oy *= pts[i].d;
- pts[i].x = (long)(ox + 0.5F);
- pts[i].y = (long)(oy + 0.5F);
- extra = sprintf(buf, ";P%d:%ld,%ld/%ld", i,
- pts[i].x, pts[i].y, pts[i].d);
- if (retlen + extra >= retsize) {
- retsize = retlen + extra + 256;
- ret = sresize(ret, retsize, char);
- }
- strcpy(ret + retlen, buf);
- retlen += extra;
- }
- sfree(pts);
- return ret;
- }
- struct game_ui {
- int dragpoint; /* point being dragged; -1 if none */
- point newpoint; /* where it's been dragged to so far */
- bool just_dragged; /* reset in game_changed_state */
- bool just_moved; /* _set_ in game_changed_state */
- float anim_length;
- /*
- * User preference option to snap dragged points to a coarse-ish
- * grid. Requested by a user who otherwise found themself spending
- * too much time struggling to get lines nicely horizontal or
- * vertical.
- */
- bool snap_to_grid;
- };
- static game_ui *new_ui(const game_state *state)
- {
- game_ui *ui = snew(game_ui);
- ui->dragpoint = -1;
- ui->just_moved = ui->just_dragged = false;
- ui->snap_to_grid = false;
- return ui;
- }
- static config_item *get_prefs(game_ui *ui)
- {
- config_item *cfg;
- cfg = snewn(2, config_item);
- cfg[0].name = "Snap points to a grid";
- cfg[0].kw = "snap-to-grid";
- cfg[0].type = C_BOOLEAN;
- cfg[0].u.boolean.bval = ui->snap_to_grid;
- cfg[1].name = NULL;
- cfg[1].type = C_END;
- return cfg;
- }
- static void set_prefs(game_ui *ui, const config_item *cfg)
- {
- ui->snap_to_grid = cfg[0].u.boolean.bval;
- }
- static void free_ui(game_ui *ui)
- {
- sfree(ui);
- }
- static void game_changed_state(game_ui *ui, const game_state *oldstate,
- const game_state *newstate)
- {
- ui->dragpoint = -1;
- ui->just_moved = ui->just_dragged;
- ui->just_dragged = false;
- }
- struct game_drawstate {
- long tilesize;
- int bg, dragpoint;
- long *x, *y;
- };
- static void place_dragged_point(const game_state *state, game_ui *ui,
- const game_drawstate *ds, int x, int y)
- {
- if (ui->snap_to_grid) {
- /*
- * We snap points to a grid that has n-1 vertices on each
- * side. This should be large enough to permit a straight-
- * line drawing of any n-vertex planar graph, and moreover,
- * any specific planar embedding of that graph.
- *
- * Source: David Eppstein's book 'Forbidden Configurations in
- * Discrete Geometry' mentions (section 16.3, page 182) that
- * the point configuration he describes as GRID(n-1,n-1) -
- * that is, the vertices of a square grid with n-1 vertices on
- * each side - is universal for n-vertex planar graphs. In
- * other words (from definitions earlier in the chapter), if a
- * graph G admits any drawing in the plane at all, then it can
- * be drawn with straight lines, and with all vertices being
- * vertices of that grid.
- *
- * That fact by itself only says that _some_ planar embedding
- * of G can be drawn in this grid. We'd prefer that _all_
- * embeddings of G can be so drawn, because 'snap to grid' is
- * supposed to be a UI affordance, not an extra puzzle
- * challenge, so we don't want to constrain the player's
- * choice of planar embedding.
- *
- * But it doesn't make a difference. Proof: given a specific
- * planar embedding of G, triangulate it, by adding extra
- * edges to every face of degree > 3. When this process
- * terminates with every face a triangle, we have a new graph
- * G' such that no edge can be added without it ceasing to be
- * planar. Standard theorems say that a maximal planar graph
- * is 3-connected, and that a 3-connected planar graph has a
- * _unique_ embedding. So any drawing of G' in the plane can
- * be converted into a drawing of G in the desired embedding,
- * by simply removing all the extra edges that we added to
- * turn G into G'. And G' is still an n-vertex planar graph,
- * hence it can be drawn in GRID(n-1,n-1). []
- */
- int d = state->params.n - 1;
- x = d * x / (state->w * ds->tilesize);
- x *= (state->w * ds->tilesize) / d;
- x += (state->w * ds->tilesize) / (2*d);
- y = d * y / (state->h * ds->tilesize);
- y *= (state->h * ds->tilesize) / d;
- y += (state->h * ds->tilesize) / (2*d);
- }
- ui->newpoint.x = x;
- ui->newpoint.y = y;
- ui->newpoint.d = ds->tilesize;
- }
- static char *interpret_move(const game_state *state, game_ui *ui,
- const game_drawstate *ds,
- int x, int y, int button)
- {
- int n = state->params.n;
- if (IS_MOUSE_DOWN(button)) {
- int i, best;
- long bestd;
- /*
- * Begin drag. We drag the vertex _nearest_ to the pointer,
- * just in case one is nearly on top of another and we want
- * to drag the latter. However, we drag nothing at all if
- * the nearest vertex is outside DRAG_THRESHOLD.
- */
- best = -1;
- bestd = 0;
- for (i = 0; i < n; i++) {
- long px = state->pts[i].x * ds->tilesize / state->pts[i].d;
- long py = state->pts[i].y * ds->tilesize / state->pts[i].d;
- long dx = px - x;
- long dy = py - y;
- long d = dx*dx + dy*dy;
- if (best == -1 || bestd > d) {
- best = i;
- bestd = d;
- }
- }
- if (bestd <= DRAG_THRESHOLD * DRAG_THRESHOLD) {
- ui->dragpoint = best;
- place_dragged_point(state, ui, ds, x, y);
- return MOVE_UI_UPDATE;
- }
- } else if (IS_MOUSE_DRAG(button) && ui->dragpoint >= 0) {
- place_dragged_point(state, ui, ds, x, y);
- return MOVE_UI_UPDATE;
- } else if (IS_MOUSE_RELEASE(button) && ui->dragpoint >= 0) {
- int p = ui->dragpoint;
- char buf[80];
- ui->dragpoint = -1; /* terminate drag, no matter what */
- /*
- * First, see if we're within range. The user can cancel a
- * drag by dragging the point right off the window.
- */
- if (ui->newpoint.x < 0 ||
- ui->newpoint.x >= (long)state->w*ui->newpoint.d ||
- ui->newpoint.y < 0 ||
- ui->newpoint.y >= (long)state->h*ui->newpoint.d)
- return MOVE_UI_UPDATE;
- /*
- * We aren't cancelling the drag. Construct a move string
- * indicating where this point is going to.
- */
- sprintf(buf, "P%d:%ld,%ld/%ld", p,
- ui->newpoint.x, ui->newpoint.y, ui->newpoint.d);
- ui->just_dragged = true;
- return dupstr(buf);
- }
- return NULL;
- }
- static game_state *execute_move(const game_state *state, const char *move)
- {
- int n = state->params.n;
- int p, k;
- long x, y, d;
- game_state *ret = dup_game(state);
- ret->just_solved = false;
- while (*move) {
- if (*move == 'S') {
- move++;
- if (*move == ';') move++;
- ret->cheated = ret->just_solved = true;
- }
- if (*move == 'P' &&
- sscanf(move+1, "%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k) == 4 &&
- p >= 0 && p < n && d > 0) {
- ret->pts[p].x = x;
- ret->pts[p].y = y;
- ret->pts[p].d = d;
- move += k+1;
- if (*move == ';') move++;
- } else {
- free_game(ret);
- return NULL;
- }
- }
- mark_crossings(ret);
- return ret;
- }
- /* ----------------------------------------------------------------------
- * Drawing routines.
- */
- static void game_compute_size(const game_params *params, int tilesize,
- const game_ui *ui, int *x, int *y)
- {
- *x = *y = COORDLIMIT(params->n) * tilesize;
- }
- static void game_set_size(drawing *dr, game_drawstate *ds,
- const game_params *params, int tilesize)
- {
- ds->tilesize = tilesize;
- }
- static float *game_colours(frontend *fe, int *ncolours)
- {
- float *ret = snewn(3 * NCOLOURS, float);
- /*
- * COL_BACKGROUND is what we use as the normal background colour.
- * Unusually, though, it isn't colour #0: COL_SYSBACKGROUND, a bit
- * darker, takes that place. This means that if the user resizes
- * an Untangle window so as to change its aspect ratio, the
- * still-square playable area will be distinguished from the dead
- * space around it.
- */
- game_mkhighlight(fe, ret, COL_BACKGROUND, -1, COL_SYSBACKGROUND);
- ret[COL_LINE * 3 + 0] = 0.0F;
- ret[COL_LINE * 3 + 1] = 0.0F;
- ret[COL_LINE * 3 + 2] = 0.0F;
- #ifdef SHOW_CROSSINGS
- ret[COL_CROSSEDLINE * 3 + 0] = 1.0F;
- ret[COL_CROSSEDLINE * 3 + 1] = 0.0F;
- ret[COL_CROSSEDLINE * 3 + 2] = 0.0F;
- #endif
- ret[COL_OUTLINE * 3 + 0] = 0.0F;
- ret[COL_OUTLINE * 3 + 1] = 0.0F;
- ret[COL_OUTLINE * 3 + 2] = 0.0F;
- ret[COL_POINT * 3 + 0] = 0.0F;
- ret[COL_POINT * 3 + 1] = 0.0F;
- ret[COL_POINT * 3 + 2] = 1.0F;
- ret[COL_DRAGPOINT * 3 + 0] = 1.0F;
- ret[COL_DRAGPOINT * 3 + 1] = 1.0F;
- ret[COL_DRAGPOINT * 3 + 2] = 1.0F;
- ret[COL_NEIGHBOUR * 3 + 0] = 1.0F;
- ret[COL_NEIGHBOUR * 3 + 1] = 0.0F;
- ret[COL_NEIGHBOUR * 3 + 2] = 0.0F;
- ret[COL_FLASH1 * 3 + 0] = 0.5F;
- ret[COL_FLASH1 * 3 + 1] = 0.5F;
- ret[COL_FLASH1 * 3 + 2] = 0.5F;
- ret[COL_FLASH2 * 3 + 0] = 1.0F;
- ret[COL_FLASH2 * 3 + 1] = 1.0F;
- ret[COL_FLASH2 * 3 + 2] = 1.0F;
- *ncolours = NCOLOURS;
- return ret;
- }
- static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
- {
- struct game_drawstate *ds = snew(struct game_drawstate);
- int i;
- ds->tilesize = 0;
- ds->x = snewn(state->params.n, long);
- ds->y = snewn(state->params.n, long);
- for (i = 0; i < state->params.n; i++)
- ds->x[i] = ds->y[i] = -1;
- ds->bg = -1;
- ds->dragpoint = -1;
- return ds;
- }
- static void game_free_drawstate(drawing *dr, game_drawstate *ds)
- {
- sfree(ds->y);
- sfree(ds->x);
- sfree(ds);
- }
- static point mix(point a, point b, float distance)
- {
- point ret;
- ret.d = a.d * b.d;
- ret.x = (long)(a.x * b.d + distance * (b.x * a.d - a.x * b.d));
- ret.y = (long)(a.y * b.d + distance * (b.y * a.d - a.y * b.d));
- return ret;
- }
- static void game_redraw(drawing *dr, game_drawstate *ds,
- const game_state *oldstate, const game_state *state,
- int dir, const game_ui *ui,
- float animtime, float flashtime)
- {
- int w, h;
- edge *e;
- int i, j;
- int bg;
- bool points_moved;
- /*
- * There's no terribly sensible way to do partial redraws of
- * this game, so I'm going to have to resort to redrawing the
- * whole thing every time.
- */
- if (flashtime == 0)
- bg = COL_BACKGROUND;
- else if ((int)(flashtime * 4 / FLASH_TIME) % 2 == 0)
- bg = COL_FLASH1;
- else
- bg = COL_FLASH2;
- /*
- * To prevent excessive spinning on redraw during a completion
- * flash, we first check to see if _either_ the flash
- * background colour has changed _or_ at least one point has
- * moved _or_ a drag has begun or ended, and abandon the redraw
- * if neither is the case.
- *
- * Also in this loop we work out the coordinates of all the
- * points for this redraw.
- */
- points_moved = false;
- for (i = 0; i < state->params.n; i++) {
- point p = state->pts[i];
- long x, y;
- if (ui->dragpoint == i)
- p = ui->newpoint;
- if (oldstate)
- p = mix(oldstate->pts[i], p, animtime / ui->anim_length);
- x = p.x * ds->tilesize / p.d;
- y = p.y * ds->tilesize / p.d;
- if (ds->x[i] != x || ds->y[i] != y)
- points_moved = true;
- ds->x[i] = x;
- ds->y[i] = y;
- }
- if (ds->bg == bg && ds->dragpoint == ui->dragpoint && !points_moved)
- return; /* nothing to do */
- ds->dragpoint = ui->dragpoint;
- ds->bg = bg;
- game_compute_size(&state->params, ds->tilesize, ui, &w, &h);
- draw_rect(dr, 0, 0, w, h, bg);
- /*
- * Draw the edges.
- */
- for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
- draw_line(dr, ds->x[e->a], ds->y[e->a], ds->x[e->b], ds->y[e->b],
- #ifdef SHOW_CROSSINGS
- (oldstate?oldstate:state)->crosses[i] ?
- COL_CROSSEDLINE :
- #endif
- COL_LINE);
- }
- /*
- * Draw the points.
- *
- * When dragging, we should not only vary the colours, but
- * leave the point being dragged until last.
- */
- for (j = 0; j < 3; j++) {
- int thisc = (j == 0 ? COL_POINT :
- j == 1 ? COL_NEIGHBOUR : COL_DRAGPOINT);
- for (i = 0; i < state->params.n; i++) {
- int c;
- if (ui->dragpoint == i) {
- c = COL_DRAGPOINT;
- } else if (ui->dragpoint >= 0 &&
- isedge(state->graph->edges, ui->dragpoint, i)) {
- c = COL_NEIGHBOUR;
- } else {
- c = COL_POINT;
- }
- if (c == thisc) {
- #ifdef VERTEX_NUMBERS
- draw_circle(dr, ds->x[i], ds->y[i], DRAG_THRESHOLD, bg, bg);
- {
- char buf[80];
- sprintf(buf, "%d", i);
- draw_text(dr, ds->x[i], ds->y[i], FONT_VARIABLE,
- DRAG_THRESHOLD*3/2,
- ALIGN_VCENTRE|ALIGN_HCENTRE, c, buf);
- }
- #else
- draw_circle(dr, ds->x[i], ds->y[i], CIRCLE_RADIUS,
- c, COL_OUTLINE);
- #endif
- }
- }
- }
- draw_update(dr, 0, 0, w, h);
- }
- static float game_anim_length(const game_state *oldstate,
- const game_state *newstate, int dir, game_ui *ui)
- {
- if (ui->just_moved)
- return 0.0F;
- if ((dir < 0 ? oldstate : newstate)->just_solved)
- ui->anim_length = SOLVEANIM_TIME;
- else
- ui->anim_length = ANIM_TIME;
- return ui->anim_length;
- }
- static float game_flash_length(const game_state *oldstate,
- const game_state *newstate, int dir, game_ui *ui)
- {
- if (!oldstate->completed && newstate->completed &&
- !oldstate->cheated && !newstate->cheated)
- return FLASH_TIME;
- return 0.0F;
- }
- static void game_get_cursor_location(const game_ui *ui,
- const game_drawstate *ds,
- const game_state *state,
- const game_params *params,
- int *x, int *y, int *w, int *h)
- {
- }
- static int game_status(const game_state *state)
- {
- return state->completed ? +1 : 0;
- }
- #ifdef COMBINED
- #define thegame untangle
- #endif
- const struct game thegame = {
- "Untangle", "games.untangle", "untangle",
- default_params,
- game_fetch_preset, NULL,
- decode_params,
- encode_params,
- free_params,
- dup_params,
- true, game_configure, custom_params,
- validate_params,
- new_game_desc,
- validate_desc,
- new_game,
- dup_game,
- free_game,
- true, solve_game,
- false, NULL, NULL, /* can_format_as_text_now, text_format */
- get_prefs, set_prefs,
- new_ui,
- free_ui,
- NULL, /* encode_ui */
- NULL, /* decode_ui */
- NULL, /* game_request_keys */
- game_changed_state,
- NULL, /* current_key_label */
- interpret_move,
- execute_move,
- PREFERRED_TILESIZE, game_compute_size, game_set_size,
- game_colours,
- game_new_drawstate,
- game_free_drawstate,
- game_redraw,
- game_anim_length,
- game_flash_length,
- game_get_cursor_location,
- game_status,
- false, false, NULL, NULL, /* print_size, print */
- false, /* wants_statusbar */
- false, NULL, /* timing_state */
- SOLVE_ANIMATES, /* flags */
- };
|