123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024 |
- /*
- * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
- * numbers in some squares; you must divide the square grid up into
- * variously sized rectangles, such that every rectangle contains
- * exactly one numbered square and the area of each rectangle is
- * equal to the number contained in it.
- */
- /*
- * TODO:
- *
- * - Improve singleton removal.
- * + It would be nice to limit the size of the generated
- * rectangles in accordance with existing constraints such as
- * the maximum rectangle size and the one about not
- * generating a rectangle the full width or height of the
- * grid.
- * + This could be achieved by making a less random choice
- * about which of the available options to use.
- * + Alternatively, we could create our rectangle and then
- * split it up.
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <assert.h>
- #include <ctype.h>
- #ifdef NO_TGMATH_H
- # include <math.h>
- #else
- # include <tgmath.h>
- #endif
- #include "puzzles.h"
- enum {
- COL_BACKGROUND,
- COL_CORRECT,
- COL_LINE,
- COL_TEXT,
- COL_GRID,
- COL_DRAG, COL_DRAGERASE,
- COL_CURSOR,
- NCOLOURS
- };
- struct game_params {
- int w, h;
- float expandfactor;
- bool unique;
- };
- #define INDEX(state, x, y) (((y) * (state)->w) + (x))
- #define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
- #define grid(state,x,y) index(state, (state)->grid, x, y)
- #define vedge(state,x,y) index(state, (state)->vedge, x, y)
- #define hedge(state,x,y) index(state, (state)->hedge, x, y)
- #define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
- (y) >= dy && (y) < (state)->h )
- #define RANGE(state,x,y) CRANGE(state,x,y,0,0)
- #define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
- #define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
- #define PREFERRED_TILE_SIZE 24
- #define TILE_SIZE (ds->tilesize)
- #ifdef SMALL_SCREEN
- #define BORDER (2)
- #else
- #define BORDER (TILE_SIZE * 3 / 4)
- #endif
- #define CORNER_TOLERANCE 0.15F
- #define CENTRE_TOLERANCE 0.15F
- #define FLASH_TIME 0.13F
- #define COORD(x) ( (x) * TILE_SIZE + BORDER )
- #define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
- struct game_state {
- int w, h;
- int *grid; /* contains the numbers */
- unsigned char *vedge; /* (w+1) x h */
- unsigned char *hedge; /* w x (h+1) */
- bool completed, cheated;
- unsigned char *correct;
- };
- static game_params *default_params(void)
- {
- game_params *ret = snew(game_params);
- ret->w = ret->h = 7;
- ret->expandfactor = 0.0F;
- ret->unique = true;
- return ret;
- }
- static bool game_fetch_preset(int i, char **name, game_params **params)
- {
- game_params *ret;
- int w, h;
- char buf[80];
- switch (i) {
- case 0: w = 7, h = 7; break;
- case 1: w = 9, h = 9; break;
- case 2: w = 11, h = 11; break;
- case 3: w = 13, h = 13; break;
- case 4: w = 15, h = 15; break;
- #ifndef SMALL_SCREEN
- case 5: w = 17, h = 17; break;
- case 6: w = 19, h = 19; break;
- #endif
- default: return false;
- }
- sprintf(buf, "%dx%d", w, h);
- *name = dupstr(buf);
- *params = ret = snew(game_params);
- ret->w = w;
- ret->h = h;
- ret->expandfactor = 0.0F;
- ret->unique = true;
- return true;
- }
- static void free_params(game_params *params)
- {
- sfree(params);
- }
- static game_params *dup_params(const game_params *params)
- {
- game_params *ret = snew(game_params);
- *ret = *params; /* structure copy */
- return ret;
- }
- static void decode_params(game_params *ret, char const *string)
- {
- ret->w = ret->h = atoi(string);
- while (*string && isdigit((unsigned char)*string)) string++;
- if (*string == 'x') {
- string++;
- ret->h = atoi(string);
- while (*string && isdigit((unsigned char)*string)) string++;
- }
- if (*string == 'e') {
- string++;
- ret->expandfactor = (float)atof(string);
- while (*string &&
- (*string == '.' || isdigit((unsigned char)*string))) string++;
- }
- if (*string == 'a') {
- string++;
- ret->unique = false;
- }
- }
- static char *encode_params(const game_params *params, bool full)
- {
- char data[256];
- sprintf(data, "%dx%d", params->w, params->h);
- if (full && params->expandfactor)
- sprintf(data + strlen(data), "e%g", params->expandfactor);
- if (full && !params->unique)
- strcat(data, "a");
- return dupstr(data);
- }
- static config_item *game_configure(const game_params *params)
- {
- config_item *ret;
- char buf[80];
- ret = snewn(5, config_item);
- ret[0].name = "Width";
- ret[0].type = C_STRING;
- sprintf(buf, "%d", params->w);
- ret[0].u.string.sval = dupstr(buf);
- ret[1].name = "Height";
- ret[1].type = C_STRING;
- sprintf(buf, "%d", params->h);
- ret[1].u.string.sval = dupstr(buf);
- ret[2].name = "Expansion factor";
- ret[2].type = C_STRING;
- sprintf(buf, "%g", params->expandfactor);
- ret[2].u.string.sval = dupstr(buf);
- ret[3].name = "Ensure unique solution";
- ret[3].type = C_BOOLEAN;
- ret[3].u.boolean.bval = params->unique;
- ret[4].name = NULL;
- ret[4].type = C_END;
- return ret;
- }
- static game_params *custom_params(const config_item *cfg)
- {
- game_params *ret = snew(game_params);
- ret->w = atoi(cfg[0].u.string.sval);
- ret->h = atoi(cfg[1].u.string.sval);
- ret->expandfactor = (float)atof(cfg[2].u.string.sval);
- ret->unique = cfg[3].u.boolean.bval;
- return ret;
- }
- static const char *validate_params(const game_params *params, bool full)
- {
- if (params->w <= 0 || params->h <= 0)
- return "Width and height must both be greater than zero";
- if (params->w > INT_MAX / params->h)
- return "Width times height must not be unreasonably large";
- if (params->w*params->h < 2)
- return "Grid area must be greater than one";
- if (params->expandfactor < 0.0F)
- return "Expansion factor may not be negative";
- return NULL;
- }
- struct point {
- int x, y;
- };
- struct rect {
- int x, y;
- int w, h;
- };
- struct rectlist {
- struct rect *rects;
- int n;
- };
- struct numberdata {
- int area;
- int npoints;
- struct point *points;
- };
- /* ----------------------------------------------------------------------
- * Solver for Rectangles games.
- *
- * This solver is souped up beyond the needs of actually _solving_
- * a puzzle. It is also designed to cope with uncertainty about
- * where the numbers have been placed. This is because I run it on
- * my generated grids _before_ placing the numbers, and have it
- * tell me where I need to place the numbers to ensure a unique
- * solution.
- */
- static void remove_rect_placement(int w, int h,
- struct rectlist *rectpositions,
- int *overlaps,
- int rectnum, int placement)
- {
- int x, y, xx, yy;
- #ifdef SOLVER_DIAGNOSTICS
- printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
- rectpositions[rectnum].rects[placement].x,
- rectpositions[rectnum].rects[placement].y,
- rectpositions[rectnum].rects[placement].w,
- rectpositions[rectnum].rects[placement].h);
- #endif
- /*
- * Decrement each entry in the overlaps array to reflect the
- * removal of this rectangle placement.
- */
- for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
- y = yy + rectpositions[rectnum].rects[placement].y;
- for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
- x = xx + rectpositions[rectnum].rects[placement].x;
- assert(overlaps[(rectnum * h + y) * w + x] != 0);
- if (overlaps[(rectnum * h + y) * w + x] > 0)
- overlaps[(rectnum * h + y) * w + x]--;
- }
- }
- /*
- * Remove the placement from the list of positions for that
- * rectangle, by interchanging it with the one on the end.
- */
- if (placement < rectpositions[rectnum].n - 1) {
- struct rect t;
- t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
- rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
- rectpositions[rectnum].rects[placement];
- rectpositions[rectnum].rects[placement] = t;
- }
- rectpositions[rectnum].n--;
- }
- static void remove_number_placement(int w, int h, struct numberdata *number,
- int index, int *rectbyplace)
- {
- /*
- * Remove the entry from the rectbyplace array.
- */
- rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
- /*
- * Remove the placement from the list of candidates for that
- * number, by interchanging it with the one on the end.
- */
- if (index < number->npoints - 1) {
- struct point t;
- t = number->points[number->npoints - 1];
- number->points[number->npoints - 1] = number->points[index];
- number->points[index] = t;
- }
- number->npoints--;
- }
- /*
- * Returns 0 for failure to solve due to inconsistency; 1 for
- * success; 2 for failure to complete a solution due to either
- * ambiguity or it being too difficult.
- */
- static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
- unsigned char *hedge, unsigned char *vedge,
- random_state *rs)
- {
- struct rectlist *rectpositions;
- int *overlaps, *rectbyplace, *workspace;
- int i, ret;
- /*
- * Start by setting up a list of candidate positions for each
- * rectangle.
- */
- rectpositions = snewn(nrects, struct rectlist);
- for (i = 0; i < nrects; i++) {
- int rw, rh, area = numbers[i].area;
- int j, minx, miny, maxx, maxy;
- struct rect *rlist;
- int rlistn, rlistsize;
- /*
- * For each rectangle, begin by finding the bounding
- * rectangle of its candidate number placements.
- */
- maxx = maxy = -1;
- minx = w;
- miny = h;
- for (j = 0; j < numbers[i].npoints; j++) {
- if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
- if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
- if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
- if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
- }
- /*
- * Now loop over all possible rectangle placements
- * overlapping a point within that bounding rectangle;
- * ensure each one actually contains a candidate number
- * placement, and add it to the list.
- */
- rlist = NULL;
- rlistn = rlistsize = 0;
- for (rw = 1; rw <= area && rw <= w; rw++) {
- int x, y;
- if (area % rw)
- continue;
- rh = area / rw;
- if (rh > h)
- continue;
- for (y = miny - rh + 1; y <= maxy; y++) {
- if (y < 0 || y+rh > h)
- continue;
- for (x = minx - rw + 1; x <= maxx; x++) {
- if (x < 0 || x+rw > w)
- continue;
- /*
- * See if we can find a candidate number
- * placement within this rectangle.
- */
- for (j = 0; j < numbers[i].npoints; j++)
- if (numbers[i].points[j].x >= x &&
- numbers[i].points[j].x < x+rw &&
- numbers[i].points[j].y >= y &&
- numbers[i].points[j].y < y+rh)
- break;
- if (j < numbers[i].npoints) {
- /*
- * Add this to the list of candidate
- * placements for this rectangle.
- */
- if (rlistn >= rlistsize) {
- rlistsize = rlistn + 32;
- rlist = sresize(rlist, rlistsize, struct rect);
- }
- rlist[rlistn].x = x;
- rlist[rlistn].y = y;
- rlist[rlistn].w = rw;
- rlist[rlistn].h = rh;
- #ifdef SOLVER_DIAGNOSTICS
- printf("rect %d [area %d]: candidate position at"
- " %d,%d w=%d h=%d\n",
- i, area, x, y, rw, rh);
- #endif
- rlistn++;
- }
- }
- }
- }
- rectpositions[i].rects = rlist;
- rectpositions[i].n = rlistn;
- }
- /*
- * Next, construct a multidimensional array tracking how many
- * candidate positions for each rectangle overlap each square.
- *
- * Indexing of this array is by the formula
- *
- * overlaps[(rectindex * h + y) * w + x]
- *
- * A positive or zero value indicates what it sounds as if it
- * should; -1 indicates that this square _cannot_ be part of
- * this rectangle; and -2 indicates that it _definitely_ is
- * (which is distinct from 1, because one might very well know
- * that _if_ square S is part of rectangle R then it must be
- * because R is placed in a certain position without knowing
- * that it definitely _is_).
- */
- overlaps = snewn(nrects * w * h, int);
- memset(overlaps, 0, nrects * w * h * sizeof(int));
- for (i = 0; i < nrects; i++) {
- int j;
- for (j = 0; j < rectpositions[i].n; j++) {
- int xx, yy;
- for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
- for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
- overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
- xx+rectpositions[i].rects[j].x]++;
- }
- }
- /*
- * Also we want an array covering the grid once, to make it
- * easy to figure out which squares are candidate number
- * placements for which rectangles. (The existence of this
- * single array assumes that no square starts off as a
- * candidate number placement for more than one rectangle. This
- * assumption is justified, because this solver is _either_
- * used to solve real problems - in which case there is a
- * single placement for every number - _or_ used to decide on
- * number placements for a new puzzle, in which case each
- * number's placements are confined to the intended position of
- * the rectangle containing that number.)
- */
- rectbyplace = snewn(w * h, int);
- for (i = 0; i < w*h; i++)
- rectbyplace[i] = -1;
- for (i = 0; i < nrects; i++) {
- int j;
- for (j = 0; j < numbers[i].npoints; j++) {
- int x = numbers[i].points[j].x;
- int y = numbers[i].points[j].y;
- assert(rectbyplace[y * w + x] == -1);
- rectbyplace[y * w + x] = i;
- }
- }
- workspace = snewn(nrects, int);
- /*
- * Now run the actual deduction loop.
- */
- while (1) {
- bool done_something = false;
- #ifdef SOLVER_DIAGNOSTICS
- printf("starting deduction loop\n");
- for (i = 0; i < nrects; i++) {
- printf("rect %d overlaps:\n", i);
- {
- int x, y;
- for (y = 0; y < h; y++) {
- for (x = 0; x < w; x++) {
- printf("%3d", overlaps[(i * h + y) * w + x]);
- }
- printf("\n");
- }
- }
- }
- printf("rectbyplace:\n");
- {
- int x, y;
- for (y = 0; y < h; y++) {
- for (x = 0; x < w; x++) {
- printf("%3d", rectbyplace[y * w + x]);
- }
- printf("\n");
- }
- }
- #endif
- /*
- * Housekeeping. Look for rectangles whose number has only
- * one candidate position left, and mark that square as
- * known if it isn't already.
- */
- for (i = 0; i < nrects; i++) {
- if (numbers[i].npoints == 1) {
- int x = numbers[i].points[0].x;
- int y = numbers[i].points[0].y;
- if (overlaps[(i * h + y) * w + x] >= -1) {
- int j;
- if (overlaps[(i * h + y) * w + x] <= 0) {
- ret = 0; /* inconsistency */
- goto cleanup;
- }
- #ifdef SOLVER_DIAGNOSTICS
- printf("marking %d,%d as known for rect %d"
- " (sole remaining number position)\n", x, y, i);
- #endif
- for (j = 0; j < nrects; j++)
- overlaps[(j * h + y) * w + x] = -1;
-
- overlaps[(i * h + y) * w + x] = -2;
- }
- }
- }
- /*
- * Now look at the intersection of all possible placements
- * for each rectangle, and mark all squares in that
- * intersection as known for that rectangle if they aren't
- * already.
- */
- for (i = 0; i < nrects; i++) {
- int minx, miny, maxx, maxy, xx, yy, j;
- minx = miny = 0;
- maxx = w;
- maxy = h;
- for (j = 0; j < rectpositions[i].n; j++) {
- int x = rectpositions[i].rects[j].x;
- int y = rectpositions[i].rects[j].y;
- int w = rectpositions[i].rects[j].w;
- int h = rectpositions[i].rects[j].h;
- if (minx < x) minx = x;
- if (miny < y) miny = y;
- if (maxx > x+w) maxx = x+w;
- if (maxy > y+h) maxy = y+h;
- }
- for (yy = miny; yy < maxy; yy++)
- for (xx = minx; xx < maxx; xx++)
- if (overlaps[(i * h + yy) * w + xx] >= -1) {
- if (overlaps[(i * h + yy) * w + xx] <= 0) {
- ret = 0; /* inconsistency */
- goto cleanup;
- }
- #ifdef SOLVER_DIAGNOSTICS
- printf("marking %d,%d as known for rect %d"
- " (intersection of all placements)\n",
- xx, yy, i);
- #endif
- for (j = 0; j < nrects; j++)
- overlaps[(j * h + yy) * w + xx] = -1;
-
- overlaps[(i * h + yy) * w + xx] = -2;
- }
- }
- /*
- * Rectangle-focused deduction. Look at each rectangle in
- * turn and try to rule out some of its candidate
- * placements.
- */
- for (i = 0; i < nrects; i++) {
- int j;
- for (j = 0; j < rectpositions[i].n; j++) {
- int xx, yy, k;
- bool del = false;
- for (k = 0; k < nrects; k++)
- workspace[k] = 0;
- for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
- int y = yy + rectpositions[i].rects[j].y;
- for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
- int x = xx + rectpositions[i].rects[j].x;
-
- if (overlaps[(i * h + y) * w + x] == -1) {
- /*
- * This placement overlaps a square
- * which is _known_ to be part of
- * another rectangle. Therefore we must
- * rule it out.
- */
- #ifdef SOLVER_DIAGNOSTICS
- printf("rect %d placement at %d,%d w=%d h=%d "
- "contains %d,%d which is known-other\n", i,
- rectpositions[i].rects[j].x,
- rectpositions[i].rects[j].y,
- rectpositions[i].rects[j].w,
- rectpositions[i].rects[j].h,
- x, y);
- #endif
- del = true;
- }
- if (rectbyplace[y * w + x] != -1) {
- /*
- * This placement overlaps one of the
- * candidate number placements for some
- * rectangle. Count it.
- */
- workspace[rectbyplace[y * w + x]]++;
- }
- }
- }
- if (!del) {
- /*
- * If we haven't ruled this placement out
- * already, see if it overlaps _all_ of the
- * candidate number placements for any
- * rectangle. If so, we can rule it out.
- */
- for (k = 0; k < nrects; k++)
- if (k != i && workspace[k] == numbers[k].npoints) {
- #ifdef SOLVER_DIAGNOSTICS
- printf("rect %d placement at %d,%d w=%d h=%d "
- "contains all number points for rect %d\n",
- i,
- rectpositions[i].rects[j].x,
- rectpositions[i].rects[j].y,
- rectpositions[i].rects[j].w,
- rectpositions[i].rects[j].h,
- k);
- #endif
- del = true;
- break;
- }
- /*
- * Failing that, see if it overlaps at least
- * one of the candidate number placements for
- * itself! (This might not be the case if one
- * of those number placements has been removed
- * recently.).
- */
- if (!del && workspace[i] == 0) {
- #ifdef SOLVER_DIAGNOSTICS
- printf("rect %d placement at %d,%d w=%d h=%d "
- "contains none of its own number points\n",
- i,
- rectpositions[i].rects[j].x,
- rectpositions[i].rects[j].y,
- rectpositions[i].rects[j].w,
- rectpositions[i].rects[j].h);
- #endif
- del = true;
- }
- }
- if (del) {
- remove_rect_placement(w, h, rectpositions, overlaps, i, j);
- j--; /* don't skip over next placement */
- done_something = true;
- }
- }
- }
- /*
- * Square-focused deduction. Look at each square not marked
- * as known, and see if there are any which can only be
- * part of a single rectangle.
- */
- {
- int x, y, n, index;
- for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
- /* Known squares are marked as <0 everywhere, so we only need
- * to check the overlaps entry for rect 0. */
- if (overlaps[y * w + x] < 0)
- continue; /* known already */
- n = 0;
- index = -1;
- for (i = 0; i < nrects; i++)
- if (overlaps[(i * h + y) * w + x] > 0)
- n++, index = i;
- if (n == 1) {
- int j;
- /*
- * Now we can rule out all placements for
- * rectangle `index' which _don't_ contain
- * square x,y.
- */
- #ifdef SOLVER_DIAGNOSTICS
- printf("square %d,%d can only be in rectangle %d\n",
- x, y, index);
- #endif
- for (j = 0; j < rectpositions[index].n; j++) {
- struct rect *r = &rectpositions[index].rects[j];
- if (x >= r->x && x < r->x + r->w &&
- y >= r->y && y < r->y + r->h)
- continue; /* this one is OK */
- remove_rect_placement(w, h, rectpositions, overlaps,
- index, j);
- j--; /* don't skip over next placement */
- done_something = true;
- }
- }
- }
- }
- /*
- * If we've managed to deduce anything by normal means,
- * loop round again and see if there's more to be done.
- * Only if normal deduction has completely failed us should
- * we now move on to narrowing down the possible number
- * placements.
- */
- if (done_something)
- continue;
- /*
- * Now we have done everything we can with the current set
- * of number placements. So we need to winnow the number
- * placements so as to narrow down the possibilities. We do
- * this by searching for a candidate placement (of _any_
- * rectangle) which overlaps a candidate placement of the
- * number for some other rectangle.
- */
- if (rs) {
- struct rpn {
- int rect;
- int placement;
- int number;
- } *rpns = NULL;
- size_t nrpns = 0, rpnsize = 0;
- int j;
- for (i = 0; i < nrects; i++) {
- for (j = 0; j < rectpositions[i].n; j++) {
- int xx, yy;
- for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
- int y = yy + rectpositions[i].rects[j].y;
- for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
- int x = xx + rectpositions[i].rects[j].x;
- if (rectbyplace[y * w + x] >= 0 &&
- rectbyplace[y * w + x] != i) {
- /*
- * Add this to the list of
- * winnowing possibilities.
- */
- if (nrpns >= rpnsize) {
- rpnsize = rpnsize * 3 / 2 + 32;
- rpns = sresize(rpns, rpnsize, struct rpn);
- }
- rpns[nrpns].rect = i;
- rpns[nrpns].placement = j;
- rpns[nrpns].number = rectbyplace[y * w + x];
- nrpns++;
- }
- }
- }
-
- }
- }
- #ifdef SOLVER_DIAGNOSTICS
- printf("%d candidate rect placements we could eliminate\n", nrpns);
- #endif
- if (nrpns > 0) {
- /*
- * Now choose one of these unwanted rectangle
- * placements, and eliminate it.
- */
- int index = random_upto(rs, nrpns);
- int k, m;
- struct rpn rpn = rpns[index];
- struct rect r;
- sfree(rpns);
- i = rpn.rect;
- j = rpn.placement;
- k = rpn.number;
- r = rectpositions[i].rects[j];
- /*
- * We rule out placement j of rectangle i by means
- * of removing all of rectangle k's candidate
- * number placements which do _not_ overlap it.
- * This will ensure that it is eliminated during
- * the next pass of rectangle-focused deduction.
- */
- #ifdef SOLVER_DIAGNOSTICS
- printf("ensuring number for rect %d is within"
- " rect %d's placement at %d,%d w=%d h=%d\n",
- k, i, r.x, r.y, r.w, r.h);
- #endif
- for (m = 0; m < numbers[k].npoints; m++) {
- int x = numbers[k].points[m].x;
- int y = numbers[k].points[m].y;
- if (x < r.x || x >= r.x + r.w ||
- y < r.y || y >= r.y + r.h) {
- #ifdef SOLVER_DIAGNOSTICS
- printf("eliminating number for rect %d at %d,%d\n",
- k, x, y);
- #endif
- remove_number_placement(w, h, &numbers[k],
- m, rectbyplace);
- m--; /* don't skip the next one */
- done_something = true;
- }
- }
- }
- }
- if (!done_something) {
- #ifdef SOLVER_DIAGNOSTICS
- printf("terminating deduction loop\n");
- #endif
- break;
- }
- }
- cleanup:
- ret = 1;
- for (i = 0; i < nrects; i++) {
- #ifdef SOLVER_DIAGNOSTICS
- printf("rect %d has %d possible placements\n",
- i, rectpositions[i].n);
- #endif
- if (rectpositions[i].n <= 0) {
- ret = 0; /* inconsistency */
- } else if (rectpositions[i].n > 1) {
- ret = 2; /* remaining uncertainty */
- } else if (hedge && vedge) {
- /*
- * Place the rectangle in its only possible position.
- */
- int x, y;
- struct rect *r = &rectpositions[i].rects[0];
- for (y = 0; y < r->h; y++) {
- if (r->x > 0)
- vedge[(r->y+y) * w + r->x] = 1;
- if (r->x+r->w < w)
- vedge[(r->y+y) * w + r->x+r->w] = 1;
- }
- for (x = 0; x < r->w; x++) {
- if (r->y > 0)
- hedge[r->y * w + r->x+x] = 1;
- if (r->y+r->h < h)
- hedge[(r->y+r->h) * w + r->x+x] = 1;
- }
- }
- }
- /*
- * Free up all allocated storage.
- */
- sfree(workspace);
- sfree(rectbyplace);
- sfree(overlaps);
- for (i = 0; i < nrects; i++)
- sfree(rectpositions[i].rects);
- sfree(rectpositions);
- return ret;
- }
- /* ----------------------------------------------------------------------
- * Grid generation code.
- */
- /*
- * This function does one of two things. If passed r==NULL, it
- * counts the number of possible rectangles which cover the given
- * square, and returns it in *n. If passed r!=NULL then it _reads_
- * *n to find an index, counts the possible rectangles until it
- * reaches the nth, and writes it into r.
- *
- * `scratch' is expected to point to an array of 2 * params->w
- * ints, used internally as scratch space (and passed in like this
- * to avoid re-allocating and re-freeing it every time round a
- * tight loop).
- */
- static void enum_rects(game_params *params, int *grid, struct rect *r, int *n,
- int sx, int sy, int *scratch)
- {
- int rw, rh, mw, mh;
- int x, y, dx, dy;
- int maxarea, realmaxarea;
- int index = 0;
- int *top, *bottom;
- /*
- * Maximum rectangle area is 1/6 of total grid size, unless
- * this means we can't place any rectangles at all in which
- * case we set it to 2 at minimum.
- */
- maxarea = params->w * params->h / 6;
- if (maxarea < 2)
- maxarea = 2;
- /*
- * Scan the grid to find the limits of the region within which
- * any rectangle containing this point must fall. This will
- * save us trawling the inside of every rectangle later on to
- * see if it contains any used squares.
- */
- top = scratch;
- bottom = scratch + params->w;
- for (dy = -1; dy <= +1; dy += 2) {
- int *array = (dy == -1 ? top : bottom);
- for (dx = -1; dx <= +1; dx += 2) {
- for (x = sx; x >= 0 && x < params->w; x += dx) {
- array[x] = -2 * params->h * dy;
- for (y = sy; y >= 0 && y < params->h; y += dy) {
- if (index(params, grid, x, y) == -1 &&
- (x == sx || dy*y <= dy*array[x-dx]))
- array[x] = y;
- else
- break;
- }
- }
- }
- }
- /*
- * Now scan again to work out the largest rectangles we can fit
- * in the grid, so that we can terminate the following loops
- * early once we get down to not having much space left in the
- * grid.
- */
- realmaxarea = 0;
- for (x = 0; x < params->w; x++) {
- int x2;
- rh = bottom[x] - top[x] + 1;
- if (rh <= 0)
- continue; /* no rectangles can start here */
- dx = (x > sx ? -1 : +1);
- for (x2 = x; x2 >= 0 && x2 < params->w; x2 += dx)
- if (bottom[x2] < bottom[x] || top[x2] > top[x])
- break;
- rw = abs(x2 - x);
- if (realmaxarea < rw * rh)
- realmaxarea = rw * rh;
- }
- if (realmaxarea > maxarea)
- realmaxarea = maxarea;
- /*
- * Rectangles which go right the way across the grid are
- * boring, although they can't be helped in the case of
- * extremely small grids. (Also they might be generated later
- * on by the singleton-removal process; we can't help that.)
- */
- mw = params->w - 1;
- if (mw < 3) mw++;
- mh = params->h - 1;
- if (mh < 3) mh++;
- for (rw = 1; rw <= mw; rw++)
- for (rh = 1; rh <= mh; rh++) {
- if (rw * rh > realmaxarea)
- continue;
- if (rw * rh == 1)
- continue;
- for (x = max(sx - rw + 1, 0); x <= min(sx, params->w - rw); x++)
- for (y = max(sy - rh + 1, 0); y <= min(sy, params->h - rh);
- y++) {
- /*
- * Check this rectangle against the region we
- * defined above.
- */
- if (top[x] <= y && top[x+rw-1] <= y &&
- bottom[x] >= y+rh-1 && bottom[x+rw-1] >= y+rh-1) {
- if (r && index == *n) {
- r->x = x;
- r->y = y;
- r->w = rw;
- r->h = rh;
- return;
- }
- index++;
- }
- }
- }
- assert(!r);
- *n = index;
- }
- static void place_rect(game_params *params, int *grid, struct rect r)
- {
- int idx = INDEX(params, r.x, r.y);
- int x, y;
- for (x = r.x; x < r.x+r.w; x++)
- for (y = r.y; y < r.y+r.h; y++) {
- index(params, grid, x, y) = idx;
- }
- #ifdef GENERATION_DIAGNOSTICS
- printf(" placing rectangle at (%d,%d) size %d x %d\n",
- r.x, r.y, r.w, r.h);
- #endif
- }
- static struct rect find_rect(game_params *params, int *grid, int x, int y)
- {
- int idx, w, h;
- struct rect r;
- /*
- * Find the top left of the rectangle.
- */
- idx = index(params, grid, x, y);
- if (idx < 0) {
- r.x = x;
- r.y = y;
- r.w = r.h = 1;
- return r; /* 1x1 singleton here */
- }
- y = idx / params->w;
- x = idx % params->w;
- /*
- * Find the width and height of the rectangle.
- */
- for (w = 1;
- (x+w < params->w && index(params,grid,x+w,y)==idx);
- w++);
- for (h = 1;
- (y+h < params->h && index(params,grid,x,y+h)==idx);
- h++);
- r.x = x;
- r.y = y;
- r.w = w;
- r.h = h;
- return r;
- }
- #ifdef GENERATION_DIAGNOSTICS
- static void display_grid(game_params *params, int *grid, int *numbers, int all)
- {
- unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
- unsigned char);
- int x, y;
- int r = (params->w*2+3);
- memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
- for (x = 0; x < params->w; x++)
- for (y = 0; y < params->h; y++) {
- int i = index(params, grid, x, y);
- if (x == 0 || index(params, grid, x-1, y) != i)
- egrid[(2*y+2) * r + (2*x+1)] = 1;
- if (x == params->w-1 || index(params, grid, x+1, y) != i)
- egrid[(2*y+2) * r + (2*x+3)] = 1;
- if (y == 0 || index(params, grid, x, y-1) != i)
- egrid[(2*y+1) * r + (2*x+2)] = 1;
- if (y == params->h-1 || index(params, grid, x, y+1) != i)
- egrid[(2*y+3) * r + (2*x+2)] = 1;
- }
- for (y = 1; y < 2*params->h+2; y++) {
- for (x = 1; x < 2*params->w+2; x++) {
- if (!((y|x)&1)) {
- int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
- if (k || (all && numbers)) printf("%2d", k); else printf(" ");
- } else if (!((y&x)&1)) {
- int v = egrid[y*r+x];
- if ((y&1) && v) v = '-';
- if ((x&1) && v) v = '|';
- if (!v) v = ' ';
- putchar(v);
- if (!(x&1)) putchar(v);
- } else {
- int c, d = 0;
- if (egrid[y*r+(x+1)]) d |= 1;
- if (egrid[(y-1)*r+x]) d |= 2;
- if (egrid[y*r+(x-1)]) d |= 4;
- if (egrid[(y+1)*r+x]) d |= 8;
- c = " ??+?-++?+|+++++"[d];
- putchar(c);
- if (!(x&1)) putchar(c);
- }
- }
- putchar('\n');
- }
- sfree(egrid);
- }
- #endif
- static char *new_game_desc(const game_params *params_in, random_state *rs,
- char **aux, bool interactive)
- {
- game_params params_copy = *params_in; /* structure copy */
- game_params *params = ¶ms_copy;
- int *grid, *numbers = NULL;
- int x, y, y2, y2last, yx, run, i, nsquares;
- char *desc, *p;
- int *enum_rects_scratch;
- game_params params2real, *params2 = ¶ms2real;
- while (1) {
- /*
- * Set up the smaller width and height which we will use to
- * generate the base grid.
- */
- params2->w = (int)((float)params->w / (1.0F + params->expandfactor));
- if (params2->w < 2 && params->w >= 2) params2->w = 2;
- params2->h = (int)((float)params->h / (1.0F + params->expandfactor));
- if (params2->h < 2 && params->h >= 2) params2->h = 2;
- grid = snewn(params2->w * params2->h, int);
- enum_rects_scratch = snewn(2 * params2->w, int);
- nsquares = 0;
- for (y = 0; y < params2->h; y++)
- for (x = 0; x < params2->w; x++) {
- index(params2, grid, x, y) = -1;
- nsquares++;
- }
- /*
- * Place rectangles until we can't any more. We do this by
- * finding a square we haven't yet covered, and randomly
- * choosing a rectangle to cover it.
- */
-
- while (nsquares > 0) {
- int square = random_upto(rs, nsquares);
- int n;
- struct rect r;
- x = params2->w;
- y = params2->h;
- for (y = 0; y < params2->h; y++) {
- for (x = 0; x < params2->w; x++) {
- if (index(params2, grid, x, y) == -1 && square-- == 0)
- break;
- }
- if (x < params2->w)
- break;
- }
- assert(x < params2->w && y < params2->h);
- /*
- * Now see how many rectangles fit around this one.
- */
- enum_rects(params2, grid, NULL, &n, x, y, enum_rects_scratch);
- if (!n) {
- /*
- * There are no possible rectangles covering this
- * square, meaning it must be a singleton. Mark it
- * -2 so we know not to keep trying.
- */
- index(params2, grid, x, y) = -2;
- nsquares--;
- } else {
- /*
- * Pick one at random.
- */
- n = random_upto(rs, n);
- enum_rects(params2, grid, &r, &n, x, y, enum_rects_scratch);
- /*
- * Place it.
- */
- place_rect(params2, grid, r);
- nsquares -= r.w * r.h;
- }
- }
- sfree(enum_rects_scratch);
- /*
- * Deal with singleton spaces remaining in the grid, one by
- * one.
- *
- * We do this by making a local change to the layout. There are
- * several possibilities:
- *
- * +-----+-----+ Here, we can remove the singleton by
- * | | | extending the 1x2 rectangle below it
- * +--+--+-----+ into a 1x3.
- * | | | |
- * | +--+ |
- * | | | |
- * | | | |
- * | | | |
- * +--+--+-----+
- *
- * +--+--+--+ Here, that trick doesn't work: there's no
- * | | | 1 x n rectangle with the singleton at one
- * | | | end. Instead, we extend a 1 x n rectangle
- * | | | _out_ from the singleton, shaving a layer
- * +--+--+ | off the end of another rectangle. So if we
- * | | | | extended up, we'd make our singleton part
- * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
- * | | | used to be; or we could extend right into
- * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
- *
- * +-----+--+ Here, we can't even do _that_, since any
- * | | | direction we choose to extend the singleton
- * +--+--+ | will produce a new singleton as a result of
- * | | | | truncating one of the size-2 rectangles.
- * | +--+--+ Fortunately, this case can _only_ occur when
- * | | | a singleton is surrounded by four size-2s
- * +--+-----+ in this fashion; so instead we can simply
- * replace the whole section with a single 3x3.
- */
- for (x = 0; x < params2->w; x++) {
- for (y = 0; y < params2->h; y++) {
- if (index(params2, grid, x, y) < 0) {
- int dirs[4], ndirs;
- #ifdef GENERATION_DIAGNOSTICS
- display_grid(params2, grid, NULL, false);
- printf("singleton at %d,%d\n", x, y);
- #endif
- /*
- * Check in which directions we can feasibly extend
- * the singleton. We can extend in a particular
- * direction iff either:
- *
- * - the rectangle on that side of the singleton
- * is not 2x1, and we are at one end of the edge
- * of it we are touching
- *
- * - it is 2x1 but we are on its short side.
- *
- * FIXME: we could plausibly choose between these
- * based on the sizes of the rectangles they would
- * create?
- */
- ndirs = 0;
- if (x < params2->w-1) {
- struct rect r = find_rect(params2, grid, x+1, y);
- if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
- dirs[ndirs++] = 1; /* right */
- }
- if (y > 0) {
- struct rect r = find_rect(params2, grid, x, y-1);
- if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
- dirs[ndirs++] = 2; /* up */
- }
- if (x > 0) {
- struct rect r = find_rect(params2, grid, x-1, y);
- if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
- dirs[ndirs++] = 4; /* left */
- }
- if (y < params2->h-1) {
- struct rect r = find_rect(params2, grid, x, y+1);
- if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
- dirs[ndirs++] = 8; /* down */
- }
- if (ndirs > 0) {
- int which, dir;
- struct rect r1, r2;
- memset(&r1, 0, sizeof(struct rect));
- memset(&r2, 0, sizeof(struct rect));
- which = random_upto(rs, ndirs);
- dir = dirs[which];
- switch (dir) {
- case 1: /* right */
- assert(x < params2->w+1);
- #ifdef GENERATION_DIAGNOSTICS
- printf("extending right\n");
- #endif
- r1 = find_rect(params2, grid, x+1, y);
- r2.x = x;
- r2.y = y;
- r2.w = 1 + r1.w;
- r2.h = 1;
- if (r1.y == y)
- r1.y++;
- r1.h--;
- break;
- case 2: /* up */
- assert(y > 0);
- #ifdef GENERATION_DIAGNOSTICS
- printf("extending up\n");
- #endif
- r1 = find_rect(params2, grid, x, y-1);
- r2.x = x;
- r2.y = r1.y;
- r2.w = 1;
- r2.h = 1 + r1.h;
- if (r1.x == x)
- r1.x++;
- r1.w--;
- break;
- case 4: /* left */
- assert(x > 0);
- #ifdef GENERATION_DIAGNOSTICS
- printf("extending left\n");
- #endif
- r1 = find_rect(params2, grid, x-1, y);
- r2.x = r1.x;
- r2.y = y;
- r2.w = 1 + r1.w;
- r2.h = 1;
- if (r1.y == y)
- r1.y++;
- r1.h--;
- break;
- case 8: /* down */
- assert(y < params2->h+1);
- #ifdef GENERATION_DIAGNOSTICS
- printf("extending down\n");
- #endif
- r1 = find_rect(params2, grid, x, y+1);
- r2.x = x;
- r2.y = y;
- r2.w = 1;
- r2.h = 1 + r1.h;
- if (r1.x == x)
- r1.x++;
- r1.w--;
- break;
- default: /* should never happen */
- assert(!"invalid direction");
- }
- if (r1.h > 0 && r1.w > 0)
- place_rect(params2, grid, r1);
- place_rect(params2, grid, r2);
- } else {
- #ifndef NDEBUG
- /*
- * Sanity-check that there really is a 3x3
- * rectangle surrounding this singleton and it
- * contains absolutely everything we could
- * possibly need.
- */
- {
- int xx, yy;
- assert(x > 0 && x < params2->w-1);
- assert(y > 0 && y < params2->h-1);
- for (xx = x-1; xx <= x+1; xx++)
- for (yy = y-1; yy <= y+1; yy++) {
- struct rect r = find_rect(params2,grid,xx,yy);
- assert(r.x >= x-1);
- assert(r.y >= y-1);
- assert(r.x+r.w-1 <= x+1);
- assert(r.y+r.h-1 <= y+1);
- }
- }
- #endif
- #ifdef GENERATION_DIAGNOSTICS
- printf("need the 3x3 trick\n");
- #endif
- /*
- * FIXME: If the maximum rectangle area for
- * this grid is less than 9, we ought to
- * subdivide the 3x3 in some fashion. There are
- * five other possibilities:
- *
- * - a 6 and a 3
- * - a 4, a 3 and a 2
- * - three 3s
- * - a 3 and three 2s (two different arrangements).
- */
- {
- struct rect r;
- r.x = x-1;
- r.y = y-1;
- r.w = r.h = 3;
- place_rect(params2, grid, r);
- }
- }
- }
- }
- }
- /*
- * We have now constructed a grid of the size specified in
- * params2. Now we extend it into a grid of the size specified
- * in params. We do this in two passes: we extend it vertically
- * until it's the right height, then we transpose it, then
- * extend it vertically again (getting it effectively the right
- * width), then finally transpose again.
- */
- for (i = 0; i < 2; i++) {
- int *grid2, *expand, *where;
- game_params params3real, *params3 = ¶ms3real;
- #ifdef GENERATION_DIAGNOSTICS
- printf("before expansion:\n");
- display_grid(params2, grid, NULL, true);
- #endif
- /*
- * Set up the new grid.
- */
- grid2 = snewn(params2->w * params->h, int);
- expand = snewn(params2->h-1, int);
- where = snewn(params2->w, int);
- params3->w = params2->w;
- params3->h = params->h;
- /*
- * Decide which horizontal edges are going to get expanded,
- * and by how much.
- */
- for (y = 0; y < params2->h-1; y++)
- expand[y] = 0;
- for (y = params2->h; y < params->h; y++) {
- x = random_upto(rs, params2->h-1);
- expand[x]++;
- }
- #ifdef GENERATION_DIAGNOSTICS
- printf("expand[] = {");
- for (y = 0; y < params2->h-1; y++)
- printf(" %d", expand[y]);
- printf(" }\n");
- #endif
- /*
- * Perform the expansion. The way this works is that we
- * alternately:
- *
- * - copy a row from grid into grid2
- *
- * - invent some number of additional rows in grid2 where
- * there was previously only a horizontal line between
- * rows in grid, and make random decisions about where
- * among these to place each rectangle edge that ran
- * along this line.
- */
- for (y = y2 = y2last = 0; y < params2->h; y++) {
- /*
- * Copy a single line from row y of grid into row y2 of
- * grid2.
- */
- for (x = 0; x < params2->w; x++) {
- int val = index(params2, grid, x, y);
- if (val / params2->w == y && /* rect starts on this line */
- (y2 == 0 || /* we're at the very top, or... */
- index(params3, grid2, x, y2-1) / params3->w < y2last
- /* this rect isn't already started */))
- index(params3, grid2, x, y2) =
- INDEX(params3, val % params2->w, y2);
- else
- index(params3, grid2, x, y2) =
- index(params3, grid2, x, y2-1);
- }
- /*
- * If that was the last line, terminate the loop early.
- */
- if (++y2 == params3->h)
- break;
- y2last = y2;
- /*
- * Invent some number of additional lines. First walk
- * along this line working out where to put all the
- * edges that coincide with it.
- */
- yx = -1;
- for (x = 0; x < params2->w; x++) {
- if (index(params2, grid, x, y) !=
- index(params2, grid, x, y+1)) {
- /*
- * This is a horizontal edge, so it needs
- * placing.
- */
- if (x == 0 ||
- (index(params2, grid, x-1, y) !=
- index(params2, grid, x, y) &&
- index(params2, grid, x-1, y+1) !=
- index(params2, grid, x, y+1))) {
- /*
- * Here we have the chance to make a new
- * decision.
- */
- yx = random_upto(rs, expand[y]+1);
- } else {
- /*
- * Here we just reuse the previous value of
- * yx.
- */
- }
- } else
- yx = -1;
- where[x] = yx;
- }
- for (yx = 0; yx < expand[y]; yx++) {
- /*
- * Invent a single row. For each square in the row,
- * we copy the grid entry from the square above it,
- * unless we're starting the new rectangle here.
- */
- for (x = 0; x < params2->w; x++) {
- if (yx == where[x]) {
- int val = index(params2, grid, x, y+1);
- val %= params2->w;
- val = INDEX(params3, val, y2);
- index(params3, grid2, x, y2) = val;
- } else
- index(params3, grid2, x, y2) =
- index(params3, grid2, x, y2-1);
- }
- y2++;
- }
- }
- sfree(expand);
- sfree(where);
- #ifdef GENERATION_DIAGNOSTICS
- printf("after expansion:\n");
- display_grid(params3, grid2, NULL, true);
- #endif
- /*
- * Transpose.
- */
- params2->w = params3->h;
- params2->h = params3->w;
- sfree(grid);
- grid = snewn(params2->w * params2->h, int);
- for (x = 0; x < params2->w; x++)
- for (y = 0; y < params2->h; y++) {
- int idx1 = INDEX(params2, x, y);
- int idx2 = INDEX(params3, y, x);
- int tmp;
- tmp = grid2[idx2];
- tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
- grid[idx1] = tmp;
- }
- sfree(grid2);
- {
- int tmp;
- tmp = params->w;
- params->w = params->h;
- params->h = tmp;
- }
- #ifdef GENERATION_DIAGNOSTICS
- printf("after transposition:\n");
- display_grid(params2, grid, NULL, true);
- #endif
- }
- /*
- * Run the solver to narrow down the possible number
- * placements.
- */
- {
- struct numberdata *nd;
- int nnumbers, i, ret;
- /* Count the rectangles. */
- nnumbers = 0;
- for (y = 0; y < params->h; y++) {
- for (x = 0; x < params->w; x++) {
- int idx = INDEX(params, x, y);
- if (index(params, grid, x, y) == idx)
- nnumbers++;
- }
- }
- nd = snewn(nnumbers, struct numberdata);
- /* Now set up each number's candidate position list. */
- i = 0;
- for (y = 0; y < params->h; y++) {
- for (x = 0; x < params->w; x++) {
- int idx = INDEX(params, x, y);
- if (index(params, grid, x, y) == idx) {
- struct rect r = find_rect(params, grid, x, y);
- int j, k, m;
- nd[i].area = r.w * r.h;
- nd[i].npoints = nd[i].area;
- nd[i].points = snewn(nd[i].npoints, struct point);
- m = 0;
- for (j = 0; j < r.h; j++)
- for (k = 0; k < r.w; k++) {
- nd[i].points[m].x = k + r.x;
- nd[i].points[m].y = j + r.y;
- m++;
- }
- assert(m == nd[i].npoints);
- i++;
- }
- }
- }
- if (params->unique)
- ret = rect_solver(params->w, params->h, nnumbers, nd,
- NULL, NULL, rs);
- else
- ret = 1; /* allow any number placement at all */
- if (ret == 1) {
- /*
- * Now place the numbers according to the solver's
- * recommendations.
- */
- numbers = snewn(params->w * params->h, int);
- for (y = 0; y < params->h; y++)
- for (x = 0; x < params->w; x++) {
- index(params, numbers, x, y) = 0;
- }
- for (i = 0; i < nnumbers; i++) {
- int idx = random_upto(rs, nd[i].npoints);
- int x = nd[i].points[idx].x;
- int y = nd[i].points[idx].y;
- index(params,numbers,x,y) = nd[i].area;
- }
- }
- /*
- * Clean up.
- */
- for (i = 0; i < nnumbers; i++)
- sfree(nd[i].points);
- sfree(nd);
- /*
- * If we've succeeded, then terminate the loop.
- */
- if (ret == 1)
- break;
- }
- /*
- * Give up and go round again.
- */
- sfree(grid);
- }
- /*
- * Store the solution in aux.
- */
- {
- char *ai;
- int len;
- len = 2 + (params->w-1)*params->h + (params->h-1)*params->w;
- ai = snewn(len, char);
- ai[0] = 'S';
- p = ai+1;
- for (y = 0; y < params->h; y++)
- for (x = 1; x < params->w; x++)
- *p++ = (index(params, grid, x, y) !=
- index(params, grid, x-1, y) ? '1' : '0');
- for (y = 1; y < params->h; y++)
- for (x = 0; x < params->w; x++)
- *p++ = (index(params, grid, x, y) !=
- index(params, grid, x, y-1) ? '1' : '0');
- assert(p - ai == len-1);
- *p = '\0';
- *aux = ai;
- }
- #ifdef GENERATION_DIAGNOSTICS
- display_grid(params, grid, numbers, false);
- #endif
- desc = snewn(11 * params->w * params->h, char);
- p = desc;
- run = 0;
- for (i = 0; i <= params->w * params->h; i++) {
- int n = (i < params->w * params->h ? numbers[i] : -1);
- if (!n)
- run++;
- else {
- if (run) {
- while (run > 0) {
- int c = 'a' - 1 + run;
- if (run > 26)
- c = 'z';
- *p++ = c;
- run -= c - ('a' - 1);
- }
- } else {
- /*
- * If there's a number in the very top left or
- * bottom right, there's no point putting an
- * unnecessary _ before or after it.
- */
- if (p > desc && n > 0)
- *p++ = '_';
- }
- if (n > 0)
- p += sprintf(p, "%d", n);
- run = 0;
- }
- }
- *p = '\0';
- sfree(grid);
- sfree(numbers);
- return desc;
- }
- static const char *validate_desc(const game_params *params, const char *desc)
- {
- int area = params->w * params->h;
- int squares = 0;
- while (*desc) {
- int n = *desc++;
- if (n >= 'a' && n <= 'z') {
- squares += n - 'a' + 1;
- } else if (n == '_') {
- /* do nothing */;
- } else if (n > '0' && n <= '9') {
- squares++;
- while (*desc >= '0' && *desc <= '9')
- desc++;
- } else
- return "Invalid character in game description";
- }
- if (squares < area)
- return "Not enough data to fill grid";
- if (squares > area)
- return "Too much data to fit in grid";
- return NULL;
- }
- static unsigned char *get_correct(game_state *state)
- {
- unsigned char *ret;
- int x, y;
- ret = snewn(state->w * state->h, unsigned char);
- memset(ret, 0xFF, state->w * state->h);
- for (x = 0; x < state->w; x++)
- for (y = 0; y < state->h; y++)
- if (index(state,ret,x,y) == 0xFF) {
- int rw, rh;
- int xx, yy;
- int num, area;
- bool valid;
- /*
- * Find a rectangle starting at this point.
- */
- rw = 1;
- while (x+rw < state->w && !vedge(state,x+rw,y))
- rw++;
- rh = 1;
- while (y+rh < state->h && !hedge(state,x,y+rh))
- rh++;
- /*
- * We know what the dimensions of the rectangle
- * should be if it's there at all. Find out if we
- * really have a valid rectangle.
- */
- valid = true;
- /* Check the horizontal edges. */
- for (xx = x; xx < x+rw; xx++) {
- for (yy = y; yy <= y+rh; yy++) {
- int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
- int ec = (yy == y || yy == y+rh);
- if (e != ec)
- valid = false;
- }
- }
- /* Check the vertical edges. */
- for (yy = y; yy < y+rh; yy++) {
- for (xx = x; xx <= x+rw; xx++) {
- int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
- int ec = (xx == x || xx == x+rw);
- if (e != ec)
- valid = false;
- }
- }
- /*
- * If this is not a valid rectangle with no other
- * edges inside it, we just mark this square as not
- * complete and proceed to the next square.
- */
- if (!valid) {
- index(state, ret, x, y) = 0;
- continue;
- }
- /*
- * We have a rectangle. Now see what its area is,
- * and how many numbers are in it.
- */
- num = 0;
- area = 0;
- for (xx = x; xx < x+rw; xx++) {
- for (yy = y; yy < y+rh; yy++) {
- area++;
- if (grid(state,xx,yy)) {
- if (num > 0)
- valid = false; /* two numbers */
- num = grid(state,xx,yy);
- }
- }
- }
- if (num != area)
- valid = false;
- /*
- * Now fill in the whole rectangle based on the
- * value of `valid'.
- */
- for (xx = x; xx < x+rw; xx++) {
- for (yy = y; yy < y+rh; yy++) {
- index(state, ret, xx, yy) = valid;
- }
- }
- }
- return ret;
- }
- static game_state *new_game(midend *me, const game_params *params,
- const char *desc)
- {
- game_state *state = snew(game_state);
- int x, y, i, area;
- state->w = params->w;
- state->h = params->h;
- area = state->w * state->h;
- state->grid = snewn(area, int);
- state->vedge = snewn(area, unsigned char);
- state->hedge = snewn(area, unsigned char);
- state->completed = false;
- state->cheated = false;
- i = 0;
- while (*desc) {
- int n = *desc++;
- if (n >= 'a' && n <= 'z') {
- int run = n - 'a' + 1;
- assert(i + run <= area);
- while (run-- > 0)
- state->grid[i++] = 0;
- } else if (n == '_') {
- /* do nothing */;
- } else if (n > '0' && n <= '9') {
- assert(i < area);
- state->grid[i++] = atoi(desc-1);
- while (*desc >= '0' && *desc <= '9')
- desc++;
- } else {
- assert(!"We can't get here");
- }
- }
- assert(i == area);
- for (y = 0; y < state->h; y++)
- for (x = 0; x < state->w; x++)
- vedge(state,x,y) = hedge(state,x,y) = 0;
- state->correct = get_correct(state);
- return state;
- }
- static game_state *dup_game(const game_state *state)
- {
- game_state *ret = snew(game_state);
- ret->w = state->w;
- ret->h = state->h;
- ret->vedge = snewn(state->w * state->h, unsigned char);
- ret->hedge = snewn(state->w * state->h, unsigned char);
- ret->grid = snewn(state->w * state->h, int);
- ret->correct = snewn(ret->w * ret->h, unsigned char);
- ret->completed = state->completed;
- ret->cheated = state->cheated;
- memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
- memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
- memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
- memcpy(ret->correct, state->correct, state->w*state->h*sizeof(unsigned char));
- return ret;
- }
- static void free_game(game_state *state)
- {
- sfree(state->grid);
- sfree(state->vedge);
- sfree(state->hedge);
- sfree(state->correct);
- sfree(state);
- }
- static char *solve_game(const game_state *state, const game_state *currstate,
- const char *ai, const char **error)
- {
- unsigned char *vedge, *hedge;
- int x, y, len;
- char *ret, *p;
- int i, j, n;
- struct numberdata *nd;
- if (ai)
- return dupstr(ai);
- /*
- * Attempt the in-built solver.
- */
- /* Set up each number's (very short) candidate position list. */
- for (i = n = 0; i < state->h * state->w; i++)
- if (state->grid[i])
- n++;
- nd = snewn(n, struct numberdata);
- for (i = j = 0; i < state->h * state->w; i++)
- if (state->grid[i]) {
- nd[j].area = state->grid[i];
- nd[j].npoints = 1;
- nd[j].points = snewn(1, struct point);
- nd[j].points[0].x = i % state->w;
- nd[j].points[0].y = i / state->w;
- j++;
- }
- assert(j == n);
- vedge = snewn(state->w * state->h, unsigned char);
- hedge = snewn(state->w * state->h, unsigned char);
- memset(vedge, 0, state->w * state->h);
- memset(hedge, 0, state->w * state->h);
- rect_solver(state->w, state->h, n, nd, hedge, vedge, NULL);
- /*
- * Clean up.
- */
- for (i = 0; i < n; i++)
- sfree(nd[i].points);
- sfree(nd);
- len = 2 + (state->w-1)*state->h + (state->h-1)*state->w;
- ret = snewn(len, char);
- p = ret;
- *p++ = 'S';
- for (y = 0; y < state->h; y++)
- for (x = 1; x < state->w; x++)
- *p++ = vedge[y*state->w+x] ? '1' : '0';
- for (y = 1; y < state->h; y++)
- for (x = 0; x < state->w; x++)
- *p++ = hedge[y*state->w+x] ? '1' : '0';
- *p++ = '\0';
- assert(p - ret == len);
- sfree(vedge);
- sfree(hedge);
- return ret;
- }
- static bool game_can_format_as_text_now(const game_params *params)
- {
- return true;
- }
- static char *game_text_format(const game_state *state)
- {
- char *ret, *p, buf[80];
- int i, x, y, col, maxlen;
- /*
- * First determine the number of spaces required to display a
- * number. We'll use at least two, because one looks a bit
- * silly.
- */
- col = 2;
- for (i = 0; i < state->w * state->h; i++) {
- x = sprintf(buf, "%d", state->grid[i]);
- if (col < x) col = x;
- }
- /*
- * Now we know the exact total size of the grid we're going to
- * produce: it's got 2*h+1 rows, each containing w lots of col,
- * w+1 boundary characters and a trailing newline.
- */
- maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
- ret = snewn(maxlen+1, char);
- p = ret;
- for (y = 0; y <= 2*state->h; y++) {
- for (x = 0; x <= 2*state->w; x++) {
- if (x & y & 1) {
- /*
- * Display a number.
- */
- int v = grid(state, x/2, y/2);
- if (v)
- sprintf(buf, "%*d", col, v);
- else
- sprintf(buf, "%*s", col, "");
- memcpy(p, buf, col);
- p += col;
- } else if (x & 1) {
- /*
- * Display a horizontal edge or nothing.
- */
- int h = (y==0 || y==2*state->h ? 1 :
- HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
- int i;
- if (h)
- h = '-';
- else
- h = ' ';
- for (i = 0; i < col; i++)
- *p++ = h;
- } else if (y & 1) {
- /*
- * Display a vertical edge or nothing.
- */
- int v = (x==0 || x==2*state->w ? 1 :
- VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
- if (v)
- *p++ = '|';
- else
- *p++ = ' ';
- } else {
- /*
- * Display a corner, or a vertical edge, or a
- * horizontal edge, or nothing.
- */
- int hl = (y==0 || y==2*state->h ? 1 :
- HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
- int hr = (y==0 || y==2*state->h ? 1 :
- HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
- int vu = (x==0 || x==2*state->w ? 1 :
- VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
- int vd = (x==0 || x==2*state->w ? 1 :
- VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
- if (!hl && !hr && !vu && !vd)
- *p++ = ' ';
- else if (hl && hr && !vu && !vd)
- *p++ = '-';
- else if (!hl && !hr && vu && vd)
- *p++ = '|';
- else
- *p++ = '+';
- }
- }
- *p++ = '\n';
- }
- assert(p - ret == maxlen);
- *p = '\0';
- return ret;
- }
- struct game_ui {
- /*
- * These coordinates are 2 times the obvious grid coordinates.
- * Hence, the top left of the grid is (0,0), the grid point to
- * the right of that is (2,0), the one _below that_ is (2,2)
- * and so on. This is so that we can specify a drag start point
- * on an edge (one odd coordinate) or in the middle of a square
- * (two odd coordinates) rather than always at a corner.
- *
- * -1,-1 means no drag is in progress.
- */
- int drag_start_x;
- int drag_start_y;
- int drag_end_x;
- int drag_end_y;
- /*
- * This flag is set as soon as a dragging action moves the
- * mouse pointer away from its starting point, so that even if
- * the pointer _returns_ to its starting point the action is
- * treated as a small drag rather than a click.
- */
- bool dragged;
- /* This flag is set if we're doing an erase operation (i.e.
- * removing edges in the centre of the rectangle without altering
- * the outlines).
- */
- bool erasing;
- /*
- * These are the co-ordinates of the top-left and bottom-right squares
- * in the drag box, respectively, or -1 otherwise.
- */
- int x1;
- int y1;
- int x2;
- int y2;
- /*
- * These are the coordinates of a cursor, whether it's visible, and
- * whether it was used to start a drag.
- */
- int cur_x, cur_y;
- bool cur_visible, cur_dragging;
- };
- static void reset_ui(game_ui *ui)
- {
- ui->drag_start_x = -1;
- ui->drag_start_y = -1;
- ui->drag_end_x = -1;
- ui->drag_end_y = -1;
- ui->x1 = -1;
- ui->y1 = -1;
- ui->x2 = -1;
- ui->y2 = -1;
- ui->dragged = false;
- }
- static game_ui *new_ui(const game_state *state)
- {
- game_ui *ui = snew(game_ui);
- reset_ui(ui);
- ui->erasing = false;
- ui->cur_x = ui->cur_y = 0;
- ui->cur_visible = getenv_bool("PUZZLES_SHOW_CURSOR", false);
- ui->cur_dragging = false;
- return ui;
- }
- static void free_ui(game_ui *ui)
- {
- sfree(ui);
- }
- static void coord_round(float x, float y, int *xr, int *yr)
- {
- float xs, ys, xv, yv, dx, dy, dist;
- /*
- * Find the nearest square-centre.
- */
- xs = (float)floor(x) + 0.5F;
- ys = (float)floor(y) + 0.5F;
- /*
- * And find the nearest grid vertex.
- */
- xv = (float)floor(x + 0.5F);
- yv = (float)floor(y + 0.5F);
- /*
- * We allocate clicks in parts of the grid square to either
- * corners, edges or square centres, as follows:
- *
- * +--+--------+--+
- * | | | |
- * +--+ +--+
- * | `. ,' |
- * | +--+ |
- * | | | |
- * | +--+ |
- * | ,' `. |
- * +--+ +--+
- * | | | |
- * +--+--------+--+
- *
- * (Not to scale!)
- *
- * In other words: we measure the square distance (i.e.
- * max(dx,dy)) from the click to the nearest corner, and if
- * it's within CORNER_TOLERANCE then we return a corner click.
- * We measure the square distance from the click to the nearest
- * centre, and if that's within CENTRE_TOLERANCE we return a
- * centre click. Failing that, we find which of the two edge
- * centres is nearer to the click and return that edge.
- */
- /*
- * Check for corner click.
- */
- dx = (float)fabs(x - xv);
- dy = (float)fabs(y - yv);
- dist = (dx > dy ? dx : dy);
- if (dist < CORNER_TOLERANCE) {
- *xr = 2 * (int)xv;
- *yr = 2 * (int)yv;
- } else {
- /*
- * Check for centre click.
- */
- dx = (float)fabs(x - xs);
- dy = (float)fabs(y - ys);
- dist = (dx > dy ? dx : dy);
- if (dist < CENTRE_TOLERANCE) {
- *xr = 1 + 2 * (int)xs;
- *yr = 1 + 2 * (int)ys;
- } else {
- /*
- * Failing both of those, see which edge we're closer to.
- * Conveniently, this is simply done by testing the relative
- * magnitude of dx and dy (which are currently distances from
- * the square centre).
- */
- if (dx > dy) {
- /* Vertical edge: x-coord of corner,
- * y-coord of square centre. */
- *xr = 2 * (int)xv;
- *yr = 1 + 2 * (int)floor(ys);
- } else {
- /* Horizontal edge: x-coord of square centre,
- * y-coord of corner. */
- *xr = 1 + 2 * (int)floor(xs);
- *yr = 2 * (int)yv;
- }
- }
- }
- }
- /*
- * Returns true if it has made any change to the grid.
- */
- static bool grid_draw_rect(const game_state *state,
- unsigned char *hedge, unsigned char *vedge,
- int c, bool really, bool outline,
- int x1, int y1, int x2, int y2)
- {
- int x, y;
- bool changed = false;
- /*
- * Draw horizontal edges of rectangles.
- */
- for (x = x1; x < x2; x++)
- for (y = y1; y <= y2; y++)
- if (HRANGE(state,x,y)) {
- int val = index(state,hedge,x,y);
- if (y == y1 || y == y2) {
- if (!outline) continue;
- val = c;
- } else if (c == 1)
- val = 0;
- changed = changed || (index(state,hedge,x,y) != val);
- if (really)
- index(state,hedge,x,y) = val;
- }
- /*
- * Draw vertical edges of rectangles.
- */
- for (y = y1; y < y2; y++)
- for (x = x1; x <= x2; x++)
- if (VRANGE(state,x,y)) {
- int val = index(state,vedge,x,y);
- if (x == x1 || x == x2) {
- if (!outline) continue;
- val = c;
- } else if (c == 1)
- val = 0;
- changed = changed || (index(state,vedge,x,y) != val);
- if (really)
- index(state,vedge,x,y) = val;
- }
- return changed;
- }
- static bool ui_draw_rect(const game_state *state, const game_ui *ui,
- unsigned char *hedge, unsigned char *vedge, int c,
- bool really, bool outline)
- {
- return grid_draw_rect(state, hedge, vedge, c, really, outline,
- ui->x1, ui->y1, ui->x2, ui->y2);
- }
- static void game_changed_state(game_ui *ui, const game_state *oldstate,
- const game_state *newstate)
- {
- }
- struct game_drawstate {
- bool started;
- int w, h, tilesize;
- unsigned long *visible;
- };
- static const char *current_key_label(const game_ui *ui,
- const game_state *state, int button)
- {
- if (IS_CURSOR_SELECT(button) && ui->cur_visible &&
- !(ui->drag_start_x >= 0 && !ui->cur_dragging)) {
- if (ui->cur_dragging) {
- if (!ui->dragged) return "Cancel";
- if ((button == CURSOR_SELECT2) == ui->erasing) return "Done";
- return "Cancel";
- }
- return button == CURSOR_SELECT ? "Mark" : "Erase";
- }
- return "";
- }
- static char *interpret_move(const game_state *from, game_ui *ui,
- const game_drawstate *ds,
- int x, int y, int button)
- {
- int xc, yc;
- bool startdrag = false, enddrag = false, active = false, erasing = false;
- char buf[80], *ret;
- button &= ~MOD_MASK;
- coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
- if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
- if (ui->drag_start_x >= 0 && ui->cur_dragging)
- reset_ui(ui); /* cancel keyboard dragging */
- startdrag = true;
- ui->cur_visible = ui->cur_dragging = false;
- active = true;
- erasing = (button == RIGHT_BUTTON);
- } else if (button == LEFT_RELEASE || button == RIGHT_RELEASE) {
- /* We assert we should have had a LEFT_BUTTON first. */
- if (ui->cur_visible) {
- ui->cur_visible = false;
- active = true;
- }
- assert(!ui->cur_dragging);
- enddrag = true;
- erasing = (button == RIGHT_RELEASE);
- } else if (IS_CURSOR_MOVE(button)) {
- move_cursor(button, &ui->cur_x, &ui->cur_y, from->w, from->h, false);
- ui->cur_visible = true;
- active = true;
- if (!ui->cur_dragging) return MOVE_UI_UPDATE;
- coord_round((float)ui->cur_x + 0.5F, (float)ui->cur_y + 0.5F, &xc, &yc);
- } else if (IS_CURSOR_SELECT(button)) {
- if (ui->drag_start_x >= 0 && !ui->cur_dragging) {
- /*
- * If a mouse drag is in progress, ignore attempts to
- * start a keyboard one.
- */
- return NULL;
- }
- if (!ui->cur_visible) {
- assert(!ui->cur_dragging);
- ui->cur_visible = true;
- return MOVE_UI_UPDATE;
- }
- coord_round((float)ui->cur_x + 0.5F, (float)ui->cur_y + 0.5F, &xc, &yc);
- erasing = (button == CURSOR_SELECT2);
- if (ui->cur_dragging) {
- ui->cur_dragging = false;
- enddrag = true;
- active = true;
- } else {
- ui->cur_dragging = true;
- startdrag = true;
- active = true;
- }
- } else if (button == '\b' || button == 27) {
- if (!ui->cur_dragging) {
- ui->cur_visible = false;
- } else {
- assert(ui->cur_visible);
- reset_ui(ui); /* cancel keyboard dragging */
- ui->cur_dragging = false;
- }
- return MOVE_UI_UPDATE;
- } else if (button != LEFT_DRAG && button != RIGHT_DRAG) {
- return NULL;
- }
- if (startdrag &&
- xc >= 0 && xc <= 2*from->w &&
- yc >= 0 && yc <= 2*from->h) {
- ui->drag_start_x = xc;
- ui->drag_start_y = yc;
- ui->drag_end_x = -1;
- ui->drag_end_y = -1;
- ui->dragged = false;
- ui->erasing = erasing;
- active = true;
- }
- if (ui->drag_start_x >= 0 &&
- (xc != ui->drag_end_x || yc != ui->drag_end_y)) {
- int t;
- if (ui->drag_end_x != -1 && ui->drag_end_y != -1)
- ui->dragged = true;
- ui->drag_end_x = xc;
- ui->drag_end_y = yc;
- active = true;
- if (xc >= 0 && xc <= 2*from->w &&
- yc >= 0 && yc <= 2*from->h) {
- ui->x1 = ui->drag_start_x;
- ui->x2 = ui->drag_end_x;
- if (ui->x2 < ui->x1) { t = ui->x1; ui->x1 = ui->x2; ui->x2 = t; }
- ui->y1 = ui->drag_start_y;
- ui->y2 = ui->drag_end_y;
- if (ui->y2 < ui->y1) { t = ui->y1; ui->y1 = ui->y2; ui->y2 = t; }
- ui->x1 = ui->x1 / 2; /* rounds down */
- ui->x2 = (ui->x2+1) / 2; /* rounds up */
- ui->y1 = ui->y1 / 2; /* rounds down */
- ui->y2 = (ui->y2+1) / 2; /* rounds up */
- } else {
- ui->x1 = -1;
- ui->y1 = -1;
- ui->x2 = -1;
- ui->y2 = -1;
- }
- }
- ret = NULL;
- if (enddrag && (ui->drag_start_x >= 0)) {
- if (xc >= 0 && xc <= 2*from->w &&
- yc >= 0 && yc <= 2*from->h &&
- erasing == ui->erasing) {
- if (ui->dragged) {
- if (ui_draw_rect(from, ui, from->hedge,
- from->vedge, 1, false, !ui->erasing)) {
- sprintf(buf, "%c%d,%d,%d,%d",
- (int)(ui->erasing ? 'E' : 'R'),
- ui->x1, ui->y1, ui->x2 - ui->x1, ui->y2 - ui->y1);
- ret = dupstr(buf);
- }
- } else {
- if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
- sprintf(buf, "H%d,%d", xc/2, yc/2);
- ret = dupstr(buf);
- }
- if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
- sprintf(buf, "V%d,%d", xc/2, yc/2);
- ret = dupstr(buf);
- }
- }
- }
- reset_ui(ui);
- active = true;
- }
- if (ret)
- return ret; /* a move has been made */
- else if (active)
- return MOVE_UI_UPDATE;
- else
- return NULL;
- }
- static game_state *execute_move(const game_state *from, const char *move)
- {
- game_state *ret;
- int x1, y1, x2, y2, mode;
- if (move[0] == 'S') {
- const char *p = move+1;
- int x, y;
- ret = dup_game(from);
- ret->cheated = true;
- for (y = 0; y < ret->h; y++)
- for (x = 1; x < ret->w; x++) {
- vedge(ret, x, y) = (*p == '1');
- if (*p) p++;
- }
- for (y = 1; y < ret->h; y++)
- for (x = 0; x < ret->w; x++) {
- hedge(ret, x, y) = (*p == '1');
- if (*p) p++;
- }
- sfree(ret->correct);
- ret->correct = get_correct(ret);
- return ret;
- } else if ((move[0] == 'R' || move[0] == 'E') &&
- sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
- x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
- y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
- x2 += x1;
- y2 += y1;
- mode = move[0];
- } else if ((move[0] == 'H' || move[0] == 'V') &&
- sscanf(move+1, "%d,%d", &x1, &y1) == 2 &&
- (move[0] == 'H' ? HRANGE(from, x1, y1) :
- VRANGE(from, x1, y1))) {
- mode = move[0];
- } else
- return NULL; /* can't parse move string */
- ret = dup_game(from);
- if (mode == 'R' || mode == 'E') {
- grid_draw_rect(ret, ret->hedge, ret->vedge, 1, true,
- mode == 'R', x1, y1, x2, y2);
- } else if (mode == 'H') {
- hedge(ret,x1,y1) = !hedge(ret,x1,y1);
- } else if (mode == 'V') {
- vedge(ret,x1,y1) = !vedge(ret,x1,y1);
- }
- sfree(ret->correct);
- ret->correct = get_correct(ret);
- /*
- * We've made a real change to the grid. Check to see
- * if the game has been completed.
- */
- if (!ret->completed) {
- int x, y;
- bool ok;
- ok = true;
- for (x = 0; x < ret->w; x++)
- for (y = 0; y < ret->h; y++)
- if (!index(ret, ret->correct, x, y))
- ok = false;
- if (ok)
- ret->completed = true;
- }
- return ret;
- }
- /* ----------------------------------------------------------------------
- * Drawing routines.
- */
- #define CORRECT (1L<<16)
- #define CURSOR (1L<<17)
- #define COLOUR(k) ( (k)==1 ? COL_LINE : (k)==2 ? COL_DRAG : COL_DRAGERASE )
- #define MAX4(x,y,z,w) ( max(max(x,y),max(z,w)) )
- static void game_compute_size(const game_params *params, int tilesize,
- const game_ui *ui, int *x, int *y)
- {
- /* Ick: fake up `ds->tilesize' for macro expansion purposes */
- struct { int tilesize; } ads, *ds = &ads;
- ads.tilesize = tilesize;
- *x = params->w * TILE_SIZE + 2*BORDER + 1;
- *y = params->h * TILE_SIZE + 2*BORDER + 1;
- }
- static void game_set_size(drawing *dr, game_drawstate *ds,
- const game_params *params, int tilesize)
- {
- ds->tilesize = tilesize;
- }
- static float *game_colours(frontend *fe, int *ncolours)
- {
- float *ret = snewn(3 * NCOLOURS, float);
- frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
- ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
- ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
- ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
- ret[COL_DRAG * 3 + 0] = 1.0F;
- ret[COL_DRAG * 3 + 1] = 0.0F;
- ret[COL_DRAG * 3 + 2] = 0.0F;
- ret[COL_DRAGERASE * 3 + 0] = 0.2F;
- ret[COL_DRAGERASE * 3 + 1] = 0.2F;
- ret[COL_DRAGERASE * 3 + 2] = 1.0F;
- ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
- ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
- ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
- ret[COL_LINE * 3 + 0] = 0.0F;
- ret[COL_LINE * 3 + 1] = 0.0F;
- ret[COL_LINE * 3 + 2] = 0.0F;
- ret[COL_TEXT * 3 + 0] = 0.0F;
- ret[COL_TEXT * 3 + 1] = 0.0F;
- ret[COL_TEXT * 3 + 2] = 0.0F;
- ret[COL_CURSOR * 3 + 0] = 1.0F;
- ret[COL_CURSOR * 3 + 1] = 0.5F;
- ret[COL_CURSOR * 3 + 2] = 0.5F;
- *ncolours = NCOLOURS;
- return ret;
- }
- static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
- {
- struct game_drawstate *ds = snew(struct game_drawstate);
- int i;
- ds->started = false;
- ds->w = state->w;
- ds->h = state->h;
- ds->visible = snewn(ds->w * ds->h, unsigned long);
- ds->tilesize = 0; /* not decided yet */
- for (i = 0; i < ds->w * ds->h; i++)
- ds->visible[i] = 0xFFFF;
- return ds;
- }
- static void game_free_drawstate(drawing *dr, game_drawstate *ds)
- {
- sfree(ds->visible);
- sfree(ds);
- }
- static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state,
- int x, int y, unsigned char *hedge, unsigned char *vedge,
- unsigned char *corners, unsigned long bgflags)
- {
- int cx = COORD(x), cy = COORD(y);
- char str[80];
- draw_rect(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
- draw_rect(dr, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
- (bgflags & CURSOR) ? COL_CURSOR :
- (bgflags & CORRECT) ? COL_CORRECT : COL_BACKGROUND);
- if (grid(state,x,y)) {
- sprintf(str, "%d", grid(state,x,y));
- draw_text(dr, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
- TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
- }
- /*
- * Draw edges.
- */
- if (!HRANGE(state,x,y) || index(state,hedge,x,y))
- draw_rect(dr, cx, cy, TILE_SIZE+1, 2,
- HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
- COL_LINE);
- if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
- draw_rect(dr, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
- HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
- COL_LINE);
- if (!VRANGE(state,x,y) || index(state,vedge,x,y))
- draw_rect(dr, cx, cy, 2, TILE_SIZE+1,
- VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
- COL_LINE);
- if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
- draw_rect(dr, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
- VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
- COL_LINE);
- /*
- * Draw corners.
- */
- if (index(state,corners,x,y))
- draw_rect(dr, cx, cy, 2, 2,
- COLOUR(index(state,corners,x,y)));
- if (x+1 < state->w && index(state,corners,x+1,y))
- draw_rect(dr, cx+TILE_SIZE-1, cy, 2, 2,
- COLOUR(index(state,corners,x+1,y)));
- if (y+1 < state->h && index(state,corners,x,y+1))
- draw_rect(dr, cx, cy+TILE_SIZE-1, 2, 2,
- COLOUR(index(state,corners,x,y+1)));
- if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
- draw_rect(dr, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
- COLOUR(index(state,corners,x+1,y+1)));
- draw_update(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
- }
- static void game_redraw(drawing *dr, game_drawstate *ds,
- const game_state *oldstate, const game_state *state,
- int dir, const game_ui *ui,
- float animtime, float flashtime)
- {
- int x, y;
- unsigned char *hedge, *vedge, *corners;
- if (ui->dragged) {
- hedge = snewn(state->w*state->h, unsigned char);
- vedge = snewn(state->w*state->h, unsigned char);
- memcpy(hedge, state->hedge, state->w*state->h);
- memcpy(vedge, state->vedge, state->w*state->h);
- ui_draw_rect(state, ui, hedge, vedge, ui->erasing ? 3 : 2, true, true);
- } else {
- hedge = state->hedge;
- vedge = state->vedge;
- }
- corners = snewn(state->w * state->h, unsigned char);
- memset(corners, 0, state->w * state->h);
- for (x = 0; x < state->w; x++)
- for (y = 0; y < state->h; y++) {
- if (x > 0) {
- int e = index(state, vedge, x, y);
- if (index(state,corners,x,y) < e)
- index(state,corners,x,y) = e;
- if (y+1 < state->h &&
- index(state,corners,x,y+1) < e)
- index(state,corners,x,y+1) = e;
- }
- if (y > 0) {
- int e = index(state, hedge, x, y);
- if (index(state,corners,x,y) < e)
- index(state,corners,x,y) = e;
- if (x+1 < state->w &&
- index(state,corners,x+1,y) < e)
- index(state,corners,x+1,y) = e;
- }
- }
- if (!ds->started) {
- draw_rect(dr, COORD(0)-1, COORD(0)-1,
- ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
- ds->started = true;
- draw_update(dr, 0, 0,
- state->w * TILE_SIZE + 2*BORDER + 1,
- state->h * TILE_SIZE + 2*BORDER + 1);
- }
- for (x = 0; x < state->w; x++)
- for (y = 0; y < state->h; y++) {
- unsigned long c = 0;
- if (HRANGE(state,x,y))
- c |= index(state,hedge,x,y);
- if (HRANGE(state,x,y+1))
- c |= index(state,hedge,x,y+1) << 2;
- if (VRANGE(state,x,y))
- c |= index(state,vedge,x,y) << 4;
- if (VRANGE(state,x+1,y))
- c |= index(state,vedge,x+1,y) << 6;
- c |= index(state,corners,x,y) << 8;
- if (x+1 < state->w)
- c |= index(state,corners,x+1,y) << 10;
- if (y+1 < state->h)
- c |= index(state,corners,x,y+1) << 12;
- if (x+1 < state->w && y+1 < state->h)
- /* cast to prevent 2<<14 sign-extending on promotion to long */
- c |= (unsigned long)index(state,corners,x+1,y+1) << 14;
- if (index(state, state->correct, x, y) && !flashtime)
- c |= CORRECT;
- if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y)
- c |= CURSOR;
- if (index(ds,ds->visible,x,y) != c) {
- draw_tile(dr, ds, state, x, y, hedge, vedge, corners,
- (c & (CORRECT|CURSOR)) );
- index(ds,ds->visible,x,y) = c;
- }
- }
- {
- char buf[256];
- if (ui->dragged &&
- ui->x1 >= 0 && ui->y1 >= 0 &&
- ui->x2 >= 0 && ui->y2 >= 0) {
- sprintf(buf, "%dx%d ",
- ui->x2-ui->x1,
- ui->y2-ui->y1);
- } else {
- buf[0] = '\0';
- }
- if (state->cheated)
- strcat(buf, "Auto-solved.");
- else if (state->completed)
- strcat(buf, "COMPLETED!");
- status_bar(dr, buf);
- }
- if (hedge != state->hedge) {
- sfree(hedge);
- sfree(vedge);
- }
- sfree(corners);
- }
- static float game_anim_length(const game_state *oldstate,
- const game_state *newstate, int dir, game_ui *ui)
- {
- return 0.0F;
- }
- static float game_flash_length(const game_state *oldstate,
- const game_state *newstate, int dir, game_ui *ui)
- {
- if (!oldstate->completed && newstate->completed &&
- !oldstate->cheated && !newstate->cheated)
- return FLASH_TIME;
- return 0.0F;
- }
- static void game_get_cursor_location(const game_ui *ui,
- const game_drawstate *ds,
- const game_state *state,
- const game_params *params,
- int *x, int *y, int *w, int *h)
- {
- if(ui->cur_visible) {
- *x = COORD(ui->cur_x);
- *y = COORD(ui->cur_y);
- *w = *h = TILE_SIZE;
- }
- }
- static int game_status(const game_state *state)
- {
- return state->completed ? +1 : 0;
- }
- static void game_print_size(const game_params *params, const game_ui *ui,
- float *x, float *y)
- {
- int pw, ph;
- /*
- * I'll use 5mm squares by default.
- */
- game_compute_size(params, 500, ui, &pw, &ph);
- *x = pw / 100.0F;
- *y = ph / 100.0F;
- }
- static void game_print(drawing *dr, const game_state *state, const game_ui *ui,
- int tilesize)
- {
- int w = state->w, h = state->h;
- int ink = print_mono_colour(dr, 0);
- int x, y;
- /* Ick: fake up `ds->tilesize' for macro expansion purposes */
- game_drawstate ads, *ds = &ads;
- game_set_size(dr, ds, NULL, tilesize);
- /*
- * Border.
- */
- print_line_width(dr, TILE_SIZE / 10);
- draw_rect_outline(dr, COORD(0), COORD(0), w*TILE_SIZE, h*TILE_SIZE, ink);
- /*
- * Grid. We have to make the grid lines particularly thin,
- * because users will be drawing lines _along_ them and we want
- * those lines to be visible.
- */
- print_line_width(dr, TILE_SIZE / 256);
- for (x = 1; x < w; x++)
- draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), ink);
- for (y = 1; y < h; y++)
- draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), ink);
- /*
- * Solution.
- */
- print_line_width(dr, TILE_SIZE / 10);
- for (y = 0; y <= h; y++)
- for (x = 0; x <= w; x++) {
- if (HRANGE(state,x,y) && hedge(state,x,y))
- draw_line(dr, COORD(x), COORD(y), COORD(x+1), COORD(y), ink);
- if (VRANGE(state,x,y) && vedge(state,x,y))
- draw_line(dr, COORD(x), COORD(y), COORD(x), COORD(y+1), ink);
- }
- /*
- * Clues.
- */
- for (y = 0; y < h; y++)
- for (x = 0; x < w; x++)
- if (grid(state,x,y)) {
- char str[80];
- sprintf(str, "%d", grid(state,x,y));
- draw_text(dr, COORD(x)+TILE_SIZE/2, COORD(y)+TILE_SIZE/2,
- FONT_VARIABLE, TILE_SIZE/2,
- ALIGN_HCENTRE | ALIGN_VCENTRE, ink, str);
- }
- }
- #ifdef COMBINED
- #define thegame rect
- #endif
- const struct game thegame = {
- "Rectangles", "games.rectangles", "rect",
- default_params,
- game_fetch_preset, NULL,
- decode_params,
- encode_params,
- free_params,
- dup_params,
- true, game_configure, custom_params,
- validate_params,
- new_game_desc,
- validate_desc,
- new_game,
- dup_game,
- free_game,
- true, solve_game,
- true, game_can_format_as_text_now, game_text_format,
- NULL, NULL, /* get_prefs, set_prefs */
- new_ui,
- free_ui,
- NULL, /* encode_ui */
- NULL, /* decode_ui */
- NULL, /* game_request_keys */
- game_changed_state,
- current_key_label,
- interpret_move,
- execute_move,
- PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
- game_colours,
- game_new_drawstate,
- game_free_drawstate,
- game_redraw,
- game_anim_length,
- game_flash_length,
- game_get_cursor_location,
- game_status,
- true, false, game_print_size, game_print,
- true, /* wants_statusbar */
- false, NULL, /* timing_state */
- 0, /* flags */
- };
- /* vim: set shiftwidth=4 tabstop=8: */
|