123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892 |
- /*
- * Code to generate patches of the aperiodic 'hat' tiling discovered
- * in 2023.
- *
- * This uses the 'combinatorial coordinates' system documented in my
- * public article
- * https://www.chiark.greenend.org.uk/~sgtatham/quasiblog/aperiodic-tilings/
- *
- * The internal document auxiliary/doc/hats.html also contains an
- * explanation of the basic ideas of this algorithm (less polished but
- * containing more detail).
- *
- * Neither of those documents can really be put in a source file,
- * because they just have too many complicated diagrams. So read at
- * least one of those first; the comments in here will refer to it.
- *
- * Discoverers' website: https://cs.uwaterloo.ca/~csk/hat/
- * Preprint of paper: https://arxiv.org/abs/2303.10798
- */
- #include <assert.h>
- #ifdef NO_TGMATH_H
- # include <math.h>
- #else
- # include <tgmath.h>
- #endif
- #include <stdbool.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include "puzzles.h"
- #include "hat.h"
- #include "hat-internal.h"
- void hat_kiteenum_first(KiteEnum *s, int w, int h)
- {
- Kite start = { {0,0}, {0, 3}, {3, 0}, {2, 2} };
- size_t i;
- for (i = 0; i < KE_NKEEP; i++)
- s->recent[i] = start; /* initialise to *something* */
- s->curr_index = 0;
- s->curr = &s->recent[s->curr_index];
- s->state = 1;
- s->w = w;
- s->h = h;
- s->x = 0;
- s->y = 0;
- }
- bool hat_kiteenum_next(KiteEnum *s)
- {
- unsigned lastbut1 = s->last_index;
- s->last_index = s->curr_index;
- s->curr_index = (s->curr_index + 1) % KE_NKEEP;
- s->curr = &s->recent[s->curr_index];
- switch (s->state) {
- /* States 1,2,3 walk rightwards along the upper side of a
- * horizontal grid line with a pointy kite end at the start
- * point */
- case 1:
- s->last_step = KS_F_RIGHT;
- s->state = 2;
- break;
- case 2:
- if (s->x+1 >= s->w) {
- s->last_step = KS_F_RIGHT;
- s->state = 4;
- break;
- }
- s->last_step = KS_RIGHT;
- s->state = 3;
- s->x++;
- break;
- case 3:
- s->last_step = KS_RIGHT;
- s->state = 1;
- break;
- /* State 4 is special: we've just moved up into a row below a
- * grid line, but we can't produce the rightmost tile of that
- * row because it's not adjacent any tile so far emitted. So
- * instead, emit the second-rightmost tile, and next time,
- * we'll emit the rightmost. */
- case 4:
- s->last_step = KS_LEFT;
- s->state = 5;
- break;
- /* And now we have to emit the third-rightmost tile relative
- * to the last but one tile we emitted (the one from state 2,
- * not state 4). */
- case 5:
- s->last_step = KS_RIGHT;
- s->last_index = lastbut1;
- s->state = 6;
- break;
- /* Now states 6-8 handle the general case of walking leftwards
- * along the lower side of a line, starting from a
- * right-angled kite end. */
- case 6:
- if (s->x <= 0) {
- if (s->y+1 >= s->h) {
- s->state = 0;
- return false;
- }
- s->last_step = KS_RIGHT;
- s->state = 9;
- s->y++;
- break;
- }
- s->last_step = KS_F_RIGHT;
- s->state = 7;
- s->x--;
- break;
- case 7:
- s->last_step = KS_RIGHT;
- s->state = 8;
- break;
- case 8:
- s->last_step = KS_RIGHT;
- s->state = 6;
- break;
- /* States 9,10,11 walk rightwards along the upper side of a
- * horizontal grid line with a right-angled kite end at the
- * start point. This time there's no awkward transition from
- * the previous row. */
- case 9:
- s->last_step = KS_RIGHT;
- s->state = 10;
- break;
- case 10:
- s->last_step = KS_RIGHT;
- s->state = 11;
- break;
- case 11:
- if (s->x+1 >= s->w) {
- /* Another awkward transition to the next row, where we
- * have to generate it based on the previous state-9 tile.
- * But this time at least we generate the rightmost tile
- * of the new row, so the next states will be simple. */
- s->last_step = KS_F_RIGHT;
- s->last_index = lastbut1;
- s->state = 12;
- break;
- }
- s->last_step = KS_F_RIGHT;
- s->state = 9;
- s->x++;
- break;
- /* States 12,13,14 walk leftwards along the upper edge of a
- * horizontal grid line with a pointy kite end at the start
- * point */
- case 12:
- s->last_step = KS_F_RIGHT;
- s->state = 13;
- break;
- case 13:
- if (s->x <= 0) {
- if (s->y+1 >= s->h) {
- s->state = 0;
- return false;
- }
- s->last_step = KS_LEFT;
- s->state = 1;
- s->y++;
- break;
- }
- s->last_step = KS_RIGHT;
- s->state = 14;
- s->x--;
- break;
- case 14:
- s->last_step = KS_RIGHT;
- s->state = 12;
- break;
- default:
- return false;
- }
- *s->curr = kite_step(s->recent[s->last_index], s->last_step);
- return true;
- }
- /*
- * The actual tables.
- */
- #include "hat-tables.h"
- /*
- * One set of tables that we write by hand: the permitted ways to
- * extend the coordinate system outwards from a given metatile.
- *
- * One obvious approach would be to make a table of all the places
- * each metatile can appear in the expansion of another (e.g. H can be
- * subtile 0, 1 or 2 of another H, subtile 0 of a T, or 0 or 1 of a P
- * or an F), and when we need to decide what our current topmost tile
- * turns out to be a subtile of, choose equiprobably at random from
- * those options.
- *
- * That's what I did originally, but a better approach is to skew the
- * probabilities. We'd like to generate our patch of actual tiling
- * uniformly at random, in the sense that if you selected uniformly
- * from a very large region of the plane, the distribution of possible
- * finite patches of tiling would converge to some limit as that
- * region tended to infinity, and we'd be picking from that limiting
- * distribution on finite patches.
- *
- * For this we have to refer back to the original paper, which
- * indicates the subset of each metatile's expansion that can be
- * considered to 'belong' to that metatile, such that every subtile
- * belongs to exactly one parent metatile, and the overlaps are
- * eliminated. Reading out the diagrams from their Figure 2.8:
- *
- * - H: we discard three of the outer F subtiles, in the symmetric
- * positions index by our coordinates as 7, 10, 11. So we keep the
- * remaining subtiles {0,1,2,3,4,5,6,8,9,12}, which consist of
- * three H, one T, three P and three F.
- *
- * - T: only the central H expanded from a T is considered to belong
- * to it, so we just keep {0}, a single H.
- *
- * - P: we discard everything intersected by a long edge of the
- * parallelogram, leaving the central three tiles and the endmost
- * pair of F. That is, we keep {0,1,4,5,10}, consisting of two H,
- * one P and two F.
- *
- * - F: looks like P at one end, and we retain the corresponding set
- * of tiles there, but at the other end we keep the two F on either
- * side of the endmost one. So we keep {0,1,3,6,8,10}, consisting of
- * two H, one P and _three_ F.
- *
- * Adding up the tile numbers gives us this matrix system:
- *
- * (H_1) (3 1 2 2)(H_0)
- * (T_1) = (1 0 0 0)(T_0)
- * (P_1) (3 0 1 1)(P_0)
- * (F_1) (3 0 2 3)(F_0)
- *
- * which says that if you have a patch of metatiling consisting of H_0
- * H tiles, T_0 T tiles etc, then this matrix shows the number H_1 of
- * smaller H tiles, etc, expanded from it.
- *
- * If you expand _many_ times, that's equivalent to raising the matrix
- * to a power:
- *
- * n
- * (H_n) (3 1 2 2) (H_0)
- * (T_n) = (1 0 0 0) (T_0)
- * (P_n) (3 0 1 1) (P_0)
- * (F_n) (3 0 2 3) (F_0)
- *
- * The limiting distribution of metatiles is obtained by looking at
- * the four-way ratio between H_n, T_n, P_n and F_n as n tends to
- * infinity. To calculate this, we find the eigenvalues and
- * eigenvectors of the matrix, and extract the eigenvector
- * corresponding to the eigenvalue of largest magnitude. (Things get
- * more complicated in cases where there isn't a _unique_ eigenvalue
- * of largest magnitude, but here, there is.)
- *
- * That eigenvector is
- *
- * [ 1 ] [ 1 ]
- * [ (7 - 3 sqrt(5)) / 2 ] ~= [ 0.14589803375031545538 ]
- * [ 3 sqrt(5) - 6 ] [ 0.70820393249936908922 ]
- * [ (9 - 3 sqrt(5)) / 2 ] [ 1.14589803375031545538 ]
- *
- * So those are the limiting relative proportions of metatiles.
- *
- * So if we have a particular metatile, how likely is it for its
- * parent to be one of those? We have to adjust by the number of
- * metatiles of each type that each tile has as its children. For
- * example, the P and F tiles have one P child each, but the H has
- * three P children. So if we have a P, the proportion of H in its
- * potential ancestry is three times what's shown here. (And T can't
- * occur at all as a parent.)
- *
- * In other words, we should choose _each coordinate_ with probability
- * corresponding to one of those numbers (scaled down so they all sum
- * to 1). Continuing to use P as an example, it will be:
- *
- * - child 4 of H with relative probability 1
- * - child 5 of H with relative probability 1
- * - child 6 of H with relative probability 1
- * - child 4 of P with relative probability 0.70820393249936908922
- * - child 3 of F with relative probability 1.14589803375031545538
- *
- * and then we obtain the true probabilities by scaling those values
- * down so that they sum to 1.
- *
- * The tables below give a reasonable approximation in 32-bit
- * integers to these proportions.
- */
- typedef struct MetatilePossibleParent {
- TileType type;
- unsigned index;
- unsigned long probability;
- } MetatilePossibleParent;
- /* The above probabilities scaled up by 10000000 */
- #define PROB_H 10000000
- #define PROB_T 1458980
- #define PROB_P 7082039
- #define PROB_F 11458980
- static const MetatilePossibleParent parents_H[] = {
- { TT_H, 0, PROB_H },
- { TT_H, 1, PROB_H },
- { TT_H, 2, PROB_H },
- { TT_T, 0, PROB_T },
- { TT_P, 0, PROB_P },
- { TT_P, 1, PROB_P },
- { TT_F, 0, PROB_F },
- { TT_F, 1, PROB_F },
- };
- static const MetatilePossibleParent parents_T[] = {
- { TT_H, 3, PROB_H },
- };
- static const MetatilePossibleParent parents_P[] = {
- { TT_H, 4, PROB_H },
- { TT_H, 5, PROB_H },
- { TT_H, 6, PROB_H },
- { TT_P, 4, PROB_P },
- { TT_F, 3, PROB_F },
- };
- static const MetatilePossibleParent parents_F[] = {
- { TT_H, 8, PROB_H },
- { TT_H, 9, PROB_H },
- { TT_H, 12, PROB_H },
- { TT_P, 5, PROB_P },
- { TT_P, 10, PROB_P },
- { TT_F, 6, PROB_F },
- { TT_F, 8, PROB_F },
- { TT_F, 10, PROB_F },
- };
- static const MetatilePossibleParent *const possible_parents[] = {
- parents_H, parents_T, parents_P, parents_F,
- };
- static const size_t n_possible_parents[] = {
- lenof(parents_H), lenof(parents_T), lenof(parents_P), lenof(parents_F),
- };
- /*
- * Similarly, we also want to choose our absolute starting hat with
- * close to uniform probability, which again we do by looking at the
- * limiting ratio of the metatile types, and this time, scaling by the
- * number of hats in each metatile.
- *
- * We cheatingly use the same MetatilePossibleParent struct, because
- * it's got all the right fields, even if it has an inappropriate
- * name.
- */
- static const MetatilePossibleParent starting_hats[] = {
- { TT_H, 0, PROB_H },
- { TT_H, 1, PROB_H },
- { TT_H, 2, PROB_H },
- { TT_H, 3, PROB_H },
- { TT_T, 0, PROB_P },
- { TT_P, 0, PROB_P },
- { TT_P, 1, PROB_P },
- { TT_F, 0, PROB_F },
- { TT_F, 1, PROB_F },
- };
- #undef PROB_H
- #undef PROB_T
- #undef PROB_P
- #undef PROB_F
- HatCoords *hat_coords_new(void)
- {
- HatCoords *hc = snew(HatCoords);
- hc->nc = hc->csize = 0;
- hc->c = NULL;
- return hc;
- }
- void hat_coords_free(HatCoords *hc)
- {
- if (hc) {
- sfree(hc->c);
- sfree(hc);
- }
- }
- void hat_coords_make_space(HatCoords *hc, size_t size)
- {
- if (hc->csize < size) {
- hc->csize = hc->csize * 5 / 4 + 16;
- if (hc->csize < size)
- hc->csize = size;
- hc->c = sresize(hc->c, hc->csize, HatCoord);
- }
- }
- HatCoords *hat_coords_copy(HatCoords *hc_in)
- {
- HatCoords *hc_out = hat_coords_new();
- hat_coords_make_space(hc_out, hc_in->nc);
- memcpy(hc_out->c, hc_in->c, hc_in->nc * sizeof(*hc_out->c));
- hc_out->nc = hc_in->nc;
- return hc_out;
- }
- static const MetatilePossibleParent *choose_mpp(
- random_state *rs, const MetatilePossibleParent *parents, size_t nparents)
- {
- /*
- * If we needed to do this _efficiently_, we'd rewrite all those
- * tables above as cumulative frequency tables and use binary
- * search. But this happens about log n times in a grid of area n,
- * so it hardly matters, and it's easier to keep the tables
- * legible.
- */
- unsigned long limit = 0, value;
- size_t i;
- for (i = 0; i < nparents; i++)
- limit += parents[i].probability;
- value = random_upto(rs, limit);
- for (i = 0; i+1 < nparents; i++) {
- if (value < parents[i].probability)
- return &parents[i];
- value -= parents[i].probability;
- }
- assert(i == nparents - 1);
- assert(value < parents[i].probability);
- return &parents[i];
- }
- void hatctx_init_random(HatContext *ctx, random_state *rs)
- {
- const MetatilePossibleParent *starting_hat = choose_mpp(
- rs, starting_hats, lenof(starting_hats));
- ctx->rs = rs;
- ctx->prototype = hat_coords_new();
- hat_coords_make_space(ctx->prototype, 3);
- ctx->prototype->c[2].type = starting_hat->type;
- ctx->prototype->c[2].index = -1;
- ctx->prototype->c[1].type = TT_HAT;
- ctx->prototype->c[1].index = starting_hat->index;
- ctx->prototype->c[0].type = TT_KITE;
- ctx->prototype->c[0].index = random_upto(rs, HAT_KITES);
- ctx->prototype->nc = 3;
- }
- static inline int metatile_char_to_enum(char metatile)
- {
- return (metatile == 'H' ? TT_H :
- metatile == 'T' ? TT_T :
- metatile == 'P' ? TT_P :
- metatile == 'F' ? TT_F : -1);
- }
- static void init_coords_params(HatContext *ctx,
- const struct HatPatchParams *hp)
- {
- size_t i;
- ctx->rs = NULL;
- ctx->prototype = hat_coords_new();
- assert(hp->ncoords >= 3);
- hat_coords_make_space(ctx->prototype, hp->ncoords + 1);
- ctx->prototype->nc = hp->ncoords + 1;
- for (i = 0; i < hp->ncoords; i++)
- ctx->prototype->c[i].index = hp->coords[i];
- ctx->prototype->c[hp->ncoords].type =
- metatile_char_to_enum(hp->final_metatile);
- ctx->prototype->c[hp->ncoords].index = -1;
- ctx->prototype->c[0].type = TT_KITE;
- ctx->prototype->c[1].type = TT_HAT;
- for (i = hp->ncoords - 1; i > 1; i--) {
- TileType metatile = ctx->prototype->c[i+1].type;
- assert(hp->coords[i] < nchildren[metatile]);
- ctx->prototype->c[i].type = children[metatile][hp->coords[i]];
- }
- assert(hp->coords[0] < 8);
- }
- HatCoords *hatctx_initial_coords(HatContext *ctx)
- {
- return hat_coords_copy(ctx->prototype);
- }
- /*
- * Extend hc until it has at least n coordinates in, by copying from
- * ctx->prototype if needed, and extending ctx->prototype if needed in
- * order to do that.
- */
- void hatctx_extend_coords(HatContext *ctx, HatCoords *hc, size_t n)
- {
- if (ctx->prototype->nc < n) {
- hat_coords_make_space(ctx->prototype, n);
- while (ctx->prototype->nc < n) {
- TileType type = ctx->prototype->c[ctx->prototype->nc - 1].type;
- assert(ctx->prototype->c[ctx->prototype->nc - 1].index == -1);
- const MetatilePossibleParent *parent;
- if (ctx->rs)
- parent = choose_mpp(ctx->rs, possible_parents[type],
- n_possible_parents[type]);
- else
- parent = possible_parents[type];
- ctx->prototype->c[ctx->prototype->nc - 1].index = parent->index;
- ctx->prototype->c[ctx->prototype->nc].index = -1;
- ctx->prototype->c[ctx->prototype->nc].type = parent->type;
- ctx->prototype->nc++;
- }
- }
- hat_coords_make_space(hc, n);
- while (hc->nc < n) {
- assert(hc->c[hc->nc - 1].index == -1);
- assert(hc->c[hc->nc - 1].type == ctx->prototype->c[hc->nc - 1].type);
- hc->c[hc->nc - 1].index = ctx->prototype->c[hc->nc - 1].index;
- hc->c[hc->nc].index = -1;
- hc->c[hc->nc].type = ctx->prototype->c[hc->nc].type;
- hc->nc++;
- }
- }
- void hatctx_cleanup(HatContext *ctx)
- {
- hat_coords_free(ctx->prototype);
- }
- /*
- * The actual system for finding the coordinates of an adjacent kite.
- */
- /*
- * Kitemap step: ensure we have enough coordinates to know two levels
- * of meta-tiling, and use the kite map for the outer layer to move
- * around the individual kites. If this fails, return NULL.
- */
- static HatCoords *try_step_coords_kitemap(
- HatContext *ctx, HatCoords *hc_in, KiteStep step)
- {
- hatctx_extend_coords(ctx, hc_in, 4);
- hat_coords_debug(" try kitemap ", hc_in, "\n");
- unsigned kite = hc_in->c[0].index;
- unsigned hat = hc_in->c[1].index;
- unsigned meta = hc_in->c[2].index;
- TileType meta2type = hc_in->c[3].type;
- const KitemapEntry *ke = &kitemap[meta2type][
- kitemap_index(step, kite, hat, meta)];
- if (ke->kite >= 0) {
- /*
- * Success! We've got coordinates for the next kite in this
- * direction.
- */
- HatCoords *hc_out = hat_coords_copy(hc_in);
- hc_out->c[2].index = ke->meta;
- hc_out->c[2].type = children[meta2type][ke->meta];
- hc_out->c[1].index = ke->hat;
- hc_out->c[1].type = TT_HAT;
- hc_out->c[0].index = ke->kite;
- hc_out->c[0].type = TT_KITE;
- hat_coords_debug(" success! ", hc_out, "\n");
- return hc_out;
- }
- return NULL;
- }
- /*
- * Recursive metamap step. Try using the metamap to rewrite the
- * coordinates at hc->c[depth] and hc->c[depth+1] (using the metamap
- * for the tile type described in hc->c[depth+2]). If successful,
- * recurse back down to see if this led to a successful step via the
- * kitemap. If even that fails (so that we need to try a higher-order
- * metamap rewrite), return NULL.
- */
- static HatCoords *try_step_coords_metamap(
- HatContext *ctx, HatCoords *hc_in, KiteStep step, size_t depth)
- {
- HatCoords *hc_tmp = NULL, *hc_out;
- hatctx_extend_coords(ctx, hc_in, depth+3);
- #ifdef HAT_COORDS_DEBUG
- fprintf(stderr, " try meta %-4d", (int)depth);
- hat_coords_debug("", hc_in, "\n");
- #endif
- unsigned meta_orig = hc_in->c[depth].index;
- unsigned meta2_orig = hc_in->c[depth+1].index;
- TileType meta3type = hc_in->c[depth+2].type;
- unsigned meta = meta_orig, meta2 = meta2_orig;
- while (true) {
- const MetamapEntry *me;
- HatCoords *hc_curr = hc_tmp ? hc_tmp : hc_in;
- if (depth > 2)
- hc_out = try_step_coords_metamap(ctx, hc_curr, step, depth - 1);
- else
- hc_out = try_step_coords_kitemap(ctx, hc_curr, step);
- if (hc_out) {
- hat_coords_free(hc_tmp);
- return hc_out;
- }
- me = &metamap[meta3type][metamap_index(meta, meta2)];
- assert(me->meta != -1);
- if (me->meta == meta_orig && me->meta2 == meta2_orig) {
- hat_coords_free(hc_tmp);
- return NULL;
- }
- meta = me->meta;
- meta2 = me->meta2;
- /*
- * We must do the rewrite in a copy of hc_in. It's not
- * _necessarily_ obvious that that's the case (any successful
- * rewrite leaves the coordinates still valid and still
- * referring to the same kite, right?). But the problem is
- * that we might do a rewrite at this level more than once,
- * and in between, a metamap rewrite at the next level down
- * might have modified _one_ of the two coordinates we're
- * messing about with. So it's easiest to let the recursion
- * just use a separate copy.
- */
- if (!hc_tmp)
- hc_tmp = hat_coords_copy(hc_in);
- hc_tmp->c[depth+1].index = meta2;
- hc_tmp->c[depth+1].type = children[meta3type][meta2];
- hc_tmp->c[depth].index = meta;
- hc_tmp->c[depth].type = children[hc_tmp->c[depth+1].type][meta];
- hat_coords_debug(" rewritten -> ", hc_tmp, "\n");
- }
- }
- /*
- * The top-level algorithm for finding the next tile.
- */
- HatCoords *hatctx_step(HatContext *ctx, HatCoords *hc_in, KiteStep step)
- {
- HatCoords *hc_out;
- size_t depth;
- #ifdef HAT_COORDS_DEBUG
- static const char *const directions[] = {
- " left\n", " right\n", " forward left\n", " forward right\n" };
- hat_coords_debug("step start ", hc_in, directions[step]);
- #endif
- /*
- * First, just try a kitemap step immediately. If that succeeds,
- * we're done.
- */
- if ((hc_out = try_step_coords_kitemap(ctx, hc_in, step)) != NULL)
- return hc_out;
- /*
- * Otherwise, try metamap rewrites at successively higher layers
- * until one works. Each one will recurse back down to the
- * kitemap, as described above.
- */
- for (depth = 2;; depth++) {
- if ((hc_out = try_step_coords_metamap(
- ctx, hc_in, step, depth)) != NULL)
- return hc_out;
- }
- }
- /*
- * Generate a random set of parameters for a tiling of a given size.
- * To do this, we iterate over the whole tiling via hat_kiteenum_first
- * and hat_kiteenum_next, and for each kite, calculate its
- * coordinates. But then we throw the coordinates away and don't do
- * anything with them!
- *
- * But the side effect of _calculating_ all those coordinates is that
- * we found out how far ctx->prototype needed to be extended, and did
- * so, pulling random choices out of our random_state. So after this
- * iteration, ctx->prototype contains everything we need to replicate
- * the same piece of tiling next time.
- */
- void hat_tiling_randomise(struct HatPatchParams *hp, int w, int h,
- random_state *rs)
- {
- HatContext ctx[1];
- HatCoords *coords[KE_NKEEP];
- KiteEnum s[1];
- size_t i;
- hatctx_init_random(ctx, rs);
- for (i = 0; i < lenof(coords); i++)
- coords[i] = NULL;
- hat_kiteenum_first(s, w, h);
- coords[s->curr_index] = hatctx_initial_coords(ctx);
- while (hat_kiteenum_next(s)) {
- hat_coords_free(coords[s->curr_index]);
- coords[s->curr_index] = hatctx_step(
- ctx, coords[s->last_index], s->last_step);
- }
- hp->ncoords = ctx->prototype->nc - 1;
- hp->coords = snewn(hp->ncoords, unsigned char);
- for (i = 0; i < hp->ncoords; i++)
- hp->coords[i] = ctx->prototype->c[i].index;
- hp->final_metatile = tilechars[ctx->prototype->c[hp->ncoords].type];
- hatctx_cleanup(ctx);
- for (i = 0; i < lenof(coords); i++)
- hat_coords_free(coords[i]);
- }
- const char *hat_tiling_params_invalid(const struct HatPatchParams *hp)
- {
- TileType metatile;
- size_t i;
- if (hp->ncoords < 3)
- return "Grid parameters require at least three coordinates";
- if (metatile_char_to_enum(hp->final_metatile) < 0)
- return "Grid parameters contain an invalid final metatile";
- if (hp->coords[0] >= 8)
- return "Grid parameters contain an invalid kite index";
- metatile = metatile_char_to_enum(hp->final_metatile);
- for (i = hp->ncoords - 1; i > 1; i--) {
- if (hp->coords[i] >= nchildren[metatile])
- return "Grid parameters contain an invalid metatile index";
- metatile = children[metatile][hp->coords[i]];
- }
- if (hp->coords[1] >= hats_in_metatile[metatile])
- return "Grid parameters contain an invalid hat index";
- return NULL;
- }
- void maybe_report_hat(int w, int h, Kite kite, HatCoords *hc,
- internal_hat_callback_fn cb, void *cbctx)
- {
- Kite kite0;
- Point vertices[14];
- size_t i, j;
- bool reversed = false;
- int coords[28];
- /* Only iterate from kite #0 of a hat */
- if (hc->c[0].index != 0)
- return;
- kite0 = kite;
- /*
- * Identify reflected hats: they are always hat #3 of an H
- * metatile. If we find one, reflect the starting kite so that the
- * kite_step operations below will go in the other direction.
- */
- if (hc->c[2].type == TT_H && hc->c[1].index == 3) {
- reversed = true;
- Point tmp = kite.left;
- kite.left = kite.right;
- kite.right = tmp;
- }
- vertices[0] = kite.centre;
- vertices[1] = kite.right;
- vertices[2] = kite.outer;
- vertices[3] = kite.left;
- kite = kite_left(kite); /* now on kite #1 */
- kite = kite_forward_right(kite); /* now on kite #2 */
- vertices[4] = kite.centre;
- kite = kite_right(kite); /* now on kite #3 */
- vertices[5] = kite.right;
- vertices[6] = kite.outer;
- kite = kite_forward_left(kite); /* now on kite #4 */
- vertices[7] = kite.left;
- vertices[8] = kite.centre;
- kite = kite_right(kite); /* now on kite #5 */
- kite = kite_right(kite); /* now on kite #6 */
- kite = kite_right(kite); /* now on kite #7 */
- vertices[9] = kite.right;
- vertices[10] = kite.outer;
- vertices[11] = kite.left;
- kite = kite_left(kite); /* now on kite #6 again */
- vertices[12] = kite.outer;
- vertices[13] = kite.left;
- if (reversed) {
- /* For a reversed kite, also reverse the vertex order, so that
- * we report every polygon in a consistent orientation */
- for (i = 0, j = 13; i < j; i++, j--) {
- Point tmp = vertices[i];
- vertices[i] = vertices[j];
- vertices[j] = tmp;
- }
- }
- /*
- * Convert from our internal coordinate system into the orthogonal
- * one used in this module's external API. In the same loop, we
- * might as well do the bounds check.
- */
- for (i = 0; i < 14; i++) {
- Point v = vertices[i];
- int x = (v.x * 2 + v.y) / 3, y = v.y;
- if (x < 0 || x > 4*w || y < 0 || y > 6*h)
- return; /* a vertex of this kite is out of bounds */
- coords[2*i] = x;
- coords[2*i+1] = y;
- }
- cb(cbctx, kite0, hc, coords);
- }
- struct internal_ctx {
- hat_tile_callback_fn external_cb;
- void *external_cbctx;
- };
- static void report_hat(void *vctx, Kite kite0, HatCoords *hc, int *coords)
- {
- struct internal_ctx *ctx = (struct internal_ctx *)vctx;
- ctx->external_cb(ctx->external_cbctx, 14, coords);
- }
- /*
- * Generate a hat tiling from a previously generated set of parameters.
- */
- void hat_tiling_generate(const struct HatPatchParams *hp, int w, int h,
- hat_tile_callback_fn cb, void *cbctx)
- {
- HatContext ctx[1];
- HatCoords *coords[KE_NKEEP];
- KiteEnum s[1];
- size_t i;
- struct internal_ctx report_hat_ctx[1];
- report_hat_ctx->external_cb = cb;
- report_hat_ctx->external_cbctx = cbctx;
- init_coords_params(ctx, hp);
- for (i = 0; i < lenof(coords); i++)
- coords[i] = NULL;
- hat_kiteenum_first(s, w, h);
- coords[s->curr_index] = hatctx_initial_coords(ctx);
- maybe_report_hat(w, h, *s->curr, coords[s->curr_index],
- report_hat, report_hat_ctx);
- while (hat_kiteenum_next(s)) {
- hat_coords_free(coords[s->curr_index]);
- coords[s->curr_index] = hatctx_step(
- ctx, coords[s->last_index], s->last_step);
- maybe_report_hat(w, h, *s->curr, coords[s->curr_index],
- report_hat, report_hat_ctx);
- }
- hatctx_cleanup(ctx);
- for (i = 0; i < lenof(coords); i++)
- hat_coords_free(coords[i]);
- }
|