1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233 |
- /*
- * filling.c: An implementation of the Nikoli game fillomino.
- * Copyright (C) 2007 Jonas Kölker. See LICENSE for the license.
- */
- /* TODO:
- *
- * - use a typedef instead of int for numbers on the board
- * + replace int with something else (signed short?)
- * - the type should be signed (for -board[i] and -SENTINEL)
- * - the type should be somewhat big: board[i] = i
- * - Using shorts gives us 181x181 puzzles as upper bound.
- *
- * - in board generation, after having merged regions such that no
- * more merges are necessary, try splitting (big) regions.
- * + it seems that smaller regions make for better puzzles; see
- * for instance the 7x7 puzzle in this file (grep for 7x7:).
- *
- * - symmetric hints (solo-style)
- * + right now that means including _many_ hints, and the puzzles
- * won't look any nicer. Not worth it (at the moment).
- *
- * - make the solver do recursion/backtracking.
- * + This is for user-submitted puzzles, not for puzzle
- * generation (on the other hand, never say never).
- *
- * - prove that only w=h=2 needs a special case
- *
- * - solo-like pencil marks?
- *
- * - a user says that the difficulty is unevenly distributed.
- * + partition into levels? Will they be non-crap?
- *
- * - Allow square contents > 9?
- * + I could use letters for digits (solo does this), but
- * letters don't have numeric significance (normal people hate
- * base36), which is relevant here (much more than in solo).
- * + [click, 1, 0, enter] => [10 in clicked square]?
- * + How much information is needed to solve? Does one need to
- * know the algorithm by which the largest number is set?
- *
- * - eliminate puzzle instances with done chunks (1's in particular)?
- * + that's what the qsort call is all about.
- * + the 1's don't bother me that much.
- * + but this takes a LONG time (not always possible)?
- * - this may be affected by solver (lack of) quality.
- * - weed them out by construction instead of post-cons check
- * + but that interleaves make_board and new_game_desc: you
- * have to alternate between changing the board and
- * changing the hint set (instead of just creating the
- * board once, then changing the hint set once -> done).
- *
- * - use binary search when discovering the minimal sovable point
- * + profile to show a need (but when the solver gets slower...)
- * + 7x9 @ .011s, 9x13 @ .075s, 17x13 @ .661s (all avg with n=100)
- * + but the hints are independent, not linear, so... what?
- */
- #include <assert.h>
- #include <ctype.h>
- #ifdef NO_TGMATH_H
- # include <math.h>
- #else
- # include <tgmath.h>
- #endif
- #include <stdarg.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include "puzzles.h"
- static bool verbose;
- static void printv(const char *fmt, ...) {
- #ifndef PALM
- if (verbose) {
- va_list va;
- va_start(va, fmt);
- vprintf(fmt, va);
- va_end(va);
- }
- #endif
- }
- /*****************************************************************************
- * GAME CONFIGURATION AND PARAMETERS *
- *****************************************************************************/
- struct game_params {
- int w, h;
- };
- struct shared_state {
- struct game_params params;
- int *clues;
- int refcnt;
- };
- struct game_state {
- int *board;
- struct shared_state *shared;
- bool completed, cheated;
- };
- static const struct game_params filling_defaults[3] = {
- {9, 7}, {13, 9}, {17, 13}
- };
- static game_params *default_params(void)
- {
- game_params *ret = snew(game_params);
- *ret = filling_defaults[1]; /* struct copy */
- return ret;
- }
- static bool game_fetch_preset(int i, char **name, game_params **params)
- {
- char buf[64];
- if (i < 0 || i >= lenof(filling_defaults)) return false;
- *params = snew(game_params);
- **params = filling_defaults[i]; /* struct copy */
- sprintf(buf, "%dx%d", filling_defaults[i].w, filling_defaults[i].h);
- *name = dupstr(buf);
- return true;
- }
- static void free_params(game_params *params)
- {
- sfree(params);
- }
- static game_params *dup_params(const game_params *params)
- {
- game_params *ret = snew(game_params);
- *ret = *params; /* struct copy */
- return ret;
- }
- static void decode_params(game_params *ret, char const *string)
- {
- ret->w = ret->h = atoi(string);
- while (*string && isdigit((unsigned char) *string)) ++string;
- if (*string == 'x') ret->h = atoi(++string);
- }
- static char *encode_params(const game_params *params, bool full)
- {
- char buf[64];
- sprintf(buf, "%dx%d", params->w, params->h);
- return dupstr(buf);
- }
- static config_item *game_configure(const game_params *params)
- {
- config_item *ret;
- char buf[64];
- ret = snewn(3, config_item);
- ret[0].name = "Width";
- ret[0].type = C_STRING;
- sprintf(buf, "%d", params->w);
- ret[0].u.string.sval = dupstr(buf);
- ret[1].name = "Height";
- ret[1].type = C_STRING;
- sprintf(buf, "%d", params->h);
- ret[1].u.string.sval = dupstr(buf);
- ret[2].name = NULL;
- ret[2].type = C_END;
- return ret;
- }
- static game_params *custom_params(const config_item *cfg)
- {
- game_params *ret = snew(game_params);
- ret->w = atoi(cfg[0].u.string.sval);
- ret->h = atoi(cfg[1].u.string.sval);
- return ret;
- }
- static const char *validate_params(const game_params *params, bool full)
- {
- if (params->w < 1) return "Width must be at least one";
- if (params->h < 1) return "Height must be at least one";
- if (params->w > INT_MAX / params->h)
- return "Width times height must not be unreasonably large";
- return NULL;
- }
- /*****************************************************************************
- * STRINGIFICATION OF GAME STATE *
- *****************************************************************************/
- #define EMPTY 0
- /* Example of plaintext rendering:
- * +---+---+---+---+---+---+---+
- * | 6 | | | 2 | | | 2 |
- * +---+---+---+---+---+---+---+
- * | | 3 | | 6 | | 3 | |
- * +---+---+---+---+---+---+---+
- * | 3 | | | | | | 1 |
- * +---+---+---+---+---+---+---+
- * | | 2 | 3 | | 4 | 2 | |
- * +---+---+---+---+---+---+---+
- * | 2 | | | | | | 3 |
- * +---+---+---+---+---+---+---+
- * | | 5 | | 1 | | 4 | |
- * +---+---+---+---+---+---+---+
- * | 4 | | | 3 | | | 3 |
- * +---+---+---+---+---+---+---+
- *
- * This puzzle instance is taken from the nikoli website
- * Encoded (unsolved and solved), the strings are these:
- * 7x7:6002002030603030000010230420200000305010404003003
- * 7x7:6662232336663232331311235422255544325413434443313
- */
- static char *board_to_string(int *board, int w, int h) {
- const int sz = w * h;
- const int chw = (4*w + 2); /* +2 for trailing '+' and '\n' */
- const int chh = (2*h + 1); /* +1: n fence segments, n+1 posts */
- const int chlen = chw * chh;
- char *repr = snewn(chlen + 1, char);
- int i;
- assert(board);
- /* build the first line ("^(\+---){n}\+$") */
- for (i = 0; i < w; ++i) {
- repr[4*i + 0] = '+';
- repr[4*i + 1] = '-';
- repr[4*i + 2] = '-';
- repr[4*i + 3] = '-';
- }
- repr[4*i + 0] = '+';
- repr[4*i + 1] = '\n';
- /* ... and copy it onto the odd-numbered lines */
- for (i = 0; i < h; ++i) memcpy(repr + (2*i + 2) * chw, repr, chw);
- /* build the second line ("^(\|\t){n}\|$") */
- for (i = 0; i < w; ++i) {
- repr[chw + 4*i + 0] = '|';
- repr[chw + 4*i + 1] = ' ';
- repr[chw + 4*i + 2] = ' ';
- repr[chw + 4*i + 3] = ' ';
- }
- repr[chw + 4*i + 0] = '|';
- repr[chw + 4*i + 1] = '\n';
- /* ... and copy it onto the even-numbered lines */
- for (i = 1; i < h; ++i) memcpy(repr + (2*i + 1) * chw, repr + chw, chw);
- /* fill in the numbers */
- for (i = 0; i < sz; ++i) {
- const int x = i % w;
- const int y = i / w;
- if (board[i] == EMPTY) continue;
- repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0';
- }
- repr[chlen] = '\0';
- return repr;
- }
- static bool game_can_format_as_text_now(const game_params *params)
- {
- return true;
- }
- static char *game_text_format(const game_state *state)
- {
- const int w = state->shared->params.w;
- const int h = state->shared->params.h;
- return board_to_string(state->board, w, h);
- }
- /*****************************************************************************
- * GAME GENERATION AND SOLVER *
- *****************************************************************************/
- static const int dx[4] = {-1, 1, 0, 0};
- static const int dy[4] = {0, 0, -1, 1};
- struct solver_state
- {
- DSF *dsf;
- int *board;
- int *connected;
- int nempty;
- /* Used internally by learn_bitmap_deductions; kept here to avoid
- * mallocing/freeing them every time that function is called. */
- int *bm, *bmminsize;
- DSF *bmdsf;
- };
- static void print_board(int *board, int w, int h) {
- if (verbose) {
- char *repr = board_to_string(board, w, h);
- printv("%s\n", repr);
- free(repr);
- }
- }
- static game_state *new_game(midend *, const game_params *, const char *);
- static void free_game(game_state *);
- #define SENTINEL (sz+1)
- static bool mark_region(int *board, int w, int h, int i, int n, int m) {
- int j;
- board[i] = -1;
- for (j = 0; j < 4; ++j) {
- const int x = (i % w) + dx[j], y = (i / w) + dy[j], ii = w*y + x;
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (board[ii] == m) return false;
- if (board[ii] != n) continue;
- if (!mark_region(board, w, h, ii, n, m)) return false;
- }
- return true;
- }
- static int region_size(int *board, int w, int h, int i) {
- const int sz = w * h;
- int j, size, copy;
- if (board[i] == 0) return 0;
- copy = board[i];
- mark_region(board, w, h, i, board[i], SENTINEL);
- for (size = j = 0; j < sz; ++j) {
- if (board[j] != -1) continue;
- ++size;
- board[j] = copy;
- }
- return size;
- }
- static void merge_ones(int *board, int w, int h)
- {
- const int sz = w * h;
- const int maxsize = min(max(max(w, h), 3), 9);
- int i, j, k;
- bool change;
- do {
- change = false;
- for (i = 0; i < sz; ++i) {
- if (board[i] != 1) continue;
- for (j = 0; j < 4; ++j, board[i] = 1) {
- const int x = (i % w) + dx[j], y = (i / w) + dy[j];
- int oldsize, newsize, ii = w*y + x;
- bool ok;
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (board[ii] == maxsize) continue;
- oldsize = board[ii];
- board[i] = oldsize;
- newsize = region_size(board, w, h, i);
- if (newsize > maxsize) continue;
- ok = mark_region(board, w, h, i, oldsize, newsize);
- for (k = 0; k < sz; ++k)
- if (board[k] == -1)
- board[k] = ok ? newsize : oldsize;
- if (ok) break;
- }
- if (j < 4) change = true;
- }
- } while (change);
- }
- /* generate a random valid board; uses validate_board. */
- static void make_board(int *board, int w, int h, random_state *rs) {
- const int sz = w * h;
- /* w=h=2 is a special case which requires a number > max(w, h) */
- /* TODO prove that this is the case ONLY for w=h=2. */
- const int maxsize = min(max(max(w, h), 3), 9);
- /* Note that if 1 in {w, h} then it's impossible to have a region
- * of size > w*h, so the special case only affects w=h=2. */
- int i;
- DSF *dsf;
- bool change;
- assert(w >= 1);
- assert(h >= 1);
- assert(board);
- /* I abuse the board variable: when generating the puzzle, it
- * contains a shuffled list of numbers {0, ..., sz-1}. */
- for (i = 0; i < sz; ++i) board[i] = i;
- dsf = dsf_new(sz);
- retry:
- dsf_reinit(dsf);
- shuffle(board, sz, sizeof (int), rs);
- do {
- change = false; /* as long as the board potentially has errors */
- for (i = 0; i < sz; ++i) {
- const int square = dsf_canonify(dsf, board[i]);
- const int size = dsf_size(dsf, square);
- int merge = SENTINEL, min = maxsize - size + 1;
- bool error = false;
- int neighbour, neighbour_size, j;
- int directions[4];
- for (j = 0; j < 4; ++j)
- directions[j] = j;
- shuffle(directions, 4, sizeof(int), rs);
- for (j = 0; j < 4; ++j) {
- const int x = (board[i] % w) + dx[directions[j]];
- const int y = (board[i] / w) + dy[directions[j]];
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- neighbour = dsf_canonify(dsf, w*y + x);
- if (square == neighbour) continue;
- neighbour_size = dsf_size(dsf, neighbour);
- if (size == neighbour_size) error = true;
- /* find the smallest neighbour to merge with, which
- * wouldn't make the region too large. (This is
- * guaranteed by the initial value of `min'.) */
- if (neighbour_size < min && random_upto(rs, 10)) {
- min = neighbour_size;
- merge = neighbour;
- }
- }
- /* if this square is not in error, leave it be */
- if (!error) continue;
- /* if it is, but we can't fix it, retry the whole board.
- * Maybe we could fix it by merging the conflicting
- * neighbouring region(s) into some of their neighbours,
- * but just restarting works out fine. */
- if (merge == SENTINEL) goto retry;
- /* merge with the smallest neighbouring workable region. */
- dsf_merge(dsf, square, merge);
- change = true;
- }
- } while (change);
- for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i);
- merge_ones(board, w, h);
- dsf_free(dsf);
- }
- static void merge(DSF *dsf, int *connected, int a, int b) {
- int c;
- assert(dsf);
- assert(connected);
- a = dsf_canonify(dsf, a);
- b = dsf_canonify(dsf, b);
- if (a == b) return;
- dsf_merge(dsf, a, b);
- c = connected[a];
- connected[a] = connected[b];
- connected[b] = c;
- }
- static void *memdup(const void *ptr, size_t len, size_t esz) {
- void *dup = smalloc(len * esz);
- assert(ptr);
- memcpy(dup, ptr, len * esz);
- return dup;
- }
- static void expand(struct solver_state *s, int w, int h, int t, int f) {
- int j;
- assert(s);
- assert(s->board[t] == EMPTY); /* expand to empty square */
- assert(s->board[f] != EMPTY); /* expand from non-empty square */
- printv(
- "learn: expanding %d from (%d, %d) into (%d, %d)\n",
- s->board[f], f % w, f / w, t % w, t / w);
- s->board[t] = s->board[f];
- for (j = 0; j < 4; ++j) {
- const int x = (t % w) + dx[j];
- const int y = (t / w) + dy[j];
- const int idx = w*y + x;
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (s->board[idx] != s->board[t]) continue;
- merge(s->dsf, s->connected, t, idx);
- }
- --s->nempty;
- }
- static void clear_count(int *board, int sz) {
- int i;
- for (i = 0; i < sz; ++i) {
- if (board[i] >= 0) continue;
- else if (board[i] == -SENTINEL) board[i] = EMPTY;
- else board[i] = -board[i];
- }
- }
- static void flood_count(int *board, int w, int h, int i, int n, int *c) {
- const int sz = w * h;
- int k;
- if (board[i] == EMPTY) board[i] = -SENTINEL;
- else if (board[i] == n) board[i] = -board[i];
- else return;
- if (--*c == 0) return;
- for (k = 0; k < 4; ++k) {
- const int x = (i % w) + dx[k];
- const int y = (i / w) + dy[k];
- const int idx = w*y + x;
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- flood_count(board, w, h, idx, n, c);
- if (*c == 0) return;
- }
- }
- static bool check_capacity(int *board, int w, int h, int i) {
- int n = board[i];
- flood_count(board, w, h, i, board[i], &n);
- clear_count(board, w * h);
- return n == 0;
- }
- static int expandsize(const int *board, DSF *dsf, int w, int h, int i, int n) {
- int j;
- int nhits = 0;
- int hits[4];
- int size = 1;
- for (j = 0; j < 4; ++j) {
- const int x = (i % w) + dx[j];
- const int y = (i / w) + dy[j];
- const int idx = w*y + x;
- int root;
- int m;
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (board[idx] != n) continue;
- root = dsf_canonify(dsf, idx);
- for (m = 0; m < nhits && root != hits[m]; ++m);
- if (m < nhits) continue;
- printv("\t (%d, %d) contrib %d to size\n", x, y, dsf_size(dsf, root));
- size += dsf_size(dsf, root);
- assert(dsf_size(dsf, root) >= 1);
- hits[nhits++] = root;
- }
- return size;
- }
- /*
- * +---+---+---+---+---+---+---+
- * | 6 | | | 2 | | | 2 |
- * +---+---+---+---+---+---+---+
- * | | 3 | | 6 | | 3 | |
- * +---+---+---+---+---+---+---+
- * | 3 | | | | | | 1 |
- * +---+---+---+---+---+---+---+
- * | | 2 | 3 | | 4 | 2 | |
- * +---+---+---+---+---+---+---+
- * | 2 | | | | | | 3 |
- * +---+---+---+---+---+---+---+
- * | | 5 | | 1 | | 4 | |
- * +---+---+---+---+---+---+---+
- * | 4 | | | 3 | | | 3 |
- * +---+---+---+---+---+---+---+
- */
- /* Solving techniques:
- *
- * CONNECTED COMPONENT FORCED EXPANSION (too big):
- * When a CC can only be expanded in one direction, because all the
- * other ones would make the CC too big.
- * +---+---+---+---+---+
- * | 2 | 2 | | 2 | _ |
- * +---+---+---+---+---+
- *
- * CONNECTED COMPONENT FORCED EXPANSION (too small):
- * When a CC must include a particular square, because otherwise there
- * would not be enough room to complete it. This includes squares not
- * adjacent to the CC through learn_critical_square.
- * +---+---+
- * | 2 | _ |
- * +---+---+
- *
- * DROPPING IN A ONE:
- * When an empty square has no neighbouring empty squares and only a 1
- * will go into the square (or other CCs would be too big).
- * +---+---+---+
- * | 2 | 2 | _ |
- * +---+---+---+
- *
- * TODO: generalise DROPPING IN A ONE: find the size of the CC of
- * empty squares and a list of all adjacent numbers. See if only one
- * number in {1, ..., size} u {all adjacent numbers} is possible.
- * Probably this is only effective for a CC size < n for some n (4?)
- *
- * TODO: backtracking.
- */
- static void filled_square(struct solver_state *s, int w, int h, int i) {
- int j;
- for (j = 0; j < 4; ++j) {
- const int x = (i % w) + dx[j];
- const int y = (i / w) + dy[j];
- const int idx = w*y + x;
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (s->board[i] == s->board[idx])
- merge(s->dsf, s->connected, i, idx);
- }
- }
- static void init_solver_state(struct solver_state *s, int w, int h) {
- const int sz = w * h;
- int i;
- assert(s);
- s->nempty = 0;
- for (i = 0; i < sz; ++i) s->connected[i] = i;
- for (i = 0; i < sz; ++i)
- if (s->board[i] == EMPTY) ++s->nempty;
- else filled_square(s, w, h, i);
- }
- static bool learn_expand_or_one(struct solver_state *s, int w, int h) {
- const int sz = w * h;
- int i;
- bool learn = false;
- assert(s);
- for (i = 0; i < sz; ++i) {
- int j;
- bool one = true;
- if (s->board[i] != EMPTY) continue;
- for (j = 0; j < 4; ++j) {
- const int x = (i % w) + dx[j];
- const int y = (i / w) + dy[j];
- const int idx = w*y + x;
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (s->board[idx] == EMPTY) {
- one = false;
- continue;
- }
- if (one &&
- (s->board[idx] == 1 ||
- (s->board[idx] >= expandsize(s->board, s->dsf, w, h,
- i, s->board[idx]))))
- one = false;
- if (dsf_size(s->dsf, idx) == s->board[idx]) continue;
- assert(s->board[i] == EMPTY);
- s->board[i] = -SENTINEL;
- if (check_capacity(s->board, w, h, idx)) continue;
- assert(s->board[i] == EMPTY);
- printv("learn: expanding in one\n");
- expand(s, w, h, i, idx);
- learn = true;
- break;
- }
- if (j == 4 && one) {
- printv("learn: one at (%d, %d)\n", i % w, i / w);
- assert(s->board[i] == EMPTY);
- s->board[i] = 1;
- assert(s->nempty);
- --s->nempty;
- learn = true;
- }
- }
- return learn;
- }
- static bool learn_blocked_expansion(struct solver_state *s, int w, int h) {
- const int sz = w * h;
- int i;
- bool learn = false;
- assert(s);
- /* for every connected component */
- for (i = 0; i < sz; ++i) {
- int exp = SENTINEL;
- int j;
- if (s->board[i] == EMPTY) continue;
- j = dsf_canonify(s->dsf, i);
- /* (but only for each connected component) */
- if (i != j) continue;
- /* (and not if it's already complete) */
- if (dsf_size(s->dsf, j) == s->board[j]) continue;
- /* for each square j _in_ the connected component */
- do {
- int k;
- printv(" looking at (%d, %d)\n", j % w, j / w);
- /* for each neighbouring square (idx) */
- for (k = 0; k < 4; ++k) {
- const int x = (j % w) + dx[k];
- const int y = (j / w) + dy[k];
- const int idx = w*y + x;
- int size;
- /* int l;
- int nhits = 0;
- int hits[4]; */
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (s->board[idx] != EMPTY) continue;
- if (exp == idx) continue;
- printv("\ttrying to expand onto (%d, %d)\n", x, y);
- /* find out the would-be size of the new connected
- * component if we actually expanded into idx */
- /*
- size = 1;
- for (l = 0; l < 4; ++l) {
- const int lx = x + dx[l];
- const int ly = y + dy[l];
- const int idxl = w*ly + lx;
- int root;
- int m;
- if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue;
- if (board[idxl] != board[j]) continue;
- root = dsf_canonify(dsf, idxl);
- for (m = 0; m < nhits && root != hits[m]; ++m);
- if (m != nhits) continue;
- // printv("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2);
- size += dsf_size(dsf, root);
- assert(dsf_size(dsf, root) >= 1);
- hits[nhits++] = root;
- }
- */
- size = expandsize(s->board, s->dsf, w, h, idx, s->board[j]);
- /* ... and see if that size is too big, or if we
- * have other expansion candidates. Otherwise
- * remember the (so far) only candidate. */
- printv("\tthat would give a size of %d\n", size);
- if (size > s->board[j]) continue;
- /* printv("\tnow knowing %d expansions\n", nexpand + 1); */
- if (exp != SENTINEL) goto next_i;
- assert(exp != idx);
- exp = idx;
- }
- j = s->connected[j]; /* next square in the same CC */
- assert(s->board[i] == s->board[j]);
- } while (j != i);
- /* end: for each square j _in_ the connected component */
- if (exp == SENTINEL) continue;
- printv("learning to expand\n");
- expand(s, w, h, exp, i);
- learn = true;
- next_i:
- ;
- }
- /* end: for each connected component */
- return learn;
- }
- static bool learn_critical_square(struct solver_state *s, int w, int h) {
- const int sz = w * h;
- int i;
- bool learn = false;
- assert(s);
- /* for each connected component */
- for (i = 0; i < sz; ++i) {
- int j, slack;
- if (s->board[i] == EMPTY) continue;
- if (i != dsf_canonify(s->dsf, i)) continue;
- slack = s->board[i] - dsf_size(s->dsf, i);
- if (slack == 0) continue;
- assert(s->board[i] != 1);
- /* for each empty square */
- for (j = 0; j < sz; ++j) {
- if (s->board[j] == EMPTY) {
- /* if it's too far away from the CC, don't bother */
- int k = i, jx = j % w, jy = j / w;
- do {
- int kx = k % w, ky = k / w;
- if (abs(kx - jx) + abs(ky - jy) <= slack) break;
- k = s->connected[k];
- } while (i != k);
- if (i == k) continue; /* not within range */
- } else continue;
- s->board[j] = -SENTINEL;
- if (check_capacity(s->board, w, h, i)) continue;
- /* if not expanding s->board[i] to s->board[j] implies
- * that s->board[i] can't reach its full size, ... */
- assert(s->nempty);
- printv(
- "learn: ds %d at (%d, %d) blocking (%d, %d)\n",
- s->board[i], j % w, j / w, i % w, i / w);
- --s->nempty;
- s->board[j] = s->board[i];
- filled_square(s, w, h, j);
- learn = true;
- }
- }
- return learn;
- }
- #if 0
- static void print_bitmap(int *bitmap, int w, int h) {
- if (verbose) {
- int x, y;
- for (y = 0; y < h; y++) {
- for (x = 0; x < w; x++) {
- printv(" %03x", bm[y*w+x]);
- }
- printv("\n");
- }
- }
- }
- #endif
- static bool learn_bitmap_deductions(struct solver_state *s, int w, int h)
- {
- const int sz = w * h;
- int *bm = s->bm;
- DSF *dsf = s->bmdsf;
- int *minsize = s->bmminsize;
- int x, y, i, j, n;
- bool learn = false;
- /*
- * This function does deductions based on building up a bitmap
- * which indicates the possible numbers that can appear in each
- * grid square. If we can rule out all but one possibility for a
- * particular square, then we've found out the value of that
- * square. In particular, this is one of the few forms of
- * deduction capable of inferring the existence of a 'ghost
- * region', i.e. a region which has none of its squares filled in
- * at all.
- *
- * The reasoning goes like this. A currently unfilled square S can
- * turn out to contain digit n in exactly two ways: either S is
- * part of an n-region which also includes some currently known
- * connected component of squares with n in, or S is part of an
- * n-region separate from _all_ currently known connected
- * components. If we can rule out both possibilities, then square
- * S can't contain digit n at all.
- *
- * The former possibility: if there's a region of size n
- * containing both S and some existing component C, then that
- * means the distance from S to C must be small enough that C
- * could be extended to include S without becoming too big. So we
- * can do a breadth-first search out from all existing components
- * with n in them, to identify all the squares which could be
- * joined to any of them.
- *
- * The latter possibility: if there's a region of size n that
- * doesn't contain _any_ existing component, then it also can't
- * contain any square adjacent to an existing component either. So
- * we can identify all the EMPTY squares not adjacent to any
- * existing square with n in, and group them into connected
- * components; then any component of size less than n is ruled
- * out, because there wouldn't be room to create a completely new
- * n-region in it.
- *
- * In fact we process these possibilities in the other order.
- * First we find all the squares not adjacent to an existing
- * square with n in; then we winnow those by removing too-small
- * connected components, to get the set of squares which could
- * possibly be part of a brand new n-region; and finally we do the
- * breadth-first search to add in the set of squares which could
- * possibly be added to some existing n-region.
- */
- /*
- * Start by initialising our bitmap to 'all numbers possible in
- * all squares'.
- */
- for (y = 0; y < h; y++)
- for (x = 0; x < w; x++)
- bm[y*w+x] = (1 << 10) - (1 << 1); /* bits 1,2,...,9 now set */
- #if 0
- printv("initial bitmap:\n");
- print_bitmap(bm, w, h);
- #endif
- /*
- * Now completely zero out the bitmap for squares that are already
- * filled in (we aren't interested in those anyway). Also, for any
- * filled square, eliminate its number from all its neighbours
- * (because, as discussed above, the neighbours couldn't be part
- * of a _new_ region with that number in it, and that's the case
- * we consider first).
- */
- for (y = 0; y < h; y++) {
- for (x = 0; x < w; x++) {
- i = y*w+x;
- n = s->board[i];
- if (n != EMPTY) {
- bm[i] = 0;
- if (x > 0)
- bm[i-1] &= ~(1 << n);
- if (x+1 < w)
- bm[i+1] &= ~(1 << n);
- if (y > 0)
- bm[i-w] &= ~(1 << n);
- if (y+1 < h)
- bm[i+w] &= ~(1 << n);
- }
- }
- }
- #if 0
- printv("bitmap after filled squares:\n");
- print_bitmap(bm, w, h);
- #endif
- /*
- * Now, for each n, we separately find the connected components of
- * squares for which n is still a possibility. Then discard any
- * component of size < n, because that component is too small to
- * have a completely new n-region in it.
- */
- for (n = 1; n <= 9; n++) {
- dsf_reinit(dsf);
- /* Build the dsf */
- for (y = 0; y < h; y++)
- for (x = 0; x+1 < w; x++)
- if (bm[y*w+x] & bm[y*w+(x+1)] & (1 << n))
- dsf_merge(dsf, y*w+x, y*w+(x+1));
- for (y = 0; y+1 < h; y++)
- for (x = 0; x < w; x++)
- if (bm[y*w+x] & bm[(y+1)*w+x] & (1 << n))
- dsf_merge(dsf, y*w+x, (y+1)*w+x);
- /* Query the dsf */
- for (i = 0; i < sz; i++)
- if ((bm[i] & (1 << n)) && dsf_size(dsf, i) < n)
- bm[i] &= ~(1 << n);
- }
- #if 0
- printv("bitmap after winnowing small components:\n");
- print_bitmap(bm, w, h);
- #endif
- /*
- * Now our bitmap includes every square which could be part of a
- * completely new region, of any size. Extend it to include
- * squares which could be part of an existing region.
- */
- for (n = 1; n <= 9; n++) {
- /*
- * We're going to do a breadth-first search starting from
- * existing connected components with cell value n, to find
- * all cells they might possibly extend into.
- *
- * The quantity we compute, for each square, is 'minimum size
- * that any existing CC would have to have if extended to
- * include this square'. So squares already _in_ an existing
- * CC are initialised to the size of that CC; then we search
- * outwards using the rule that if a square's score is j, then
- * its neighbours can't score more than j+1.
- *
- * Scores are capped at n+1, because if a square scores more
- * than n then that's enough to know it can't possibly be
- * reached by extending an existing region - we don't need to
- * know exactly _how far_ out of reach it is.
- */
- for (i = 0; i < sz; i++) {
- if (s->board[i] == n) {
- /* Square is part of an existing CC. */
- minsize[i] = dsf_size(s->dsf, i);
- } else {
- /* Otherwise, initialise to the maximum score n+1;
- * we'll reduce this later if we find a neighbouring
- * square with a lower score. */
- minsize[i] = n+1;
- }
- }
- for (j = 1; j < n; j++) {
- /*
- * Find neighbours of cells scoring j, and set their score
- * to at most j+1.
- *
- * Doing the BFS this way means we need n passes over the
- * grid, which isn't entirely optimal but it seems to be
- * fast enough for the moment. This could probably be
- * improved by keeping a linked-list queue of cells in
- * some way, but I think you'd have to be a bit careful to
- * insert things into the right place in the queue; this
- * way is easier not to get wrong.
- */
- for (y = 0; y < h; y++) {
- for (x = 0; x < w; x++) {
- i = y*w+x;
- if (minsize[i] == j) {
- if (x > 0 && minsize[i-1] > j+1)
- minsize[i-1] = j+1;
- if (x+1 < w && minsize[i+1] > j+1)
- minsize[i+1] = j+1;
- if (y > 0 && minsize[i-w] > j+1)
- minsize[i-w] = j+1;
- if (y+1 < h && minsize[i+w] > j+1)
- minsize[i+w] = j+1;
- }
- }
- }
- }
- /*
- * Now, every cell scoring at most n should have its 1<<n bit
- * in the bitmap reinstated, because we've found that it's
- * potentially reachable by extending an existing CC.
- */
- for (i = 0; i < sz; i++)
- if (minsize[i] <= n)
- bm[i] |= 1<<n;
- }
- #if 0
- printv("bitmap after bfs:\n");
- print_bitmap(bm, w, h);
- #endif
- /*
- * Now our bitmap is complete. Look for entries with only one bit
- * set; those are squares with only one possible number, in which
- * case we can fill that number in.
- */
- for (i = 0; i < sz; i++) {
- if (bm[i] && !(bm[i] & (bm[i]-1))) { /* is bm[i] a power of two? */
- int val = bm[i];
- /* Integer log2, by simple binary search. */
- n = 0;
- if (val >> 8) { val >>= 8; n += 8; }
- if (val >> 4) { val >>= 4; n += 4; }
- if (val >> 2) { val >>= 2; n += 2; }
- if (val >> 1) { val >>= 1; n += 1; }
- /* Double-check that we ended up with a sensible
- * answer. */
- assert(1 <= n);
- assert(n <= 9);
- assert(bm[i] == (1 << n));
- if (s->board[i] == EMPTY) {
- printv("learn: %d is only possibility at (%d, %d)\n",
- n, i % w, i / w);
- s->board[i] = n;
- filled_square(s, w, h, i);
- assert(s->nempty);
- --s->nempty;
- learn = true;
- }
- }
- }
- return learn;
- }
- static bool solver(const int *orig, int w, int h, char **solution) {
- const int sz = w * h;
- struct solver_state ss;
- ss.board = memdup(orig, sz, sizeof (int));
- ss.dsf = dsf_new(sz); /* eqv classes: connected components */
- ss.connected = snewn(sz, int); /* connected[n] := n.next; */
- /* cyclic disjoint singly linked lists, same partitioning as dsf.
- * The lists lets you iterate over a partition given any member */
- ss.bm = snewn(sz, int);
- ss.bmdsf = dsf_new(sz);
- ss.bmminsize = snewn(sz, int);
- printv("trying to solve this:\n");
- print_board(ss.board, w, h);
- init_solver_state(&ss, w, h);
- do {
- if (learn_blocked_expansion(&ss, w, h)) continue;
- if (learn_expand_or_one(&ss, w, h)) continue;
- if (learn_critical_square(&ss, w, h)) continue;
- if (learn_bitmap_deductions(&ss, w, h)) continue;
- break;
- } while (ss.nempty);
- printv("best guess:\n");
- print_board(ss.board, w, h);
- if (solution) {
- int i;
- *solution = snewn(sz + 2, char);
- **solution = 's';
- for (i = 0; i < sz; ++i) (*solution)[i + 1] = ss.board[i] + '0';
- (*solution)[sz + 1] = '\0';
- }
- dsf_free(ss.dsf);
- sfree(ss.board);
- sfree(ss.connected);
- sfree(ss.bm);
- dsf_free(ss.bmdsf);
- sfree(ss.bmminsize);
- return !ss.nempty;
- }
- static DSF *make_dsf(DSF *dsf, int *board, const int w, const int h) {
- const int sz = w * h;
- int i;
- if (!dsf)
- dsf = dsf_new_min(w * h);
- else
- dsf_reinit(dsf);
- for (i = 0; i < sz; ++i) {
- int j;
- for (j = 0; j < 4; ++j) {
- const int x = (i % w) + dx[j];
- const int y = (i / w) + dy[j];
- const int k = w*y + x;
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (board[i] == board[k]) dsf_merge(dsf, i, k);
- }
- }
- return dsf;
- }
- static void minimize_clue_set(int *board, int w, int h, random_state *rs)
- {
- const int sz = w * h;
- int *shuf = snewn(sz, int), i;
- DSF *dsf;
- int *next;
- for (i = 0; i < sz; ++i) shuf[i] = i;
- shuffle(shuf, sz, sizeof (int), rs);
- /*
- * First, try to eliminate an entire region at a time if possible,
- * because inferring the existence of a completely unclued region
- * is a particularly good aspect of this puzzle type and we want
- * to encourage it to happen.
- *
- * Begin by identifying the regions as linked lists of cells using
- * the 'next' array.
- */
- dsf = make_dsf(NULL, board, w, h);
- next = snewn(sz, int);
- for (i = 0; i < sz; ++i) {
- int j = dsf_minimal(dsf, i);
- if (i == j) {
- /* First cell of a region; set next[i] = -1 to indicate
- * end-of-list. */
- next[i] = -1;
- } else {
- /* Add this cell to a region which already has a
- * linked-list head, by pointing the minimal element j
- * at this one, and pointing this one in turn at wherever
- * j previously pointed. (This should end up with the
- * elements linked in the order 1,n,n-1,n-2,...,2, which
- * is a bit weird-looking, but any order is fine.)
- */
- assert(j < i);
- next[i] = next[j];
- next[j] = i;
- }
- }
- /*
- * Now loop over the grid cells in our shuffled order, and each
- * time we encounter a region for the first time, try to remove it
- * all. Then we set next[canonical index] to -2 rather than -1, to
- * mark it as already tried.
- *
- * Doing this in a loop over _cells_, rather than extracting and
- * shuffling a list of _regions_, is intended to skew the
- * probabilities towards trying to remove larger regions first
- * (but without anything as crudely predictable as enforcing that
- * we _always_ process regions in descending size order). Region
- * removals might well be mutually exclusive, and larger ghost
- * regions are more interesting, so we want to bias towards them
- * if we can.
- */
- for (i = 0; i < sz; ++i) {
- int j = dsf_minimal(dsf, shuf[i]);
- if (next[j] != -2) {
- int tmp = board[j];
- int k;
- /* Blank out the whole thing. */
- for (k = j; k >= 0; k = next[k])
- board[k] = EMPTY;
- if (!solver(board, w, h, NULL)) {
- /* Wasn't still solvable; reinstate it all */
- for (k = j; k >= 0; k = next[k])
- board[k] = tmp;
- }
- /* Either way, don't try this region again. */
- next[j] = -2;
- }
- }
- sfree(next);
- dsf_free(dsf);
- /*
- * Now go through individual cells, in the same shuffled order,
- * and try to remove each one by itself.
- */
- for (i = 0; i < sz; ++i) {
- int tmp = board[shuf[i]];
- board[shuf[i]] = EMPTY;
- if (!solver(board, w, h, NULL)) board[shuf[i]] = tmp;
- }
- sfree(shuf);
- }
- static int encode_run(char *buffer, int run)
- {
- int i = 0;
- for (; run > 26; run -= 26)
- buffer[i++] = 'z';
- if (run)
- buffer[i++] = 'a' - 1 + run;
- return i;
- }
- static char *new_game_desc(const game_params *params, random_state *rs,
- char **aux, bool interactive)
- {
- const int w = params->w, h = params->h, sz = w * h;
- int *board = snewn(sz, int), i, j, run;
- char *description = snewn(sz + 1, char);
- make_board(board, w, h, rs);
- minimize_clue_set(board, w, h, rs);
- for (run = j = i = 0; i < sz; ++i) {
- assert(board[i] >= 0);
- assert(board[i] < 10);
- if (board[i] == 0) {
- ++run;
- } else {
- j += encode_run(description + j, run);
- run = 0;
- description[j++] = board[i] + '0';
- }
- }
- j += encode_run(description + j, run);
- description[j++] = '\0';
- sfree(board);
- return sresize(description, j, char);
- }
- static const char *validate_desc(const game_params *params, const char *desc)
- {
- const int sz = params->w * params->h;
- const char m = '0' + max(max(params->w, params->h), 3);
- int area;
- for (area = 0; *desc; ++desc) {
- if (*desc >= 'a' && *desc <= 'z') area += *desc - 'a' + 1;
- else if (*desc >= '0' && *desc <= m) ++area;
- else {
- static char s[] = "Invalid character '%""' in game description";
- int n = sprintf(s, "Invalid character '%1c' in game description",
- *desc);
- assert(n + 1 <= lenof(s)); /* +1 for the terminating NUL */
- return s;
- }
- if (area > sz) return "Too much data to fit in grid";
- }
- return (area < sz) ? "Not enough data to fill grid" : NULL;
- }
- static key_label *game_request_keys(const game_params *params, int *nkeys)
- {
- int i;
- key_label *keys = snewn(11, key_label);
- *nkeys = 11;
- for(i = 0; i < 10; ++i)
- {
- keys[i].button = '0' + i;
- keys[i].label = NULL;
- }
- keys[10].button = '\b';
- keys[10].label = NULL;
- return keys;
- }
- static game_state *new_game(midend *me, const game_params *params,
- const char *desc)
- {
- game_state *state = snew(game_state);
- int sz = params->w * params->h;
- int i;
- state->cheated = false;
- state->completed = false;
- state->shared = snew(struct shared_state);
- state->shared->refcnt = 1;
- state->shared->params = *params; /* struct copy */
- state->shared->clues = snewn(sz, int);
- for (i = 0; *desc; ++desc) {
- if (*desc >= 'a' && *desc <= 'z') {
- int j = *desc - 'a' + 1;
- assert(i + j <= sz);
- for (; j; --j) state->shared->clues[i++] = 0;
- } else state->shared->clues[i++] = *desc - '0';
- }
- state->board = memdup(state->shared->clues, sz, sizeof (int));
- return state;
- }
- static game_state *dup_game(const game_state *state)
- {
- const int sz = state->shared->params.w * state->shared->params.h;
- game_state *ret = snew(game_state);
- ret->board = memdup(state->board, sz, sizeof (int));
- ret->shared = state->shared;
- ret->cheated = state->cheated;
- ret->completed = state->completed;
- ++ret->shared->refcnt;
- return ret;
- }
- static void free_game(game_state *state)
- {
- assert(state);
- sfree(state->board);
- if (--state->shared->refcnt == 0) {
- sfree(state->shared->clues);
- sfree(state->shared);
- }
- sfree(state);
- }
- static char *solve_game(const game_state *state, const game_state *currstate,
- const char *aux, const char **error)
- {
- if (aux == NULL) {
- const int w = state->shared->params.w;
- const int h = state->shared->params.h;
- char *new_aux;
- if (!solver(state->board, w, h, &new_aux))
- *error = "Sorry, I couldn't find a solution";
- return new_aux;
- }
- return dupstr(aux);
- }
- /*****************************************************************************
- * USER INTERFACE STATE AND ACTION *
- *****************************************************************************/
- struct game_ui {
- bool *sel; /* w*h highlighted squares, or NULL */
- int cur_x, cur_y;
- bool cur_visible, keydragging;
- };
- static game_ui *new_ui(const game_state *state)
- {
- game_ui *ui = snew(game_ui);
- ui->sel = NULL;
- ui->cur_x = ui->cur_y = 0;
- ui->cur_visible = getenv_bool("PUZZLES_SHOW_CURSOR", false);
- ui->keydragging = false;
- return ui;
- }
- static void free_ui(game_ui *ui)
- {
- if (ui->sel)
- sfree(ui->sel);
- sfree(ui);
- }
- static void game_changed_state(game_ui *ui, const game_state *oldstate,
- const game_state *newstate)
- {
- /* Clear any selection */
- if (ui->sel) {
- sfree(ui->sel);
- ui->sel = NULL;
- }
- ui->keydragging = false;
- }
- static const char *current_key_label(const game_ui *ui,
- const game_state *state, int button)
- {
- const int w = state->shared->params.w;
- if (IS_CURSOR_SELECT(button) && ui->cur_visible) {
- if (button == CURSOR_SELECT) {
- if (ui->keydragging) return "Stop";
- return "Multiselect";
- }
- if (button == CURSOR_SELECT2 &&
- !state->shared->clues[w*ui->cur_y + ui->cur_x])
- return (ui->sel[w*ui->cur_y + ui->cur_x]) ? "Deselect" : "Select";
- }
- return "";
- }
- #define PREFERRED_TILE_SIZE 32
- #define TILE_SIZE (ds->tilesize)
- #define BORDER (TILE_SIZE / 2)
- #define BORDER_WIDTH (max(TILE_SIZE / 32, 1))
- struct game_drawstate {
- struct game_params params;
- int tilesize;
- bool started;
- int *v, *flags;
- DSF *dsf_scratch;
- int *border_scratch;
- };
- static char *interpret_move(const game_state *state, game_ui *ui,
- const game_drawstate *ds,
- int x, int y, int button)
- {
- const int w = state->shared->params.w;
- const int h = state->shared->params.h;
- const int tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
- const int ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
- char *move = NULL;
- int i;
- assert(ui);
- assert(ds);
- button &= ~MOD_MASK;
- if (button == LEFT_BUTTON || button == LEFT_DRAG) {
- /* A left-click anywhere will clear the current selection. */
- if (button == LEFT_BUTTON) {
- if (ui->sel) {
- sfree(ui->sel);
- ui->sel = NULL;
- }
- }
- if (tx >= 0 && tx < w && ty >= 0 && ty < h) {
- if (!ui->sel) {
- ui->sel = snewn(w*h, bool);
- memset(ui->sel, 0, w*h*sizeof(bool));
- }
- if (!state->shared->clues[w*ty+tx])
- ui->sel[w*ty+tx] = true;
- }
- ui->cur_visible = false;
- return MOVE_UI_UPDATE;
- }
- if (IS_CURSOR_MOVE(button)) {
- ui->cur_visible = true;
- move_cursor(button, &ui->cur_x, &ui->cur_y, w, h, false);
- if (ui->keydragging) goto select_square;
- return MOVE_UI_UPDATE;
- }
- if (button == CURSOR_SELECT) {
- if (!ui->cur_visible) {
- ui->cur_visible = true;
- return MOVE_UI_UPDATE;
- }
- ui->keydragging = !ui->keydragging;
- if (!ui->keydragging) return MOVE_UI_UPDATE;
- select_square:
- if (!ui->sel) {
- ui->sel = snewn(w*h, bool);
- memset(ui->sel, 0, w*h*sizeof(bool));
- }
- if (!state->shared->clues[w*ui->cur_y + ui->cur_x])
- ui->sel[w*ui->cur_y + ui->cur_x] = true;
- return MOVE_UI_UPDATE;
- }
- if (button == CURSOR_SELECT2) {
- if (!ui->cur_visible) {
- ui->cur_visible = true;
- return MOVE_UI_UPDATE;
- }
- if (!ui->sel) {
- ui->sel = snewn(w*h, bool);
- memset(ui->sel, 0, w*h*sizeof(bool));
- }
- ui->keydragging = false;
- if (!state->shared->clues[w*ui->cur_y + ui->cur_x])
- ui->sel[w*ui->cur_y + ui->cur_x] ^= 1;
- for (i = 0; i < w*h && !ui->sel[i]; i++);
- if (i == w*h) {
- sfree(ui->sel);
- ui->sel = NULL;
- }
- return MOVE_UI_UPDATE;
- }
- if (button == '\b' || button == 27) {
- sfree(ui->sel);
- ui->sel = NULL;
- ui->keydragging = false;
- return MOVE_UI_UPDATE;
- }
- if (button < '0' || button > '9') return MOVE_UNUSED;
- button -= '0';
- if (button > (w == 2 && h == 2 ? 3 : max(w, h))) return MOVE_UNUSED;
- ui->keydragging = false;
- for (i = 0; i < w*h; i++) {
- char buf[32];
- if ((ui->sel && ui->sel[i]) ||
- (!ui->sel && ui->cur_visible && (w*ui->cur_y+ui->cur_x) == i)) {
- if (state->shared->clues[i] != 0) continue; /* in case cursor is on clue */
- if (state->board[i] != button) {
- sprintf(buf, "%s%d", move ? "," : "", i);
- if (move) {
- move = srealloc(move, strlen(move)+strlen(buf)+1);
- strcat(move, buf);
- } else {
- move = smalloc(strlen(buf)+1);
- strcpy(move, buf);
- }
- }
- }
- }
- if (move) {
- char buf[32];
- sprintf(buf, "_%d", button);
- move = srealloc(move, strlen(move)+strlen(buf)+1);
- strcat(move, buf);
- }
- if (!ui->sel) return move ? move : MOVE_NO_EFFECT;
- sfree(ui->sel);
- ui->sel = NULL;
- /* Need to update UI at least, as we cleared the selection */
- return move ? move : MOVE_UI_UPDATE;
- }
- static game_state *execute_move(const game_state *state, const char *move)
- {
- game_state *new_state = NULL;
- const int sz = state->shared->params.w * state->shared->params.h;
- if (*move == 's') {
- int i = 0;
- if (strlen(move) != sz + 1) return NULL;
- new_state = dup_game(state);
- for (++move; i < sz; ++i) new_state->board[i] = move[i] - '0';
- new_state->cheated = true;
- } else {
- int value;
- char *endptr, *delim = strchr(move, '_');
- if (!delim) goto err;
- value = strtol(delim+1, &endptr, 0);
- if (*endptr || endptr == delim+1) goto err;
- if (value < 0 || value > 9) goto err;
- new_state = dup_game(state);
- while (*move) {
- const int i = strtol(move, &endptr, 0);
- if (endptr == move) goto err;
- if (i < 0 || i >= sz) goto err;
- new_state->board[i] = value;
- if (*endptr == '_') break;
- if (*endptr != ',') goto err;
- move = endptr + 1;
- }
- }
- /*
- * Check for completion.
- */
- if (!new_state->completed) {
- const int w = new_state->shared->params.w;
- const int h = new_state->shared->params.h;
- const int sz = w * h;
- DSF *dsf = make_dsf(NULL, new_state->board, w, h);
- int i;
- for (i = 0; i < sz && new_state->board[i] == dsf_size(dsf, i); ++i);
- dsf_free(dsf);
- if (i == sz)
- new_state->completed = true;
- }
- return new_state;
- err:
- if (new_state) free_game(new_state);
- return NULL;
- }
- /* ----------------------------------------------------------------------
- * Drawing routines.
- */
- #define FLASH_TIME 0.4F
- #define COL_CLUE COL_GRID
- enum {
- COL_BACKGROUND,
- COL_GRID,
- COL_HIGHLIGHT,
- COL_CORRECT,
- COL_ERROR,
- COL_USER,
- COL_CURSOR,
- NCOLOURS
- };
- static void game_compute_size(const game_params *params, int tilesize,
- const game_ui *ui, int *x, int *y)
- {
- *x = (params->w + 1) * tilesize;
- *y = (params->h + 1) * tilesize;
- }
- static void game_set_size(drawing *dr, game_drawstate *ds,
- const game_params *params, int tilesize)
- {
- ds->tilesize = tilesize;
- }
- static float *game_colours(frontend *fe, int *ncolours)
- {
- float *ret = snewn(3 * NCOLOURS, float);
- frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
- ret[COL_GRID * 3 + 0] = 0.0F;
- ret[COL_GRID * 3 + 1] = 0.0F;
- ret[COL_GRID * 3 + 2] = 0.0F;
- ret[COL_HIGHLIGHT * 3 + 0] = 0.7F * ret[COL_BACKGROUND * 3 + 0];
- ret[COL_HIGHLIGHT * 3 + 1] = 0.7F * ret[COL_BACKGROUND * 3 + 1];
- ret[COL_HIGHLIGHT * 3 + 2] = 0.7F * ret[COL_BACKGROUND * 3 + 2];
- ret[COL_CORRECT * 3 + 0] = 0.9F * ret[COL_BACKGROUND * 3 + 0];
- ret[COL_CORRECT * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1];
- ret[COL_CORRECT * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2];
- ret[COL_CURSOR * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
- ret[COL_CURSOR * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
- ret[COL_CURSOR * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
- ret[COL_ERROR * 3 + 0] = 1.0F;
- ret[COL_ERROR * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
- ret[COL_ERROR * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
- ret[COL_USER * 3 + 0] = 0.0F;
- ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
- ret[COL_USER * 3 + 2] = 0.0F;
- *ncolours = NCOLOURS;
- return ret;
- }
- static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
- {
- struct game_drawstate *ds = snew(struct game_drawstate);
- int i;
- ds->tilesize = PREFERRED_TILE_SIZE;
- ds->started = false;
- ds->params = state->shared->params;
- ds->v = snewn(ds->params.w * ds->params.h, int);
- ds->flags = snewn(ds->params.w * ds->params.h, int);
- for (i = 0; i < ds->params.w * ds->params.h; i++)
- ds->v[i] = ds->flags[i] = -1;
- ds->border_scratch = snewn(ds->params.w * ds->params.h, int);
- ds->dsf_scratch = NULL;
- return ds;
- }
- static void game_free_drawstate(drawing *dr, game_drawstate *ds)
- {
- sfree(ds->v);
- sfree(ds->flags);
- sfree(ds->border_scratch);
- dsf_free(ds->dsf_scratch);
- sfree(ds);
- }
- #define BORDER_U 0x001
- #define BORDER_D 0x002
- #define BORDER_L 0x004
- #define BORDER_R 0x008
- #define BORDER_UR 0x010
- #define BORDER_DR 0x020
- #define BORDER_UL 0x040
- #define BORDER_DL 0x080
- #define HIGH_BG 0x100
- #define CORRECT_BG 0x200
- #define ERROR_BG 0x400
- #define USER_COL 0x800
- #define CURSOR_SQ 0x1000
- static void draw_square(drawing *dr, game_drawstate *ds, int x, int y,
- int n, int flags)
- {
- assert(dr);
- assert(ds);
- /*
- * Clip to the grid square.
- */
- clip(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE,
- TILE_SIZE, TILE_SIZE);
- /*
- * Clear the square.
- */
- draw_rect(dr,
- BORDER + x*TILE_SIZE,
- BORDER + y*TILE_SIZE,
- TILE_SIZE,
- TILE_SIZE,
- (flags & HIGH_BG ? COL_HIGHLIGHT :
- flags & ERROR_BG ? COL_ERROR :
- flags & CORRECT_BG ? COL_CORRECT : COL_BACKGROUND));
- /*
- * Draw the grid lines.
- */
- draw_line(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE,
- BORDER + (x+1)*TILE_SIZE, BORDER + y*TILE_SIZE, COL_GRID);
- draw_line(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE,
- BORDER + x*TILE_SIZE, BORDER + (y+1)*TILE_SIZE, COL_GRID);
- /*
- * Draw the number.
- */
- if (n) {
- char buf[2];
- buf[0] = n + '0';
- buf[1] = '\0';
- draw_text(dr,
- (x + 1) * TILE_SIZE,
- (y + 1) * TILE_SIZE,
- FONT_VARIABLE,
- TILE_SIZE / 2,
- ALIGN_VCENTRE | ALIGN_HCENTRE,
- flags & USER_COL ? COL_USER : COL_CLUE,
- buf);
- }
- /*
- * Draw bold lines around the borders.
- */
- if (flags & BORDER_L)
- draw_rect(dr,
- BORDER + x*TILE_SIZE + 1,
- BORDER + y*TILE_SIZE + 1,
- BORDER_WIDTH,
- TILE_SIZE - 1,
- COL_GRID);
- if (flags & BORDER_U)
- draw_rect(dr,
- BORDER + x*TILE_SIZE + 1,
- BORDER + y*TILE_SIZE + 1,
- TILE_SIZE - 1,
- BORDER_WIDTH,
- COL_GRID);
- if (flags & BORDER_R)
- draw_rect(dr,
- BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
- BORDER + y*TILE_SIZE + 1,
- BORDER_WIDTH,
- TILE_SIZE - 1,
- COL_GRID);
- if (flags & BORDER_D)
- draw_rect(dr,
- BORDER + x*TILE_SIZE + 1,
- BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
- TILE_SIZE - 1,
- BORDER_WIDTH,
- COL_GRID);
- if (flags & BORDER_UL)
- draw_rect(dr,
- BORDER + x*TILE_SIZE + 1,
- BORDER + y*TILE_SIZE + 1,
- BORDER_WIDTH,
- BORDER_WIDTH,
- COL_GRID);
- if (flags & BORDER_UR)
- draw_rect(dr,
- BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
- BORDER + y*TILE_SIZE + 1,
- BORDER_WIDTH,
- BORDER_WIDTH,
- COL_GRID);
- if (flags & BORDER_DL)
- draw_rect(dr,
- BORDER + x*TILE_SIZE + 1,
- BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
- BORDER_WIDTH,
- BORDER_WIDTH,
- COL_GRID);
- if (flags & BORDER_DR)
- draw_rect(dr,
- BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
- BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
- BORDER_WIDTH,
- BORDER_WIDTH,
- COL_GRID);
- if (flags & CURSOR_SQ) {
- int coff = TILE_SIZE/8;
- draw_rect_outline(dr,
- BORDER + x*TILE_SIZE + coff,
- BORDER + y*TILE_SIZE + coff,
- TILE_SIZE - coff*2,
- TILE_SIZE - coff*2,
- COL_CURSOR);
- }
- unclip(dr);
- draw_update(dr,
- BORDER + x*TILE_SIZE,
- BORDER + y*TILE_SIZE,
- TILE_SIZE,
- TILE_SIZE);
- }
- static void draw_grid(
- drawing *dr, game_drawstate *ds, const game_state *state,
- const game_ui *ui, bool flashy, bool borders, bool shading)
- {
- const int w = state->shared->params.w;
- const int h = state->shared->params.h;
- int x;
- int y;
- /*
- * Build a dsf for the board in its current state, to use for
- * highlights and hints.
- */
- ds->dsf_scratch = make_dsf(ds->dsf_scratch, state->board, w, h);
- /*
- * Work out where we're putting borders between the cells.
- */
- for (y = 0; y < w*h; y++)
- ds->border_scratch[y] = 0;
- for (y = 0; y < h; y++)
- for (x = 0; x < w; x++) {
- int dx, dy;
- int v1, s1, v2, s2;
- for (dx = 0; dx <= 1; dx++) {
- bool border = false;
- dy = 1 - dx;
- if (x+dx >= w || y+dy >= h)
- continue;
- v1 = state->board[y*w+x];
- v2 = state->board[(y+dy)*w+(x+dx)];
- s1 = dsf_size(ds->dsf_scratch, y*w+x);
- s2 = dsf_size(ds->dsf_scratch, (y+dy)*w+(x+dx));
- /*
- * We only ever draw a border between two cells if
- * they don't have the same contents.
- */
- if (v1 != v2) {
- /*
- * But in that situation, we don't always draw
- * a border. We do if the two cells both
- * contain actual numbers...
- */
- if (v1 && v2)
- border = true;
- /*
- * ... or if at least one of them is a
- * completed or overfull omino.
- */
- if (v1 && s1 >= v1)
- border = true;
- if (v2 && s2 >= v2)
- border = true;
- }
- if (border)
- ds->border_scratch[y*w+x] |= (dx ? 1 : 2);
- }
- }
- /*
- * Actually do the drawing.
- */
- for (y = 0; y < h; ++y)
- for (x = 0; x < w; ++x) {
- /*
- * Determine what we need to draw in this square.
- */
- int i = y*w+x, v = state->board[i];
- int flags = 0;
- if (flashy || !shading) {
- /* clear all background flags */
- } else if (ui && ui->sel && ui->sel[i]) {
- flags |= HIGH_BG;
- } else if (v) {
- int size = dsf_size(ds->dsf_scratch, i);
- if (size == v)
- flags |= CORRECT_BG;
- else if (size > v)
- flags |= ERROR_BG;
- else {
- int rt = dsf_canonify(ds->dsf_scratch, i), j;
- for (j = 0; j < w*h; ++j) {
- int k;
- if (dsf_canonify(ds->dsf_scratch, j) != rt) continue;
- for (k = 0; k < 4; ++k) {
- const int xx = j % w + dx[k], yy = j / w + dy[k];
- if (xx >= 0 && xx < w && yy >= 0 && yy < h &&
- state->board[yy*w + xx] == EMPTY)
- goto noflag;
- }
- }
- flags |= ERROR_BG;
- noflag:
- ;
- }
- }
- if (ui && ui->cur_visible && x == ui->cur_x && y == ui->cur_y)
- flags |= CURSOR_SQ;
- /*
- * Borders at the very edges of the grid are
- * independent of the `borders' flag.
- */
- if (x == 0)
- flags |= BORDER_L;
- if (y == 0)
- flags |= BORDER_U;
- if (x == w-1)
- flags |= BORDER_R;
- if (y == h-1)
- flags |= BORDER_D;
- if (borders) {
- if (x == 0 || (ds->border_scratch[y*w+(x-1)] & 1))
- flags |= BORDER_L;
- if (y == 0 || (ds->border_scratch[(y-1)*w+x] & 2))
- flags |= BORDER_U;
- if (x == w-1 || (ds->border_scratch[y*w+x] & 1))
- flags |= BORDER_R;
- if (y == h-1 || (ds->border_scratch[y*w+x] & 2))
- flags |= BORDER_D;
- if (y > 0 && x > 0 && (ds->border_scratch[(y-1)*w+(x-1)]))
- flags |= BORDER_UL;
- if (y > 0 && x < w-1 &&
- ((ds->border_scratch[(y-1)*w+x] & 1) ||
- (ds->border_scratch[(y-1)*w+(x+1)] & 2)))
- flags |= BORDER_UR;
- if (y < h-1 && x > 0 &&
- ((ds->border_scratch[y*w+(x-1)] & 2) ||
- (ds->border_scratch[(y+1)*w+(x-1)] & 1)))
- flags |= BORDER_DL;
- if (y < h-1 && x < w-1 &&
- ((ds->border_scratch[y*w+(x+1)] & 2) ||
- (ds->border_scratch[(y+1)*w+x] & 1)))
- flags |= BORDER_DR;
- }
- if (!state->shared->clues[y*w+x])
- flags |= USER_COL;
- if (ds->v[y*w+x] != v || ds->flags[y*w+x] != flags) {
- draw_square(dr, ds, x, y, v, flags);
- ds->v[y*w+x] = v;
- ds->flags[y*w+x] = flags;
- }
- }
- }
- static void game_redraw(drawing *dr, game_drawstate *ds,
- const game_state *oldstate, const game_state *state,
- int dir, const game_ui *ui,
- float animtime, float flashtime)
- {
- const int w = state->shared->params.w;
- const int h = state->shared->params.h;
- const bool flashy =
- flashtime > 0 &&
- (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3);
- if (!ds->started) {
- /*
- * Black rectangle which is the main grid.
- */
- draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
- w*TILE_SIZE + 2*BORDER_WIDTH + 1,
- h*TILE_SIZE + 2*BORDER_WIDTH + 1,
- COL_GRID);
- draw_update(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER);
- ds->started = true;
- }
- draw_grid(dr, ds, state, ui, flashy, true, true);
- }
- static float game_anim_length(const game_state *oldstate,
- const game_state *newstate, int dir, game_ui *ui)
- {
- return 0.0F;
- }
- static float game_flash_length(const game_state *oldstate,
- const game_state *newstate, int dir, game_ui *ui)
- {
- assert(oldstate);
- assert(newstate);
- assert(newstate->shared);
- assert(oldstate->shared == newstate->shared);
- if (!oldstate->completed && newstate->completed &&
- !oldstate->cheated && !newstate->cheated)
- return FLASH_TIME;
- return 0.0F;
- }
- static void game_get_cursor_location(const game_ui *ui,
- const game_drawstate *ds,
- const game_state *state,
- const game_params *params,
- int *x, int *y, int *w, int *h)
- {
- if(ui->cur_visible)
- {
- *x = BORDER + ui->cur_x * TILE_SIZE;
- *y = BORDER + ui->cur_y * TILE_SIZE;
- *w = *h = TILE_SIZE;
- }
- }
- static int game_status(const game_state *state)
- {
- return state->completed ? +1 : 0;
- }
- static void game_print_size(const game_params *params, const game_ui *ui,
- float *x, float *y)
- {
- int pw, ph;
- /*
- * I'll use 6mm squares by default.
- */
- game_compute_size(params, 600, ui, &pw, &ph);
- *x = pw / 100.0F;
- *y = ph / 100.0F;
- }
- static void game_print(drawing *dr, const game_state *state, const game_ui *ui,
- int tilesize)
- {
- const int w = state->shared->params.w;
- const int h = state->shared->params.h;
- int c, i;
- bool borders;
- /* Ick: fake up `ds->tilesize' for macro expansion purposes */
- game_drawstate *ds = game_new_drawstate(dr, state);
- game_set_size(dr, ds, NULL, tilesize);
- c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND);
- c = print_mono_colour(dr, 0); assert(c == COL_GRID);
- c = print_mono_colour(dr, 1); assert(c == COL_HIGHLIGHT);
- c = print_mono_colour(dr, 1); assert(c == COL_CORRECT);
- c = print_mono_colour(dr, 1); assert(c == COL_ERROR);
- c = print_mono_colour(dr, 0); assert(c == COL_USER);
- /*
- * Border.
- */
- draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
- w*TILE_SIZE + 2*BORDER_WIDTH + 1,
- h*TILE_SIZE + 2*BORDER_WIDTH + 1,
- COL_GRID);
- /*
- * We'll draw borders between the ominoes iff the grid is not
- * pristine. So scan it to see if it is.
- */
- borders = false;
- for (i = 0; i < w*h; i++)
- if (state->board[i] && !state->shared->clues[i])
- borders = true;
- /*
- * Draw grid.
- */
- print_line_width(dr, TILE_SIZE / 64);
- draw_grid(dr, ds, state, NULL, false, borders, false);
- /*
- * Clean up.
- */
- game_free_drawstate(dr, ds);
- }
- #ifdef COMBINED
- #define thegame filling
- #endif
- const struct game thegame = {
- "Filling", "games.filling", "filling",
- default_params,
- game_fetch_preset, NULL,
- decode_params,
- encode_params,
- free_params,
- dup_params,
- true, game_configure, custom_params,
- validate_params,
- new_game_desc,
- validate_desc,
- new_game,
- dup_game,
- free_game,
- true, solve_game,
- true, game_can_format_as_text_now, game_text_format,
- NULL, NULL, /* get_prefs, set_prefs */
- new_ui,
- free_ui,
- NULL, /* encode_ui */
- NULL, /* decode_ui */
- game_request_keys,
- game_changed_state,
- current_key_label,
- interpret_move,
- execute_move,
- PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
- game_colours,
- game_new_drawstate,
- game_free_drawstate,
- game_redraw,
- game_anim_length,
- game_flash_length,
- game_get_cursor_location,
- game_status,
- true, false, game_print_size, game_print,
- false, /* wants_statusbar */
- false, NULL, /* timing_state */
- REQUIRE_NUMPAD, /* flags */
- };
- #ifdef STANDALONE_SOLVER /* solver? hah! */
- int main(int argc, char **argv) {
- while (*++argv) {
- game_params *params;
- game_state *state;
- char *par;
- char *desc;
- for (par = desc = *argv; *desc != '\0' && *desc != ':'; ++desc);
- if (*desc == '\0') {
- fprintf(stderr, "bad puzzle id: %s", par);
- continue;
- }
- *desc++ = '\0';
- params = snew(game_params);
- decode_params(params, par);
- state = new_game(NULL, params, desc);
- if (solver(state->board, params->w, params->h, NULL))
- printf("%s:%s: solvable\n", par, desc);
- else
- printf("%s:%s: not solvable\n", par, desc);
- }
- return 0;
- }
- #endif
- /* vim: set shiftwidth=4 tabstop=8: */
|