1234567891011121314151617181920 |
- import numpy as np
- x = np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]])
- y = np.array([[0,0,1,1]]).T
- weights = np.random.rand((3, 1))
- def train():
- for iteration in range(10000):
- for p in range(4):
- z = np.dot(x[p], weights)
- sigmoid = 1/(1+np.exp(-z))
- error = y[p] - sigmoid
- sigmoidDerivative = sigmoid * (1 - sigmoid)
- delta = error * sigmoidDerivative
- dW = (delta * x[p])
- dW = np.array([dW]).T
- weights = weights + dW
- print("weight", weights)
|