
NakedMud: A Guide for Programmers

Geoff Hollis
hollisgf@email.uc.edu

November 18, 2006

1

Contents

1 Introduction 3

2 Modules 3
2.1 1. Create a directory for your module 4
2.2 2. Create a module.mk file . 5
2.3 3. List your module in the main Makefile 5
2.4 4. Define your module in mud.h 6
2.5 5. Initialize your module . 6
2.6 6. Program your module . 7

3 Commands 9
3.1 Defining a new command . 9
3.2 Parsing command arguments . 10
3.3 Adding a command to the MUD 13

4 Hooks 14
4.1 Adding a hook . 15
4.2 Creating new hook types . 15
4.3 Unhooking . 16

5 Events 16

6 Actions 18

7 Storage Sets 19

8 Auxiliary Data 21

9 Exposing Data to Python 25

2

1 Introduction

This manual is intended to give you a basic introduction to the concepts found

within NakedMud’s code. An attempt has been made to explain many of the

important aspects of NakedMud in plain english. Additionally, tidbits of code

can be found throughout the manual to give concrete examples on how to utilize

NakedMud’s features. That said, these are very basic explanations and examples

mostly intended to help new programmers get their bearings when they are just

beginning to wade into the code. For more advanced reading and examples of

how to use the many aspects of NakedMud, programmers are encouraged to

examine the source code. Header files can contain a wealth of information for

the more complex aspects of NakedMud.

2 Modules

Almost all new extensions to NakedMud are expected to be added through

modules. In its most basic form, a module is a directory that contains src files

that are all united in some high-level, conceptual manner. So for instance, you

might have a module that contains all of the mechanics for combat, or another

module for all the magic mechanics, or maybe a module that adds commands

with names that give your MUD the look&feel of a famous codebase like Circle,

or ROM. The main point is that modules organize the source code of your mud

by concept.

It is good practice to organize your code by concept rather than lumping all

your additions into the main src directory. When you need to go back and debug

systems within your MUD, things will be easier to find if everything is organized

by system or concept. On the same token, code is much easier to maintain and

extend if everything you need relating to some concept you are changing is

3

spatially localized. Furthermore, if you do most of your work with touching the

core as little as possible, patching in new versions becomes substantially easier.

And as an added benefit, if you would like to distribute new systems you have

written, you can simply package up the directory containing your module. No

more work is involved.

Modules are very easy to set up. Adding a module is basically like you would

normally add code, except you have to make a new directory for everything that

will be included in your module, and let the MUD know you are adding a new

module. Here, we will write and install your very first module. It will be very

simple in design, adding a single command that sends ”hello world” to the user.

However, it will outline the fundamentals of writing and adding a new module

to your MUD - something you WILL have to know how to do to successfully

utilize NakedMud. There are six steps to writing a module, which we will walk

through. They are:

• Create a directory for your module

• Create a file called module.mk in your directory

• Add an entry for the module to the main Makefile module list

• Add a define for your module in mud.h

• Call your module’s init function in gameloop.c

• Write the code for your module

2.1 1. Create a directory for your module

In NakedMud’s src directory, you will want to create a new folder for your

module. Name it to reflect what your module will do. If you’re adding combat

to your mud, name the module ”combat”. If you’re adding magic, name it

”magic”.

4

2.2 2. Create a module.mk file

In the directory you have just created, you need to add a file called module.mk.

This will be included by the main Makefile whenever it is executed, which is

located in NakedMud’s src directory.

In your module.mk file, you will list all of the source files in your module

that need to be compiled. You will also any compiler flags or libraries that

your module requires. This is done by adding the values to one of the variables:

C FLAGS, LIBS, or SRC – whichever is appropriate. What should your mod-

ule.mk file look like? Let’s assume you are writing a module, foo. It contains a

file, bar.c which needs to be compiled. Your module also needs library abc and

the compiler flag, xyz. Your module.mk file should look something like:

include our source code
SRC += foo/bar.c

include our required libraries
LIBS += -labc

and finally, our compiler flags
C_FLAGS += -xyz

2.3 3. List your module in the main Makefile

You now have to let the main Makefile know your module exists. Doing so will

make your module compile along with the rest of the MUD whenever the make

command is issued. Edit the Makefile in your src directory. Add a listing for

your module’s directory to the MODULES variable. This is all that needs to

be done to your Makefile.

5

2.4 4. Define your module in mud.h

Although modules are typically modular (i.e. they do not touch eachothers’

inner workings), modules may sometimes use each other. So, for instance: You

may write a general framework for combat that allows players to deal damage

and queue attacks. This is your combat module. You may later write a magic

module that supports damage spells. Chances are, you do not want to rewrite all

of the damage functions that have been set up in your combat module. Thus,

you will want to use the combat module. But how does your magic module

know the damage module is installed? Well, you could simply assume it is.

Chances are, it will be available almost all of the time. However, what if you

find a serious bug in your combat module, and would like to temporarily disable

combat on a live port while you debug it offline? If your magic module simply

assumes your combat module is installed, it is going to be difficult to simply

”turn off” your combat module. That is where this step comes in to play.

The file, mud.h contains a definition for each module that has been installed

in your mud. Outside modules can use these definitions to check if a module

is currently installed or not, and then disable pieces of their own functionality

with preprocessing commands (#ifdef, #endif) if the requisite modules are not

installed. When you write a new module, let other modules know it exists by a

definition for your module to mud.h.

2.5 5. Initialize your module

Modules will often add new variables and commands to your mud. These will

have to be initialized. Traditionally, each module has an init xxx function that

is called each time the mud starts up. To make sure your module’s init function

is called when the mud starts, you will have to call it in the main function,

which can be found in gameloop.c. Edit gameloop.c, include the a header in

6

your module that contains your module’s init function prototype, and call it in

the main function along with the other modules’ init functions.

2.6 6. Program your module

The final step to creating a module is programming it. There are no hard and

fast rules for programming a module since modules are basically whatever you

want them to be. It is good to keep modules modular; a module should be

more or less stand-alone, and it should only expose its functionality, never the

mechanics behind that functionality. There are some instances when a module

may need to depend on one or two other modules (for instance, the magic and

combat example given above). These are exceptional circumstances, however,

in which it is pretty obvious that a module cannot be completely stand-alone.

The source code for a very basic module is provided below. It is the ”hello”

module, and contains a single player command that sends ”hello, world!” to

any player who uses it. The module also keeps track of the name of the last

person who used the command within the module. This information is exposed

to outside modules via a header file that contains a prototype for a function

contained within the module. Note how and where the information is kept is

completely hidden from outside modules. Outside modules can only gain access

to the module’s functionality, and not its mechanics.

#ifndef HELLO_H
#define HELLO_H
// hello.h
//
// This header file provides other modules access to the hello module’s core
// functionality.

// this function must be called once before the hello module can be used
void init_hello(void);

7

// returns the name of the last person who used the "hello" command. Returns an
// empty string if noone has used "hello" yet.
const char *last_hell_user(void);
#endif // #HELLO_H

///////////////////////// END HELLO.H, START HELLO.C ///////////////////////////

// hello.c
//
// implementation of the hello module. Contains a single command that sends
// "hello, world!" to anyone who uses it. The module also keeps track of the
// past person who used this command.
#include "../mud.h"
#include "../character.h"
#include "hello.h"

//**
// local variables and commands
//**

char *last_hello_user_name = NULL; // the name of the last person to use hello

//
// this command sends "hello, world!" to anyone who uses it. Also keeps track of
// the name of the last person who used this command.
COMMAND(cmd_hello) {
send_to_char(ch, "Hello, world!\r\n"); // send the command
free(last_hello_user_name); // clear the name of the last user
last_hello_user_name = strdup(charGetName(ch));

}

//**
// implementation of hello.h
//**

void init_hello(void) {
// make sure we allocate some memory for last_hello_user_name
last_hello_user_name = strdup("");

// add cmd_hello to the MUD’s command table.
// Confused? Commands will be explained next.
add_cmd("hello", NULL, cmd_hello, 0, POS_SITTING, POS_FLYING,

"player", FALSE, FALSE);

8

}

You should now understand the basic steps you have to go through in order

to write a module. You still need to learn how to write commands, add new

variables to things, and utilize NakedMud’s many containers and maps. That

will all come soon. For now, enjoy the fact that you now have a basic grasp on

how NakedMud is structured! Try to keep everything modular. Only interact

with outside modules through function calls. Never expose how a module works

under the hood - only expose the fact that it does work, and explain how to

use it. Stick to these rules, and you’ll keep your problems isolated, your code

clean, and your maintenance duties minimal. For a more rigorous tutorial on

designing modules, readers are directed to the manual, Extending NakedMud:

An Introduction to Modules, Storage Sets, and Auxiliary Data.

3 Commands

Commands are functions that can be executed by players in game (e.g. look,

north, inventory). When adding a command to the game, one typically uses the

add cmd function, which is prototyped in mud.h.

3.1 Defining a new command

Command functions are typically defined by using the COMMAND macro. The

COMMAND macro takes one argument – the command’s name. The macro will

expand out to a function with the following parameters:

void cmd_name(CHAR_DATA *ch, const char *cmd, char *arg)

ch is the person issuing the command. cmd is the word the a player typed to

execute this function arg is the remaining argument that the player supplied to

9

the command.

3.2 Parsing command arguments

A command is only supplied one argument, which is in string form. In some

cases, this is undesirable. For instance, consider the give command. It transfers

multiple items from your inventory to the inventory of another player in the

same room as you. Our ”real” arguments are a list of the items to give, and the

person to give them to. We have to manually parse them from the string, arg,

supplied to the command.

A function called parse args has been written to help aid in the parsing of

”real” command arguments from the string argument supplied to a command

function. In addition to parsing the real arguments for a command, parse args

can send error messages to players when they enter improper arguments, or

do not follow the syntactic rules of a command. Parse args takes at least 5

arguments, and has the form:

bool parse_args(CHAR_DATA *ch, bool show_errors, const char *cmd, char *args,

const char *syntax, ...)

ch is the person issuing the command, show errors should be true if characters

should be given messages for improper arguments/syntax, cmd is the name of

the command that was issued, args is the argument the character supplied to

the command which will now be parsed into the ”real” arguments, syntax is

a syntactic rule for parsing the real arguments from the arg supplied to the

command, and the ellipsis (...) are pointers to variables that will be assigned

values as they are parsed from the argument list a character supplied to the

command.

A command’s syntax is a list of variable types that must be parsed out of the

command argument, in the order they should appear. Flavor text can be added

10

to syntactic rules to give commands a more natural-language-like feel. There

are 9 types are variables that can be parsed by parse args. Characters (ch),

objects (obj), rooms (room), exits (exit), single words (word), integer values

(int), double values (double), boolean values (bool), and full strings (string).

In addition, characters, objects, and exits can have suffixes attached to refine

the search process. Valid suffixes are:

Suffix Description

.world ch and obj: anything in the world can be returned

.room ch and obj: the command-issuer’s room is searched

.inv obj: the command-issuer’s inventory is searched

.eq obj: the command-issuer’s equipment is searched

.multiple ch, obj, and exit: returns multiple matches, if they exist

.noself ch: the command-issuer is not returned if he is a match

.invis ok ch, obj, and exit: overrides the command-issuer’s need to see matches

There are some circumstances where more than one type of data might be a

valid argument. For instance, with the open command, both objects and exits

may be valid targets. If multiple types are valid as an argument, they must be

surrounded by { and }. Furthermore, an additional pointer to a variable must be

supplied as part of the ellipsis arguments in parse args. It must be supplied right

after the multi-type variable, and must be an integer variable. When parse args

finishes, this variable will contain an integer value representing what type of

data was found (PARSE EXIT, PARSE CHAR, PARSE OBJ, PARSE ROOM,

PARSE STRING, PARSE DOUBLE, PARSE INT, or PARSE BOOL).

There are some times where it might be useful to interact with multiple

things within a command. For instance, we may want to allow people to get all

of the items in their room with a single command. Because of this characters,

11

objects, and exits can have a .multiple suffix attached to the end of them. This

allows multiple matches for an argument to be returned at the same time. Like

with multiple valid types (use of { and }), an extra variable must be supplied

to the ellipsis arguments in parse args, which will disambiguate whether a list

of matches or a single match was found. It must be supplied after the pointer

that will contain the singular data or list of data, as well as after any variable

that will disambiguage type when { and } are used. If a list of multiple matches

is returned, the list MUST be deleted use (but not its contents).

Flavor syntax can be of two types: mandatory or optional. Mandatory

text is surrounded by < and > in the syntax argument supplied to parse args.

Optional text is surrounded by [and]. Flavor text is useful if you would like

syntax like ”give the object to person” to be just as valid as ”give object person”.

As a concrete example of how parse args can be utilized, let us look at the give

command:

COMMAND(cmd_give) {
CHAR_DATA *recv = NULL; // the person we’re giving stuff to
void *to_give = NULL; // may be a list or a single item
bool multiple = FALSE; // are we dealing with a single item or a list?

// try to give objects from our inventory. We can give multiple items. Give
// them to a person in the room who is not ourself. The fact we can see the
// receiver is implied. If we fail to find our items or receiver, parse_args
// will tell the character what he did wrong, and we will halt the command
if(!parse_args(ch,TRUE,cmd,arg, "[the] obj.inv.multiple [to] ch.room.noself",

&to_give, &multiple, &recv))
return;

// just a single item to give...
if(multiple == FALSE)
do_give(ch, recv, to_give);

// we have a list of items to give
else {
LIST_ITERATOR *obj_i = newListIterator(to_give);
OBJ_DATA *obj = NULL;
ITERATE_LIST(obj, obj_i) {

12

do_give(ch, recv, obj);
} deleteListIterator(obj_i);

// we also have to delete the list that parse_args sent us
deleteList(to_give);

}
}

3.3 Adding a command to the MUD

After a command is written, a module can add it to the MUD. This is typically

done through a call to the add cmd function, which is prototyped in mud.h.

The add cmd function can be called from within a module’s init function so the

module can add new commands to the game without having to edit the core of

NakedMud. The add cmd function takes eight arguments:

void add_cmd(const char *name, const char *abbrev, COMMAND(func),

int min_pos, int max_pos, const char *user_group, bool mob_ok,

bool interrupts)

Name is the full word that a player must type, in order to execute a command

(e.g. look, north, inventory). If a person does not supply a full command name,

the nearest match will be executed (if one exists). So, for instance, say a player

only types ”inv”. The inventory command will be executed, assuming no closer

match exists.

sometimes, we would like certain commands to be matched to certain abbre-

viations, even if a closer match might exist. Take west and wear as an example.

Typically, muds assign the abbreviations of w, we, and wes to the west com-

mand. However, wear is a better match for w and we than west is. Thus,

we have to over-ride the normal mapping for certain commands by specifying

a minimal abbreviation that should always work for the command, regardless

of better matches. That is the second argument of add cmd. If no minimal

13

abbreviation should exist, this value should be NULL.

Func is the function that is called when a command is successfully executed.

There are some common constraints that exist for commands. These are typi-

cally matters of character position (e.g. you cannot move north while sleeping),

and priviledges (e.g. the ”set” command should only be available to game mod-

erators). These are set at the time add cmd is called. Another constraint is

whether or not non-player-characters can use the command. The final value is a

boolean value that says whether or not a character action should be interrupted

if he issues this command (actions will be discussed momentarily).

4 Hooks

Hooks are functions that attach to the mud and execute whenever the mud

broadcasts a specific signal. For instance, we might want to create a shutdown

signal. Hooks could be attached onto the mud so that whenever the mud issues

a shutdown signal, the hooks are executed. Hooks are functions that need

to be executed upon some specific event happening, that are not part of the

core of NakedMud. The execution of a hook should also be independent of

any other hoook’s execution. In practice, the hook system is usually used to

run functions upon characters performing important events (e.g. wearing or

removing a piece of equipment). For example: NakedMud does not support

item affects. However, it is conceivable that someone may want to implement

such a system. Two hooks can be written (one to execute upon wearing, one to

execute upon removing) to ensure a character’s affects update properly when

equipment is worn or removed. Hooks allow programmers to extend critical

pieces of the MUD without actually having to alter the core of the mud.

14

4.1 Adding a hook

Hooks are attached to the mud through the hookAdd function, usually in module

init functions. hookAdd takes two arguments: The first is the signal on which

the hook executes. The second is the hook itself. Hooks are functions that do

not return anything, but take three arguments. The types of arguments depend

on the type of signal the hook activates on. NakedMud sends out 11 different

types of hook signals, with arguments as follows:

Signal arg1 arg2 arg3

give giver receiver object

get taker object

drop dropper object

enter mover new room

exit mover old room exit

ask speaker listener speech

say speaker speech

greet greeter greeted

wear wearer object

remove remover object

reset zone

shutdown

4.2 Creating new hook types

It is conceivable you may want to create new hook types. For instance, maybe

You’ve implemented combat and death. Maybe you’d like to write a combat

monitor module that will track and log all deaths. You could add a new ”death”

hook signal. Doing this is easy. Whenever the event occurs, simply call hookRun.

15

This function takes 4 arguments: the first is the signal name, and the remaining

3 are any arguments hook functions may need to take. In the death example,

one may be the killer and the other might be the person dying. Creating new

hook types is extremely simple.

4.3 Unhooking

If for some reason you need to remove a hook that has been attached to the

mud, you must call hookRemove. It takes two arguments: the first is the signal

that causes the hook to execute, and the second is the hook function.

5 Events

Events are temporally delayed function executions. Events can be used for a

wide variety of purposes. Examples might include a quest that is scheduled to

start in 5 minutes, a disease that will kill someone in time, unless they find a

cure for it, a scheduled game reboot, or perhaps a combat loop that runs every

second. Events are started with a call to the start event function. This function

takes 6 arguments:

void start_event(void *owner, int delay, void *on_complete,

void *check_involvement, void *data, const char *arg)

Events are sometimes attached to owners – some thing (whether it be a charac-

ter, object, room, another function, or maybe a variable) that is critical to the

execution of the event. Events tied to an owner can be interrupted by supplying

interrupt events involving with the owner. Owner can be NULL if there is no

owner.

Delay is the number of pulses that must pass before the event executes.

Because pulses are an odd variable to work with, seconds can instead be used

16

in conjunction with the SECOND macro, which converts a number in seconds

to its pulses counterpart (see mud.h).

The on complete variable is a function that is executed when the required

delay has passed. This function must take 3 arguments. The first is a pointer

to owner, the second is a pointer to data, and the third is a pointer to arg - all

of which were supplied to start event. The on complete function is passed to

start event as a void pointer so programmers can define the types of owner and

data however they please in their event functions.

check involvement is a non-mandatory function (can be NULL) that takes

two arguments: some pointer that has been passed to interrupt events involving,

and the data of an event that was supplied along with the check involvement

function. The check involvement function should return TRUE if the pointer

passed into it can be found anywhere in data, which is passed in as the second

argument to check involvement.

Data, conceivably, can be anything. It is supplied to the on complete func-

tion when an event’s delay reaches zero. It is expected that on complete will

handle any garbage collection required for data.

Arg is an optional string argument (can be NULL) that is supplied to

start event. When an event’s delay expires, it is passed to the on complete

event function. Unlike data, arg does not need to be freed after on complete is

finished with it.

Below is an example of an event in action. It is a delayed-chat event. Some-

one enters a chat message. 5 seconds after the command is issued, the chat is

executed.

void dchat_on_complete(CHAR_DATA *owner, void *data, char *arg) {
communicate(owner, arg, COMM_GLOBAL);

}

17

COMMAND(cmd_dchat) {
if(!*arg)
send_to_char(ch, "What did you want to delay-chat?\r\n");

else
start_event(ch, 5 SECONDS, dchat_on_complete, NULL, NULL, arg);

}

6 Actions

Actions are much like events. The main differences, however, are that actions

must be attached to a character, and actions can be interrupted by use of certain

commands. Actions have been added to allow for commands that require prep

time before their effect is executed, during which time movement or starting

of new actions will disrupt the current action (e.g. spell casting, swinging a

sword). Actions are started with the start action function. This function takes

7 arguments:

void start_action(CHAR_DATA *actor, int delay, bitvector_t where,

void *on_complete, void *on_interrupt, void *data,

const char *arg)

Currently, where is unused. When start action is called, where must always

have a value of 1. However, the value has been supplied in case anyone wishes

to allow multiple bodyparts to act independently.

The on interrupt function is of the same form of on complete (see the event

documentation), and is called if the actor has his action interrupted prematurely.

All other parameters work the same as the parameters of the same names ex-

plained in the Events section. Below is an example action. It is a delayed-say

action. Someone enters a say message. 5 seconds after the command is issued,

the say is executed. The action will be interrupted if the speaker attempts to

move, or enter another command that would interrupt actions.

18

void asay_on_complete(CHAR_DATA *actor, void *data, char *arg) {
communicate(actor, arg, COMM_LOCAL);

}

void asay_on_interrupt(CHAR_DATA *actor, void *data, char *arg) {
send_to_char(actor, "Your delayed say was interrupted.\r\n");

}

COMMAND(cmd_asay) {
if(!*arg)
send_to_char(ch, "What did you want to delay-say?\r\n");

else
start_action(ch, 5 SECONDS, 1, asay_on_complete, asay_on_interrupt,

NULL, arg);
}

7 Storage Sets

Storage sets are an integral part of NakedMud. They play an important role

in the process of saving data to files, and reading it back out. They simplify

the process of saving data from files by eliminating your need to come up with

formatting schemes for flat files. They eliminate the need to write file parsers

to extract data from files; the process of retrieving information from a file is

reduced to querying for the value of some key.

In its basic form, a storage set is a mapping between a key and a value.

The twist, of course, is that by converting data to a storage set, the data can

be saved to a file and read back out (in the form of a storage set) without any

additional work by the programmer. Storage sets map string keys to one of 7

value types: string, int, long, double, boolean, another storage set, or a list of

storage sets. The functions available for interacting with storage sets can be

viewed in storage.h. To solidify the idea behind storage sets, an example will be

provided. In this example, we will track the last player to use a command, and

the argument they provided. Using the command will display the name of the

19

previous person to use that command, and their argument.

// the name of the file we store the storage set as
#define STORAGE_EXAMPLE_FILE "../lib/misc/storage_example"

COMMAND(cmd_storage_example) {
// read in the set containing our info for the previous usage
STORAGE_SET *set = storage_read(STORAGE_EXAMPLE_FILE);

// make sure it exists
if(set == NULL)
send_to_char(ch, "Noone has used this command before.\r\n");

// otherwise, show the character who previously used the command
else {
send_to_char(ch, "\%s previously used this command. "

"Their argument was ’%s’\r\n",
read_string(set, "name"), read_string(set, "arg"));

// do our garbage collection
storage_close(set);

}

// now, make a storage set to hold the new info
set = new_storage_set();
store_string(set, "name", charGetName(ch));
store_string(set, "arg", arg);

// save the information to disk
storage_write(set, STORAGE_EXAMPLE_FILE);

// let the person know the command was used
send_to_char(ch, "You used the %s command.\r\n", cmd);

// do our garbage collections
storage_close(set);

}

This is, of course, a very basic example of how storage sets are utilized - so basic

you may wonder why they were added in the first place. Their utility becomes

more apparent when we consider NakedMud’s modular design. NakedMud was

designed with the intent on allowing programmers to add functionality to the

20

major data structures (characters, objects, rooms, accounts, and zones) without

having to directly touch the code for them. Information for many of these things

need to be saved to disk. So the problem arises: how do we allow this new data

to be saved to disk without adding new lines of code to the functions that save

these things? Storage sets were the answer. When a programmer uses auxiliary

data to install new variables onto characters, rooms, objects, etc... they also

provide functions that converts these variables into a storage set, and read them

back out. This allows us to store the variables as a storage set embedded within

another storage set representing the character, room, object, etc... to be stored.

It also allows all of this converting to be done through functions that can be

placed in a module instead of the core code for NakedMud. For a hands-on

demonstration of how to utilize storage sets for such tasks, readers are directed

to the manual, Extending NakedMud: An Introduction to Modules, Storage Sets,

and Auxiliary Data.

8 Auxiliary Data

Auxiliary data is primarily used to add new variables to game entities (rooms,

objects, characters, accounts, zones) without actually having to touch the core

implementation of these things. The biggest gain from such a feature is the

ability to modularize your code by what it is intended to do; all of the code

related to combat - including new variables that must be added to characters

- can stay in one module, all by itself. Adding new auxiliary data is extremely

simple, but does require a bit of effort if you have not done it in the past.

New auxiliary data requires 7 things: a new structure that is the auxiliary

data, a function that constructs the auxiliary data, a function that deletes the

auxiliary data, a function that copies the auxiliary data, a function that copies

the auxiliary data to another instance of the same type of auxiliary data, a

21

function that reads the auxiliary data from a storage set, and a function that

converts the auxiliary data into a storage set.

Let us consider a toy example where we might want to add a new variable

to something, and demonstrate how this could be done with auxiliary data.

As a very basic example, let’s pretend we would like to track how many times

a character is read from disk, or stored. If we make the observation that a

storage set of a character is only ever created when the character is read, and a

character is only ever read from a storage set when he or she is loaded, we can

do this by simply incrementing our save/load counts whenever a storage set of

the auxiliary data is created, or the auxiliary data is turned into a storage set.

The example code is provided below:

typedef struct {
int num_saves;
int num_loads;

} SL_DATA;

//
// create new save/load data
SL_DATA *newSLData(void) {
SL_DATA *data = malloc(sizeof(SL_DATA));
data->num_saves = 0;
data->num_loads = 0;
return data;

}

//
// delete the save/load data
void deleteSLData(SL_DATA *data) {
free(data);

}

//
// copy the information contained in one save/load data to another
void SLDataCopyTo(SL_DATA *from, SL_DATA *to) {
to->num_saves = from->num_saves;
to->num_loads = from->num_loads;

}

22

//
// make a copy of the save/load data
SL_DATA *SLDataCopy(SL_DATA *data) {
// make new data, and copy the contents of the old data over
SL_DATA *newdata = newSLData();
SLDataCopyTo(data, newdata);
return newdata;

}

//
// turn the save/load data into a storage set. This must mean we are saving
// a character, so increment its save count
STORAGE_SET *SLDataStore(SL_DATA *data) {
STORAGE_SET *set = new_storage_set();
data->num_saves++;
store_int(set, "saves", data->num_saves);
store_int(set, "loads", data->num_loads);
return set;

}

//
// parse save/load data from a storage set. This must mean we are loading a
// character, so increment its load count
SL_DATA *SLDataRead(STORAGE_SET *set) {
SL_DATA *data = newSLData();
data->num_saves = read_int(set, "saves");
data->num_loads = read_int(set, "loads") + 1;
return data;

}

in addition to actually writing the code for representing auxiliary data, we have

to specify what types of things you’d like the auxiliary data to be ”installed”

onto. This has to be done before your mud enters its gameloop. This is typically

done from within an init function for whatever module your auxiliary data is

part of. Below is an example where we install the previous auxiliary data onto

characters. Whenever a new character is created, deleted, read, saved, or copied,

the necessary functions will be called to do the same things for the auxiliary

data that is on the character:

23

void init_some_random_module(void) {
auxiliariesInstall("sl_data", newAuxiliaryFuncs(AUXILIARY_TYPE_CHAR,

newSLData, deleteSLData,
SLDataCopyTo, SLDataCopy,
SLDataStore, SLDataRead));

}

It will also be useful to know how to gain access to instances of auxiliary that has

been installed. Auxiliary data are stored on hash tables within whatever they

are installed on. Auxiliary data can be looked up by querying for whatever key

the auxiliary data was stored as (e.g. ”sl data” in the previous example). Here

is a command that queries for the save/load data on a character, and displays

it to them:

COMMAND(cmd_show_sl_data) {
SL_DATA *data = charGetAuxiliaryData(ch, "sl_data");
send_to_char(ch, "You have been saved %d times and loaded %d times.\r\n",

data->num_saves, data->num_loads);
}

As is probably obvious, this is a toy example. In practice, noone would ever

want to add such functionality to their game. For a practical example of how to

utilize auxiliary data, readers are directed to the manual, Extending NakedMud:

An Introduction to Modules, Storage Sets, and Auxiliary Data. It will step

through the process of writing a module with auxiliary data that allows players

to send mail to each other.

24

9 Exposing Data to Python

As you extend your mud and add new variables to the various data types housed

within it, you will want to give Python access to these data. If you are extending

your mud with Python, this is no problem; you can access all of the new variables

by querying for the proper piece of auxiliary data and working with it. If you

are extending your mud with C, though, you will have to take special actions

to ensure Python gets access to the new data. For simply giving Python access

to new variables on a character, there are two functions you will need to write.

First, you will need to write a getter - a function that converts the current

value of the variable to a Python object. Second, you may also have to write a

setter - a function that converts a Python object into an appropriate C value.

If you do not want people to be able to set the value of the variable from

within a Python script, you do not have to write this setter function. After

these two steps are done, you will have to add the new getter and setter to the

appropriate Python class (i.e. PyChar, PyRoom, or PyObj). The is done with

the corrsponding PyXXX addGetterSetter() function. The how-to for this part

of Python scripts is worthy of a manual of its own, although it is fairly easy

to understand by observing previously written code. Thus, you’re encouraged

to look at how getters and setters are written in the PyChar.c, PyRoom.c, and

PyObj.c files. You are also able to add methods to these three datatypes. For

examples on how to add methods, also see these three files. If you would like a

meatier introduction to embedding Python into a C application (because, this

is essentially what you are doing), you are referred to the tutorial on this topic

at the Python webpage: http://docs.python.org/ext/ext.html

25

