bitmap.c 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
  1. /*
  2. * linux/fs/minix/bitmap.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * Modified for 680x0 by Hamish Macdonald
  8. * Fixed for 680x0 by Andreas Schwab
  9. */
  10. /* bitmap.c contains the code that handles the inode and block bitmaps */
  11. #include "minix.h"
  12. #include <linux/buffer_head.h>
  13. #include <linux/bitops.h>
  14. #include <linux/sched.h>
  15. static const int nibblemap[] = { 4,3,3,2,3,2,2,1,3,2,2,1,2,1,1,0 };
  16. static DEFINE_SPINLOCK(bitmap_lock);
  17. static unsigned long count_free(struct buffer_head *map[], unsigned numblocks, __u32 numbits)
  18. {
  19. unsigned i, j, sum = 0;
  20. struct buffer_head *bh;
  21. for (i=0; i<numblocks-1; i++) {
  22. if (!(bh=map[i]))
  23. return(0);
  24. for (j=0; j<bh->b_size; j++)
  25. sum += nibblemap[bh->b_data[j] & 0xf]
  26. + nibblemap[(bh->b_data[j]>>4) & 0xf];
  27. }
  28. if (numblocks==0 || !(bh=map[numblocks-1]))
  29. return(0);
  30. i = ((numbits - (numblocks-1) * bh->b_size * 8) / 16) * 2;
  31. for (j=0; j<i; j++) {
  32. sum += nibblemap[bh->b_data[j] & 0xf]
  33. + nibblemap[(bh->b_data[j]>>4) & 0xf];
  34. }
  35. i = numbits%16;
  36. if (i!=0) {
  37. i = *(__u16 *)(&bh->b_data[j]) | ~((1<<i) - 1);
  38. sum += nibblemap[i & 0xf] + nibblemap[(i>>4) & 0xf];
  39. sum += nibblemap[(i>>8) & 0xf] + nibblemap[(i>>12) & 0xf];
  40. }
  41. return(sum);
  42. }
  43. void minix_free_block(struct inode *inode, unsigned long block)
  44. {
  45. struct super_block *sb = inode->i_sb;
  46. struct minix_sb_info *sbi = minix_sb(sb);
  47. struct buffer_head *bh;
  48. int k = sb->s_blocksize_bits + 3;
  49. unsigned long bit, zone;
  50. if (block < sbi->s_firstdatazone || block >= sbi->s_nzones) {
  51. printk("Trying to free block not in datazone\n");
  52. return;
  53. }
  54. zone = block - sbi->s_firstdatazone + 1;
  55. bit = zone & ((1<<k) - 1);
  56. zone >>= k;
  57. if (zone >= sbi->s_zmap_blocks) {
  58. printk("minix_free_block: nonexistent bitmap buffer\n");
  59. return;
  60. }
  61. bh = sbi->s_zmap[zone];
  62. spin_lock(&bitmap_lock);
  63. if (!minix_test_and_clear_bit(bit, bh->b_data))
  64. printk("minix_free_block (%s:%lu): bit already cleared\n",
  65. sb->s_id, block);
  66. spin_unlock(&bitmap_lock);
  67. mark_buffer_dirty(bh);
  68. return;
  69. }
  70. int minix_new_block(struct inode * inode)
  71. {
  72. struct minix_sb_info *sbi = minix_sb(inode->i_sb);
  73. int bits_per_zone = 8 * inode->i_sb->s_blocksize;
  74. int i;
  75. for (i = 0; i < sbi->s_zmap_blocks; i++) {
  76. struct buffer_head *bh = sbi->s_zmap[i];
  77. int j;
  78. spin_lock(&bitmap_lock);
  79. j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
  80. if (j < bits_per_zone) {
  81. minix_set_bit(j, bh->b_data);
  82. spin_unlock(&bitmap_lock);
  83. mark_buffer_dirty(bh);
  84. j += i * bits_per_zone + sbi->s_firstdatazone-1;
  85. if (j < sbi->s_firstdatazone || j >= sbi->s_nzones)
  86. break;
  87. return j;
  88. }
  89. spin_unlock(&bitmap_lock);
  90. }
  91. return 0;
  92. }
  93. unsigned long minix_count_free_blocks(struct minix_sb_info *sbi)
  94. {
  95. return (count_free(sbi->s_zmap, sbi->s_zmap_blocks,
  96. sbi->s_nzones - sbi->s_firstdatazone + 1)
  97. << sbi->s_log_zone_size);
  98. }
  99. struct minix_inode *
  100. minix_V1_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
  101. {
  102. int block;
  103. struct minix_sb_info *sbi = minix_sb(sb);
  104. struct minix_inode *p;
  105. if (!ino || ino > sbi->s_ninodes) {
  106. printk("Bad inode number on dev %s: %ld is out of range\n",
  107. sb->s_id, (long)ino);
  108. return NULL;
  109. }
  110. ino--;
  111. block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
  112. ino / MINIX_INODES_PER_BLOCK;
  113. *bh = sb_bread(sb, block);
  114. if (!*bh) {
  115. printk("Unable to read inode block\n");
  116. return NULL;
  117. }
  118. p = (void *)(*bh)->b_data;
  119. return p + ino % MINIX_INODES_PER_BLOCK;
  120. }
  121. struct minix2_inode *
  122. minix_V2_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
  123. {
  124. int block;
  125. struct minix_sb_info *sbi = minix_sb(sb);
  126. struct minix2_inode *p;
  127. int minix2_inodes_per_block = sb->s_blocksize / sizeof(struct minix2_inode);
  128. *bh = NULL;
  129. if (!ino || ino > sbi->s_ninodes) {
  130. printk("Bad inode number on dev %s: %ld is out of range\n",
  131. sb->s_id, (long)ino);
  132. return NULL;
  133. }
  134. ino--;
  135. block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
  136. ino / minix2_inodes_per_block;
  137. *bh = sb_bread(sb, block);
  138. if (!*bh) {
  139. printk("Unable to read inode block\n");
  140. return NULL;
  141. }
  142. p = (void *)(*bh)->b_data;
  143. return p + ino % minix2_inodes_per_block;
  144. }
  145. /* Clear the link count and mode of a deleted inode on disk. */
  146. static void minix_clear_inode(struct inode *inode)
  147. {
  148. struct buffer_head *bh = NULL;
  149. if (INODE_VERSION(inode) == MINIX_V1) {
  150. struct minix_inode *raw_inode;
  151. raw_inode = minix_V1_raw_inode(inode->i_sb, inode->i_ino, &bh);
  152. if (raw_inode) {
  153. raw_inode->i_nlinks = 0;
  154. raw_inode->i_mode = 0;
  155. }
  156. } else {
  157. struct minix2_inode *raw_inode;
  158. raw_inode = minix_V2_raw_inode(inode->i_sb, inode->i_ino, &bh);
  159. if (raw_inode) {
  160. raw_inode->i_nlinks = 0;
  161. raw_inode->i_mode = 0;
  162. }
  163. }
  164. if (bh) {
  165. mark_buffer_dirty(bh);
  166. brelse (bh);
  167. }
  168. }
  169. void minix_free_inode(struct inode * inode)
  170. {
  171. struct super_block *sb = inode->i_sb;
  172. struct minix_sb_info *sbi = minix_sb(inode->i_sb);
  173. struct buffer_head *bh;
  174. int k = sb->s_blocksize_bits + 3;
  175. unsigned long ino, bit;
  176. ino = inode->i_ino;
  177. if (ino < 1 || ino > sbi->s_ninodes) {
  178. printk("minix_free_inode: inode 0 or nonexistent inode\n");
  179. return;
  180. }
  181. bit = ino & ((1<<k) - 1);
  182. ino >>= k;
  183. if (ino >= sbi->s_imap_blocks) {
  184. printk("minix_free_inode: nonexistent imap in superblock\n");
  185. return;
  186. }
  187. minix_clear_inode(inode); /* clear on-disk copy */
  188. bh = sbi->s_imap[ino];
  189. spin_lock(&bitmap_lock);
  190. if (!minix_test_and_clear_bit(bit, bh->b_data))
  191. printk("minix_free_inode: bit %lu already cleared\n", bit);
  192. spin_unlock(&bitmap_lock);
  193. mark_buffer_dirty(bh);
  194. }
  195. struct inode *minix_new_inode(const struct inode *dir, int mode, int *error)
  196. {
  197. struct super_block *sb = dir->i_sb;
  198. struct minix_sb_info *sbi = minix_sb(sb);
  199. struct inode *inode = new_inode(sb);
  200. struct buffer_head * bh;
  201. int bits_per_zone = 8 * sb->s_blocksize;
  202. unsigned long j;
  203. int i;
  204. if (!inode) {
  205. *error = -ENOMEM;
  206. return NULL;
  207. }
  208. j = bits_per_zone;
  209. bh = NULL;
  210. *error = -ENOSPC;
  211. spin_lock(&bitmap_lock);
  212. for (i = 0; i < sbi->s_imap_blocks; i++) {
  213. bh = sbi->s_imap[i];
  214. j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
  215. if (j < bits_per_zone)
  216. break;
  217. }
  218. if (!bh || j >= bits_per_zone) {
  219. spin_unlock(&bitmap_lock);
  220. iput(inode);
  221. return NULL;
  222. }
  223. if (minix_test_and_set_bit(j, bh->b_data)) { /* shouldn't happen */
  224. spin_unlock(&bitmap_lock);
  225. printk("minix_new_inode: bit already set\n");
  226. iput(inode);
  227. return NULL;
  228. }
  229. spin_unlock(&bitmap_lock);
  230. mark_buffer_dirty(bh);
  231. j += i * bits_per_zone;
  232. if (!j || j > sbi->s_ninodes) {
  233. iput(inode);
  234. return NULL;
  235. }
  236. inode_init_owner(inode, dir, mode);
  237. inode->i_ino = j;
  238. inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
  239. inode->i_blocks = 0;
  240. memset(&minix_i(inode)->u, 0, sizeof(minix_i(inode)->u));
  241. insert_inode_hash(inode);
  242. mark_inode_dirty(inode);
  243. *error = 0;
  244. return inode;
  245. }
  246. unsigned long minix_count_free_inodes(struct minix_sb_info *sbi)
  247. {
  248. return count_free(sbi->s_imap, sbi->s_imap_blocks, sbi->s_ninodes + 1);
  249. }