123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614 |
- /*
- * linux/arch/arm/vfp/vfpmodule.c
- *
- * Copyright (C) 2004 ARM Limited.
- * Written by Deep Blue Solutions Limited.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include <linux/module.h>
- #include <linux/types.h>
- #include <linux/cpu.h>
- #include <linux/kernel.h>
- #include <linux/notifier.h>
- #include <linux/signal.h>
- #include <linux/sched.h>
- #include <linux/smp.h>
- #include <linux/init.h>
- #include <asm/cputype.h>
- #include <asm/thread_notify.h>
- #include <asm/vfp.h>
- #include "vfpinstr.h"
- #include "vfp.h"
- /*
- * Our undef handlers (in entry.S)
- */
- void vfp_testing_entry(void);
- void vfp_support_entry(void);
- void vfp_null_entry(void);
- void (*vfp_vector)(void) = vfp_null_entry;
- /*
- * The pointer to the vfpstate structure of the thread which currently
- * owns the context held in the VFP hardware, or NULL if the hardware
- * context is invalid.
- */
- union vfp_state *vfp_current_hw_state[NR_CPUS];
- /*
- * Dual-use variable.
- * Used in startup: set to non-zero if VFP checks fail
- * After startup, holds VFP architecture
- */
- unsigned int VFP_arch;
- /*
- * Per-thread VFP initialization.
- */
- static void vfp_thread_flush(struct thread_info *thread)
- {
- union vfp_state *vfp = &thread->vfpstate;
- unsigned int cpu;
- memset(vfp, 0, sizeof(union vfp_state));
- vfp->hard.fpexc = FPEXC_EN;
- vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
- /*
- * Disable VFP to ensure we initialize it first. We must ensure
- * that the modification of vfp_current_hw_state[] and hardware disable
- * are done for the same CPU and without preemption.
- */
- cpu = get_cpu();
- if (vfp_current_hw_state[cpu] == vfp)
- vfp_current_hw_state[cpu] = NULL;
- fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
- put_cpu();
- }
- static void vfp_thread_exit(struct thread_info *thread)
- {
- /* release case: Per-thread VFP cleanup. */
- union vfp_state *vfp = &thread->vfpstate;
- unsigned int cpu = get_cpu();
- if (vfp_current_hw_state[cpu] == vfp)
- vfp_current_hw_state[cpu] = NULL;
- put_cpu();
- }
- static void vfp_thread_copy(struct thread_info *thread)
- {
- struct thread_info *parent = current_thread_info();
- vfp_sync_hwstate(parent);
- thread->vfpstate = parent->vfpstate;
- }
- /*
- * When this function is called with the following 'cmd's, the following
- * is true while this function is being run:
- * THREAD_NOFTIFY_SWTICH:
- * - the previously running thread will not be scheduled onto another CPU.
- * - the next thread to be run (v) will not be running on another CPU.
- * - thread->cpu is the local CPU number
- * - not preemptible as we're called in the middle of a thread switch
- * THREAD_NOTIFY_FLUSH:
- * - the thread (v) will be running on the local CPU, so
- * v === current_thread_info()
- * - thread->cpu is the local CPU number at the time it is accessed,
- * but may change at any time.
- * - we could be preempted if tree preempt rcu is enabled, so
- * it is unsafe to use thread->cpu.
- * THREAD_NOTIFY_EXIT
- * - the thread (v) will be running on the local CPU, so
- * v === current_thread_info()
- * - thread->cpu is the local CPU number at the time it is accessed,
- * but may change at any time.
- * - we could be preempted if tree preempt rcu is enabled, so
- * it is unsafe to use thread->cpu.
- */
- static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
- {
- struct thread_info *thread = v;
- u32 fpexc;
- #ifdef CONFIG_SMP
- unsigned int cpu;
- #endif
- switch (cmd) {
- case THREAD_NOTIFY_SWITCH:
- fpexc = fmrx(FPEXC);
- #ifdef CONFIG_SMP
- cpu = thread->cpu;
- /*
- * On SMP, if VFP is enabled, save the old state in
- * case the thread migrates to a different CPU. The
- * restoring is done lazily.
- */
- if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu]) {
- vfp_save_state(vfp_current_hw_state[cpu], fpexc);
- vfp_current_hw_state[cpu]->hard.cpu = cpu;
- }
- /*
- * Thread migration, just force the reloading of the
- * state on the new CPU in case the VFP registers
- * contain stale data.
- */
- if (thread->vfpstate.hard.cpu != cpu)
- vfp_current_hw_state[cpu] = NULL;
- #endif
- /*
- * Always disable VFP so we can lazily save/restore the
- * old state.
- */
- fmxr(FPEXC, fpexc & ~FPEXC_EN);
- break;
- case THREAD_NOTIFY_FLUSH:
- vfp_thread_flush(thread);
- break;
- case THREAD_NOTIFY_EXIT:
- vfp_thread_exit(thread);
- break;
- case THREAD_NOTIFY_COPY:
- vfp_thread_copy(thread);
- break;
- }
- return NOTIFY_DONE;
- }
- static struct notifier_block vfp_notifier_block = {
- .notifier_call = vfp_notifier,
- };
- /*
- * Raise a SIGFPE for the current process.
- * sicode describes the signal being raised.
- */
- static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
- {
- siginfo_t info;
- memset(&info, 0, sizeof(info));
- info.si_signo = SIGFPE;
- info.si_code = sicode;
- info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
- /*
- * This is the same as NWFPE, because it's not clear what
- * this is used for
- */
- current->thread.error_code = 0;
- current->thread.trap_no = 6;
- send_sig_info(SIGFPE, &info, current);
- }
- static void vfp_panic(char *reason, u32 inst)
- {
- int i;
- printk(KERN_ERR "VFP: Error: %s\n", reason);
- printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
- fmrx(FPEXC), fmrx(FPSCR), inst);
- for (i = 0; i < 32; i += 2)
- printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
- i, vfp_get_float(i), i+1, vfp_get_float(i+1));
- }
- /*
- * Process bitmask of exception conditions.
- */
- static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
- {
- int si_code = 0;
- pr_debug("VFP: raising exceptions %08x\n", exceptions);
- if (exceptions == VFP_EXCEPTION_ERROR) {
- vfp_panic("unhandled bounce", inst);
- vfp_raise_sigfpe(0, regs);
- return;
- }
- /*
- * If any of the status flags are set, update the FPSCR.
- * Comparison instructions always return at least one of
- * these flags set.
- */
- if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
- fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
- fpscr |= exceptions;
- fmxr(FPSCR, fpscr);
- #define RAISE(stat,en,sig) \
- if (exceptions & stat && fpscr & en) \
- si_code = sig;
- /*
- * These are arranged in priority order, least to highest.
- */
- RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
- RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
- RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
- RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
- RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
- if (si_code)
- vfp_raise_sigfpe(si_code, regs);
- }
- /*
- * Emulate a VFP instruction.
- */
- static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
- {
- u32 exceptions = VFP_EXCEPTION_ERROR;
- pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
- if (INST_CPRTDO(inst)) {
- if (!INST_CPRT(inst)) {
- /*
- * CPDO
- */
- if (vfp_single(inst)) {
- exceptions = vfp_single_cpdo(inst, fpscr);
- } else {
- exceptions = vfp_double_cpdo(inst, fpscr);
- }
- } else {
- /*
- * A CPRT instruction can not appear in FPINST2, nor
- * can it cause an exception. Therefore, we do not
- * have to emulate it.
- */
- }
- } else {
- /*
- * A CPDT instruction can not appear in FPINST2, nor can
- * it cause an exception. Therefore, we do not have to
- * emulate it.
- */
- }
- return exceptions & ~VFP_NAN_FLAG;
- }
- /*
- * Package up a bounce condition.
- */
- void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
- {
- u32 fpscr, orig_fpscr, fpsid, exceptions;
- pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
- /*
- * At this point, FPEXC can have the following configuration:
- *
- * EX DEX IXE
- * 0 1 x - synchronous exception
- * 1 x 0 - asynchronous exception
- * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
- * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
- * implementation), undefined otherwise
- *
- * Clear various bits and enable access to the VFP so we can
- * handle the bounce.
- */
- fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
- fpsid = fmrx(FPSID);
- orig_fpscr = fpscr = fmrx(FPSCR);
- /*
- * Check for the special VFP subarch 1 and FPSCR.IXE bit case
- */
- if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
- && (fpscr & FPSCR_IXE)) {
- /*
- * Synchronous exception, emulate the trigger instruction
- */
- goto emulate;
- }
- if (fpexc & FPEXC_EX) {
- #ifndef CONFIG_CPU_FEROCEON
- /*
- * Asynchronous exception. The instruction is read from FPINST
- * and the interrupted instruction has to be restarted.
- */
- trigger = fmrx(FPINST);
- regs->ARM_pc -= 4;
- #endif
- } else if (!(fpexc & FPEXC_DEX)) {
- /*
- * Illegal combination of bits. It can be caused by an
- * unallocated VFP instruction but with FPSCR.IXE set and not
- * on VFP subarch 1.
- */
- vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
- goto exit;
- }
- /*
- * Modify fpscr to indicate the number of iterations remaining.
- * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
- * whether FPEXC.VECITR or FPSCR.LEN is used.
- */
- if (fpexc & (FPEXC_EX | FPEXC_VV)) {
- u32 len;
- len = fpexc + (1 << FPEXC_LENGTH_BIT);
- fpscr &= ~FPSCR_LENGTH_MASK;
- fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
- }
- /*
- * Handle the first FP instruction. We used to take note of the
- * FPEXC bounce reason, but this appears to be unreliable.
- * Emulate the bounced instruction instead.
- */
- exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
- if (exceptions)
- vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
- /*
- * If there isn't a second FP instruction, exit now. Note that
- * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
- */
- if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
- goto exit;
- /*
- * The barrier() here prevents fpinst2 being read
- * before the condition above.
- */
- barrier();
- trigger = fmrx(FPINST2);
- emulate:
- exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
- if (exceptions)
- vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
- exit:
- preempt_enable();
- }
- static void vfp_enable(void *unused)
- {
- u32 access = get_copro_access();
- /*
- * Enable full access to VFP (cp10 and cp11)
- */
- set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
- }
- #ifdef CONFIG_PM
- #include <linux/syscore_ops.h>
- static int vfp_pm_suspend(void)
- {
- struct thread_info *ti = current_thread_info();
- u32 fpexc = fmrx(FPEXC);
- /* if vfp is on, then save state for resumption */
- if (fpexc & FPEXC_EN) {
- printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
- vfp_save_state(&ti->vfpstate, fpexc);
- /* disable, just in case */
- fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
- } else if (vfp_current_hw_state[ti->cpu]) {
- #ifndef CONFIG_SMP
- fmxr(FPEXC, fpexc | FPEXC_EN);
- vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
- fmxr(FPEXC, fpexc);
- #endif
- }
- /* clear any information we had about last context state */
- vfp_current_hw_state[ti->cpu] = NULL;
- return 0;
- }
- static void vfp_pm_resume(void)
- {
- /* ensure we have access to the vfp */
- vfp_enable(NULL);
- /* and disable it to ensure the next usage restores the state */
- fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
- }
- static struct syscore_ops vfp_pm_syscore_ops = {
- .suspend = vfp_pm_suspend,
- .resume = vfp_pm_resume,
- };
- static void vfp_pm_init(void)
- {
- register_syscore_ops(&vfp_pm_syscore_ops);
- }
- #else
- static inline void vfp_pm_init(void) { }
- #endif /* CONFIG_PM */
- void vfp_sync_hwstate(struct thread_info *thread)
- {
- unsigned int cpu = get_cpu();
- /*
- * If the thread we're interested in is the current owner of the
- * hardware VFP state, then we need to save its state.
- */
- if (vfp_current_hw_state[cpu] == &thread->vfpstate) {
- u32 fpexc = fmrx(FPEXC);
- /*
- * Save the last VFP state on this CPU.
- */
- fmxr(FPEXC, fpexc | FPEXC_EN);
- vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
- fmxr(FPEXC, fpexc);
- }
- put_cpu();
- }
- void vfp_flush_hwstate(struct thread_info *thread)
- {
- unsigned int cpu = get_cpu();
- /*
- * If the thread we're interested in is the current owner of the
- * hardware VFP state, then we need to save its state.
- */
- if (vfp_current_hw_state[cpu] == &thread->vfpstate) {
- u32 fpexc = fmrx(FPEXC);
- fmxr(FPEXC, fpexc & ~FPEXC_EN);
- /*
- * Set the context to NULL to force a reload the next time
- * the thread uses the VFP.
- */
- vfp_current_hw_state[cpu] = NULL;
- }
- #ifdef CONFIG_SMP
- /*
- * For SMP we still have to take care of the case where the thread
- * migrates to another CPU and then back to the original CPU on which
- * the last VFP user is still the same thread. Mark the thread VFP
- * state as belonging to a non-existent CPU so that the saved one will
- * be reloaded in the above case.
- */
- thread->vfpstate.hard.cpu = NR_CPUS;
- #endif
- put_cpu();
- }
- /*
- * VFP hardware can lose all context when a CPU goes offline.
- * As we will be running in SMP mode with CPU hotplug, we will save the
- * hardware state at every thread switch. We clear our held state when
- * a CPU has been killed, indicating that the VFP hardware doesn't contain
- * a threads VFP state. When a CPU starts up, we re-enable access to the
- * VFP hardware.
- *
- * Both CPU_DYING and CPU_STARTING are called on the CPU which
- * is being offlined/onlined.
- */
- static int vfp_hotplug(struct notifier_block *b, unsigned long action,
- void *hcpu)
- {
- if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
- unsigned int cpu = (long)hcpu;
- vfp_current_hw_state[cpu] = NULL;
- } else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
- vfp_enable(NULL);
- return NOTIFY_OK;
- }
- /*
- * VFP support code initialisation.
- */
- static int __init vfp_init(void)
- {
- unsigned int vfpsid;
- unsigned int cpu_arch = cpu_architecture();
- if (cpu_arch >= CPU_ARCH_ARMv6)
- vfp_enable(NULL);
- /*
- * First check that there is a VFP that we can use.
- * The handler is already setup to just log calls, so
- * we just need to read the VFPSID register.
- */
- vfp_vector = vfp_testing_entry;
- barrier();
- vfpsid = fmrx(FPSID);
- barrier();
- vfp_vector = vfp_null_entry;
- printk(KERN_INFO "VFP support v0.3: ");
- if (VFP_arch)
- printk("not present\n");
- else if (vfpsid & FPSID_NODOUBLE) {
- printk("no double precision support\n");
- } else {
- hotcpu_notifier(vfp_hotplug, 0);
- smp_call_function(vfp_enable, NULL, 1);
- VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
- printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
- (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
- (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
- (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
- (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
- (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
- vfp_vector = vfp_support_entry;
- thread_register_notifier(&vfp_notifier_block);
- vfp_pm_init();
- /*
- * We detected VFP, and the support code is
- * in place; report VFP support to userspace.
- */
- elf_hwcap |= HWCAP_VFP;
- #ifdef CONFIG_VFPv3
- if (VFP_arch >= 2) {
- elf_hwcap |= HWCAP_VFPv3;
- /*
- * Check for VFPv3 D16. CPUs in this configuration
- * only have 16 x 64bit registers.
- */
- if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
- elf_hwcap |= HWCAP_VFPv3D16;
- }
- #endif
- #ifdef CONFIG_NEON
- /*
- * Check for the presence of the Advanced SIMD
- * load/store instructions, integer and single
- * precision floating point operations. Only check
- * for NEON if the hardware has the MVFR registers.
- */
- if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
- if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
- elf_hwcap |= HWCAP_NEON;
- }
- #endif
- }
- return 0;
- }
- late_initcall(vfp_init);
|