
Digital Design and

Computer Architecture LU

Lab Exercises I and II

Florian Huemer, Jürgen Maier
{fhuemer, jmaier}@ecs.tuwien.ac.at

Department of Computer Engineering
TU Wien

Vienna, April 5, 2021

1 Introduction 1

1 Introduction

This document contains the assignments for exercises I and II. The deadlines for these exercises
are:

• Exercise I: 02.04.2021, 23:55

• Exercise II: 30.04.2021, 23:55

The combined points achieved in Exercises I and II count 25 % to the overall grade of the course.
Please hand in your solutions via TUWEL. We would like to encourage you to fill out the feedback
form in TUWEL after you submitted your solution. The feedback is anonymous and helps us to
improve the course.

Please note that this document is only one part of the assignment. Take a look at the protocol
template for all required measurements, screenshots and questions to be answered. Make sure that
all necessary details can be seen in the figures you put into your report, otherwise they will be
graded with zero points.

The application created in Exercises I and II is a simple “retro gaming system”, which uses an
NES controller 1 for user input and generates a video baseband signal (VBS, i.e., an unmodulated
analog black and white TV signal2) as its main output. Additionally the large LCD attached to
the board as well as the seven-segment displays and LEDs will be used.

In the game (implemented in Exercise II) the player controls a ball that is falling downwards
and is blocked by upwards moving bricks. If the player hits the upper or lower border of the screen
the game is over. To score points the player has to collect items placed on the bricks.

1.1 Coding Style

Refer to the “VHDL Coding and Design Guidelines” document before starting your solution. More-
over, we highly recommend to implement state machines with the 2 or 3-process method discussed
in the Hardware Modeling lecture, since the 1-process method can easily lead to very hard-to-find
bugs. We further recommend to use “named mapping” for connecting wires to an instantiated
entity.

1.2 Software

As discussed in more detail in the Design Flow Tutorial, we are using Quartus and QuestaSim
(formerly ModelSim) in the lab. If you want to work on your own computer you can download
a free version of Quartus (Quartus Prime Lite Edition) and Questa/Modelsim (ModelSim-Intel)
from the Intel website.3 However, note that the simulation performance of ModelSim-Intel might
be lower than the full version of Questa/Modelsim provided in the lab (especially for large designs).

We also proivde you with a (Virtual Box) VM image, which has the free version of these tools
installed under CentOS 7 (the same operating system as used in the lab). You can download the
VM using scp from ssh.tilab.tuwien.ac.at:/opt/eda/vm/ECS-EDA-Tools vm 02102020.txz.

1https://en.wikipedia.org/wiki/Nintendo_Entertainment_System#Controllers
2https://en.wikipedia.org/wiki/Composite_video
3https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/download.html

https://en.wikipedia.org/wiki/Nintendo_Entertainment_System#Controllers
https://en.wikipedia.org/wiki/Composite_video
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/download.html

1 Introduction 2

1.3 Submission

Do not change the latex template in any way. Most importantly do not delete, add or reorder
any questions/subtasks (i.e., the “qa” environments). If you don’t answer a particular question,
just leave it empty, but don’t delete it. Everything you enter into the lab protocol must be inside
one of the “qa” environments, everything outside of these environments will not be considered for
grading.

When including simulation screenshots, remove the window border and menus. Only show the
relevant parts!

Further note that it is mandatory to put the files exactly in the required folders! The submission
script will assist you to avoid mistakes.

1.4 Allowed Warnings

Although your design might be correct, Quartus still outputs some warnings during the compilation
process. Table 1.1 lists all allowed warnings, i.e., warnings that won’t have a negative impact on
your grade. All other warnings, however, indicate problems with your design and will hence reduce
the total number of points you get for your solution.

The last two warnings in Table 1.1 may still indicate problems with your design. So thoroughly
check which signals these warnings are reported for! If you have, for example, an input button that
should trigger some action in your design but Quartus reports that it does not drive any logic, then
there is certainly a problem. If you intentionally drive some output with a certain constant logic
level (for example an unused seven segment display), then the “stuck at VCC or GND” warning is
fine.

1 Introduction 3

ID Description

18236
Number of processors has not been specified which may cause overloading on

shared machines. Set the global assignment NUM_PARALLEL_PROCESSORS in your

QSF to an appropriate value for best performance.

13009 TRI or OPNDRN buffers permanently enabled.

276020
Inferred RAM node [...] from synchronous design logic. Pass-through logic

has been added to match the read-during-write behavior of the original

design.

15064

PLL [...]|altpll:altpll_component|pll_altpll:auto_generated|pll1" output

port clk[0] feeds output pin "nclk~output" via non-dedicated routing --

jitter performance depends on switching rate of other design elements. Use

PLL dedicated clock outputs to ensure jitter performance

169177
[...] pins must meet Intel FPGA requirements for 3.3-, 3.0-, and 2.5-V

interfaces. For more information, refer to AN 447: Interfacing Cyclone IV E

Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

171167
Found invalid Fitter assignments. See the Ignored Assignments panel in the

Fitter Compilation Report for more information.

15705 Ignored locations or region assignments to the following nodes

15714
Some pins have incomplete I/O assignments. Refer to the I/O Assignment

Warnings report for details

12240
Synthesis found one or more imported partitions that will be treated as

black boxes for timing analysis during synthesis

13024 Output pins are stuck at VCC or GND

21074 Design contains [...] input pin(s) that do not drive logic

292013
Feature LogicLock is only available with a valid subscription license. You

can purchase a software subscription to gain full access to this feature.

Table 1.1: Allowed warnings

2 Exercise I (Deadline: 02.04.2021) 4

2 Exercise I (Deadline: 02.04.2021)

2.1 Overview

In the first exercise you will already design your first FPGA application using VHDL. Prior to
that it is, however, necessary that you make yourself acquainted with the tools and the remote
working environment used in this lab course. A basic FPGA design flow consists of simulation,
synthesis and place & route. The simulation is used to verify and debug functionality and timing
of the circuits. During synthesis the behavioral and/or structural description is translated into a
gate-level netlist. This netlist can then be mapped to the FPGA’s logic cells. Finally the produced
bitstream file is used to configure the FPGA.

Note that we provide you with a reference implementation in the form of an SOF (bitstream)
file, that can be downloaded from TUWEL. If some explanation in this document is unclear, this
implementation can be used as a guideline for how the finished system should behave. Nonetheless,
don’t hesitate to contact the teaching personal using the provided communication channels. Please
note that the TU Chat can also be used to ask questions outside of the tutor lab slots. This way
simpler questions can be answered immediately by the staff and you don’t have to wait for the next
tutor slot.

2.2 Required and Recommended Reading

All documents are available in TUWEL.

Essentials (read before you start!)

• Design flow tutorial

• VHDL introduction slides (Hardware Modeling)

• VHDL Coding and Design Guidelines

Consult as needed

• IP Cores Manual

• Datasheets and Manuals (e.g., for the board)

2.3 Task Descriptions

Task 1: Structural Modeling [8 Points]

Your task is to implement a top-level structural VHDL description of the system shown in Fig-
ures 2.3-2.5. The description must be done in VHDL and should contain only structural primitives
(component instantiations and concurrent signal assignments). All information needed to wire the
IP cores together is contained in the figures.

2 Exercise I (Deadline: 02.04.2021) 5

System Assembly: Create a new Quartus project in the top/quartus/ directory of the template
and add all needed IP cores and your top-level description to it. The name of this project shall
be top. Quartus will create two files named top.qpf and top.qsf. Set the VHDL version of the
project to VHDL-2008. We also provide you with a Makefile located in the top/quartus/ directory,
that allows you to start the synthesis process from the command line. This can be useful if you
work on the lab computers over an SSH connection.

We already provide you with a template for the entity description (top/src/top.vhd). It
already contains two instances and some connections. Leave them as they are. There are also some
signals that are connected to an instance but which are not used in the design yet. These signals
are marked with NC in the figures and will be used late in Exercise II. You may ignore the warnings
that Quartus produces because of that.

The constants used for the generics in the figures are defined in Table 2.1. Make sure you use
constants in VHDL. Do not set these values directly in the generic map sections.

Constant Value Description

SYNC STAGES 2 The number of synchronizer stages used when
(asynchronous) external signals are read.

WIDTH 400 The horizontal resolution of the game.

HEIGHT 240 The vertical resolution of the game.

Table 2.1: Constants

The ball game module internally uses the module prng, which must also be added to the Quartus
project. Note that some of the IP cores are only provided as precomplied modules. This includes
the audio cntrl, the prng, the dbg port and the lcd graphics controller. These modules always come
with one or more *.vhd files as well as a *.qxp and a *.vho file. For your Quartus project add
all *.vhd as well as the *.qxp file (the *.vho is only required for simulations). For example, for
the audio cntrl the files audio cntrl top.qxp, audio cntrl 2s.vhd and audio cntrl pkg.vhd are
needed.

Unused (i.e., unconnected) outputs of instances (e.g., game state or player points) shall be
marked with the “open” keyword. For your report include a screenshot of the overall system
from the RTL netlist viewer in Quartus.

System Explanation: The shown design is the top-level module of our gaming system, which
will be used and extended throughout exercises I and II.

Normally this top-level module provides connections to all required peripheral devices, such
that a user is able to interact with the design. However, since this is a remote-only semester we
had to make some slight adjustments, because using e.g., the board’s buttons and switches (see
Figure 2.1) is simply not possible in such a setup. Hence, we developed the dbg port module which
provides outputs for the buttons (dbg keys) and switches (dbg switches), which we will use instead
of the “real” ones. In our remote lab environment these “virtual” buttons/switches can then be
controlled using a simple python tool (remote.py). The dbg port also outputs the dbg nes buttons
signals, which we will use until Task 6, where the NES controller interface will be implemented.
However, for the same reasons as for the board buttons/switches you will not be interfacing with
a “real” controller. Instead the dbg port will emulate the controller’s behavior over a external loop
back using the GPIO pins of the FPGA.

Additionally the dbg port module is also able to read the state of the LEDs and the HEX
displays, which can then be retrieved using remote.py. Another feature is the ability to send

2 Exercise I (Deadline: 02.04.2021) 6

instruction to a graphics controller using the gfx * signals. This will be relevant for Exercise II
since there you will implement your own graphics controller.

Figure 2.1: DE2-115 FPGA Development Board

The “heart” of the system is the ball game module which implements the actual game logic
(Exercise II), processes controller input, sends instructions to graphics controller and plays sounds
using the audio cntrl. The display switch module selects which graphics controller the game should
use and is controlled by dbg port.

After everything is assembled correctly you should have a system that draws a ball on the
board’s LCD, that can be moved using the arrow keys of the virtual controller in the remote.py

tool. Whenever the ball is moved a sound is played.

To use the remote.py tool in the TILab, please execute the following command (when logged
in at a TILab computer).

1 pip3 install --user termcolor dataclasses docopt pyserial pyusb PyVISA PyVISA -py

PLL Generation: The PLL shown in Figure 2.3 is not supplied. You need to generate it using
the corresponding wizard in Quartus (see the Design Flow Tutorial for further information). The
frequency of the display clock (first PLL output) must be 8 MHz. The second clock output of
the PLL is required by the audio controller and must be configured to 12 MHz. Place the PLL
generated by the wizard in the top/src/ folder.

Create and add an SDC file as discussed in the Design Flow Tutorial. Additionally add the
following lines to end of this file:

1 set_false_path -from [get_clocks {clk}] -to [get_clocks {PLL_INST_NAME|altpll_component

|auto_generated|pll1|clk [0]}];

2 set_false_path -from [get_clocks {clk}] -to [get_clocks {PLL_INST_NAME|altpll_component

|auto_generated|pll1|clk [1]}];

PLL INST NAME must be replaced by the name of your PLL instance in the top-level design archi-
tecture.

2 Exercise I (Deadline: 02.04.2021) 7

A B
S

el
ec

t
S

ta
rt u
p

d
ow

n
le

ft
ri

gh
t

le
d

g(
0)

le
d

g(
7)

...

Figure 2.2: Controller button/LED mapping

Reset: Notice that the dbg port module’s reset is directly connected to keys(0). All other com-
ponents are reset by the signals res n, audio res n and/or display res n. These signals are generated
using the (synchronized) output of the AND gate in Figure 2.3. Hence, the design can be reset
by either a “virtual” button press on dbg keys(0) or a “real” button press on the board (keys(0)).
This feature is important for the top testbench used in Tasks 3 and 4, so be sure to implement it
correctly.

Connecting the LEDs: The current state of the NES controller buttons (i.e., which button
is pressed/not pressed) is represented using the record data type nes buttons t declared in the
nes controller pkg package. This data type contains one flag (std logic) for each of the controller’s
buttons. As long as a button on the controller is pressed, the corresponding flag in this record is
set to one. Connect the individual button signals in accordance with Figure 2.2 (i.e., ledg(0) shall
be connected to dbg nes buttons.btn right and so on).

The ledg(8) output shall be set to constant ’0’; The red LEDs (ledr) shall be directly connected
to dbg switches. The hex{0-7} outputs shall be set to constant ’1’ for now.

Pin Assignments: You don’t have to take care of (most of) the pin assignments by yourself.
Simply import the provided pinout file located in top/quartus/top pinout.csv, as discussed in
the Design Flow Tutorial. Now everything except for the 50 MHz clock signal is connected. Consult
the FPGA board manual to find out its exact location (the signal is called CLOCK 50 in the manual)
and assign it using the Pin Planner in Quartus. Be sure to select the correct I/O Standard (3.3-V
LVTTL).

2 Exercise I (Deadline: 02.04.2021) 8

p
ll

c0 c1

in
cl
k0

p
ll
in
st

sy
n
c

S
Y
N
C

S
T
A
G
E
S

R
E
S
E
T

V
A
L
U
E

re
s
n

d
at
a
in

d
at
a
o
u
t

cl
k au

d
io

re
se
t
sy
n
c

sy
n
c

S
Y
N
C

S
T
A
G
E
S

R
E
S
E
T

V
A
L
U
E

re
s
n

d
at
a
in

d
at
a
o
u
t

cl
k d
is
p
la
y
re
se
t
sy
n
c

sy
n
c

S
Y
N
C

S
T
A
G
E
S

R
E
S
E
T

V
A
L
U
E

re
s
n

d
at
a
in

d
at
a
o
u
t

cl
k

re
se
t
sy
n
c

S
Y
N
C

S
T
A
G
E
S

S
Y
N
C

S
T
A
G
E
S

S
Y
N
C

S
T
A
G
E
S

’1
’

’1
’

’1
’

au
d
io

re
s
n

d
is
p
la
y
re
s
n

re
s
n

d
is
p
la
y
cl
k

au
d
io

cl
k

d
b
g
ke
ys
(0
)

ke
ys
(0
)

’1
’

’1
’

’1
’

cl
k

cl
k

F
ig

u
re

2.
3:

S
tr

u
ct

u
ra

l
sy

st
em

d
es

cr
ip

ti
on

(p
ar

t
1
)

2 Exercise I (Deadline: 02.04.2021) 9

b
al
l
g
am

e

D
IS
P
L
A
Y

W
ID

T
H

D
IS
P
L
A
Y

H
E
IG
H
T

re
s
n

g
fx

in
st
r

g
fx

in
st
r
fu
ll

g
fx

in
st
r
w
r

g
fx

d
at
a

g
fx

d
at
a
fu
ll

g
fx

d
at
a
w
r

g
fx

fr
am

e
sy
n
c

co
n
tr
o
lle
r

g
am

e
st
at
e

p
la
ye
r
p
o
in
ts

sy
n
th

cn
tr
l

cl
k

b
al
l
g
am

e
in
st

d
is
p
la
y
sw

it
ch

co
n
tr
o
l

in
a
g
fx

in
st
r

in
a
g
fx

in
st
r
w
r

in
a
g
fx

in
st
r
fu
ll

in
a
g
fx

d
at
a

in
a
g
fx

d
at
a
w
r

in
a
g
fx

d
at
a
fu
ll

in
a
g
fx

fr
am

e
sy
n
c

in
b
g
fx

in
st
r

in
b
g
fx

in
st
r
w
r

in
b
g
fx

in
st
r
fu
ll

in
b
g
fx

d
at
a

in
b
g
fx

d
at
a
w
r

in
b
g
fx

d
at
a
fu
ll

in
b
g
fx

fr
am

e
sy
n
c

o
u
t
a
g
fx

in
st
r

o
u
t
a
g
fx

in
st
r
fu
ll

o
u
t
a
g
fx

in
st
r
w
r

o
u
t
a
g
fx

d
at
a

o
u
t
a
g
fx

d
at
a
fu
ll

o
u
t
a
g
fx

d
at
a
w
r

o
u
t
a
g
fx

fr
am

e
sy
n
c

o
u
t
b
g
fx

in
st
r

in
b
g
fx

in
st
r
fu
ll

o
u
t
b
g
fx

in
st
r
w
r

o
u
t
b
g
fx

d
at
a

in
b
g
fx

d
at
a
fu
ll

o
u
t
b
g
fx

d
at
a
w
r

o
u
t
b
g
fx

fr
am

e
sy
n
c

d
is
p
la
y
sw

it
ch

in
st

au
d
io

cn
tr
l
2
s w
m
8
7
3
1
xc
k

re
s
n

w
m
8
7
3
1
d
ac
d
at

sy
n
th

cn
tr
l

w
m
8
7
3
1
d
ac
lr
ck

w
m
8
7
3
1
b
cl
k

w
m
8
7
3
1
sc
lk

w
m
8
7
3
1
sd
at

cl
k

au
d
io

cn
tr
l
in
st

w
m
8
7
3
1
xc
k

w
m
8
7
3
1
d
ac
d
at

w
m
8
7
3
1
d
ac
lr
ck

w
m
8
7
3
1
b
cl
k

w
m
8
7
3
1
sc
lk

w
m
8
7
3
1
sd
at

W
ID

T
H

H
E
IG
H
T

o
p
en

o
p
en

re
s
n

cl
k

d
b
g
n
es

b
u
tt
o
n
s

d
sc

d
b
g
g
fx

in
st
r

d
b
g
g
fx

in
st
r
w
r

d
b
g
g
fx

d
at
a

d
b
g
g
fx

d
at
a
w
r

d
b
g
g
fx

in
st
r
fu
ll

d
b
g
g
fx

d
at
a
fu
ll

o
p
en

lc
d
g
fx

in
st
r
fu
ll

lc
d
g
fx

d
at
a
fu
ll

lc
d
g
fx

fr
am

e
sy
n
c

lc
d
g
fx

in
st
r

lc
d
g
fx

in
st
r
w
r

lc
d
g
fx

d
at
a

lc
d
g
fx

d
at
a
w
r

vb
s
g
fx

in
st
r

N
C

vb
s
g
fx

in
st
r
w
r

N
C

vb
s
g
fx

d
at
a

N
C

vb
s
g
fx

d
at
a
w
r

N
C

vb
s
g
fx

in
st
r
fu
ll

N
C

vb
s
g
fx

d
at
a
fu
ll

N
C

vb
s
g
fx

fr
am

e
sy
n
c

N
C

au
d
io

cl
k

au
d
io

re
s
n

F
ig

u
re

2.
4:

S
tr

u
ct

u
ra

l
sy

st
em

d
es

cr
ip

ti
on

(p
ar

t
2)

2 Exercise I (Deadline: 02.04.2021) 10
lc
d
g
ra
p
h
ic
s
co
n
tr
o
lle
r

re
s
n

n
cl
k

d
is
p
la
y
re
s
n

g
re
st vd h
d

d
en

r g b

sc
lk

sd
a

sc
en

sr
am

ad
d
r

sr
am

u
b
n

sr
am

lb
n

sr
am

w
e
n

sr
am

ce
n

sr
am

o
e
n

sr
am

d
q

g
fx

in
st
r

g
fx

in
st
r
w
r

g
fx

in
st
r
fu
ll

g
fx

d
at
a

g
fx

d
at
a
w
r

g
fx

d
at
a
fu
ll

g
fx

fr
am

e
sy
n
c

cl
k

d
is
p
la
y
cl
k

lc
d
g
ra
p
h
ic
s
co
n
tr
o
lle
r
in
st

n
cl
k

g
re
st

vd h
d

d
en r g b

sc
lk

sd
a

sc
en

sr
am

ad
d
r

sr
am

u
b
n

sr
am

lb
n

sr
am

w
e
n

sr
am

ce
n

sr
am

o
e
n

sr
am

d
q

d
b
g
p
or
t

re
s
n

rx
tx

le
d
g

ke
ys

le
d
r

sw
it
ch
es

h
ex
0

n
es

b
u
tt
o
n
s

h
ex
1

h
ex
2

h
ex
3

h
ex
4

h
ex
5

h
ex
6

h
ex
7

n
es

cl
k

n
es

d
at
a

n
es

la
tc
h

d
sc

g
fx

in
st
r

g
fx

in
st
r
fu
ll

g
fx

in
st
r
w
r

g
fx

d
at
a

g
fx

d
at
a
fu
ll

g
fx

d
at
a
w
r

cl
k

d
b
g
p
or
t
in
st

lc
d
g
fx

in
st
r

lc
d
g
fx

in
st
r
w
r

lc
d
g
fx

d
at
a

lc
d
g
fx

d
at
a
w
r

lc
d
g
fx

in
st
r
fu
ll

lc
d
g
fx

d
at
a
fu
ll

lc
d
g
fx

fr
am

e
sn
yc

d
is
p
la
y
cl
k

d
is
p
la
y
re
s
n

d
b
g
ke
ys

d
b
g
sw

it
ch
es

d
b
g
n
es

b
u
tt
o
s

d
sc

tx
rx

ke
ys
(0
)

em
u
la
te
d
n
es

d
at
a

em
u
la
te
d
n
es

cl
k

em
u
la
te
d
n
es

la
tc
h

d
b
g
g
fx

in
st
r
fu
ll

d
b
g
g
fx

d
at
a
fu
ll

d
b
g
g
fx

in
st
r

d
b
g
g
fx

in
st
r
w
r

d
b
g
g
fx

d
at
a

d
b
g
g
fx

d
at
a
w
r

re
s
n

cl
k

cl
k d
b
g
le
d
g

d
b
g
le
d
r

d
b
g
h
ex
0

d
b
g
h
ex
1

d
b
g
h
ex
2

d
b
g
h
ex
3

d
b
g
h
ex
4

d
b
g
h
ex
5

d
b
g
h
ex
6

d
b
g
h
ex
7

d
b
g
sw

it
ch
es

le
d
r

d
b
g
n
es

b
u
tt
o
n
s

le
d
g
(7

d
ow

n
to

0
)

’0
’

le
d
g
(8
)

F
ig

u
re

2.
5:

S
tr

u
ct

u
ra

l
sy

st
em

d
es

cr
ip

ti
on

(p
ar

t
3)

2 Exercise I (Deadline: 02.04.2021) 11

Task 2: Seven Segment Display I [14 Points]

In this task you will extend your design with a simple combinational module that outputs the
current state of the game on the seven segment display of the board. Moreover, it will also display
whether the left or right key of the controller is pressed. For this purpose create a new entity
called ssd controller and place it in the file ssd controller/src/ssd controller.vhd. Table 2.2
specifies the interface of this entity. The clk and res n inputs are not required for this task, but will
be used for Task 7.

Name Dir. Width Functionality

clk in 1 Global clock signal

res n in 1 Global reset signal (low active, not internally synchronized)

game state in game state t The current game state

controller in nes buttons t The NES controller input

player points in 16 The current player points (unused for now, see Task 7)

hex0 out 7 The right-most seven segment display: unused (switch off)

hex1 out 7 The 2. display: unused (switch off)

hex2 out 7 The 3. display: unused (switch off)

hex3 out 7 The 4. display: unused (switch off)

hex4 out 7 The 5. display: current direction

hex5 out 7 The 6. display: current direction

hex6 out 7 The 7. display: game state

hex7 out 7 The left-most seven segment display: game State

Table 2.2: ssd controller interface specification

The game state output of the ball game module is an enumerated data type, comprised of the
values IDLE, RUNNING, PAUSED, GAME OVER (it is defined in the ball game pkg). Since the actual
game logic is not yet implemented, the game state output can be changed using the NES controller
inputs as listed in Table 2.3. Note that if neither of the buttons is pressed, the output game state
will be determined by a PRNG in the ball game entity. Table 2.4 shows the patterns that shall be
displayed on the outputs hex{6-7} for the different game states.

To display the current direction (i.e., whether the left or right key of the controller is pressed)
use the pattern shown in Figure 2.5 for the outputs hex{4-5}. Note that, when the left and right
buttons are pressed simultaneously the error code shall be displayed. When neither of the two
buttons is pressed both segments shall be switched off.

The outputs hex{0-3} should be permanently switched off for now.

Don’t use the all keyword for this task, but create explicit sensitivity lists for your processes
(if you have any). Consult the FPGA board manual for more information on how to control

Input pattern Game state

Start ∧ Select ∧A ∧ B Random State
Start IDLE
Select RUNNING

A PAUSED
B GAME OVER

Table 2.3: Input patterns to activate the different game states

2 Exercise I (Deadline: 02.04.2021) 12

IDLE

RUNNING

PAUSED

GAME OVER

Table 2.4: Game state display

Left button pressed

Right button pressed

Left and Right buttons pressed simultaneously

Table 2.5: Direction Patterns

the individual segments of the seven segment display. After your module is complete, create a
package for it (ssd controller/src/ssd controller pkg.vhd) and add an instance to the top-
level module. Connect the game state input to the game state output of the ball game module
and connect the controller input to dbg nes buttons. Finally connect the hex{0-7} outputs to the
corresponding outputs of the top level entity. The correct pin assignment should have already been
configured in Task 1.

Task 3: Behavioral Simulation [8 Points]

In this task you will simulate the top-level entity with the provided testbench in
top/tb/top tb.vhd. To automate the compilation and simulation process use the makefile ex-
ample, provided in the ram/ directory, to create your own makefile-based simulation flow for the
top-level design. The makefile for the top-level entity shall be placed in top/Makefile.

To get better acquainted with the tools, you can also create a Questa/Modelsim project using
the GUI as outlined in the Design Flow Tutorial. However, this is not needed for the submission
or the grading. Your makefile should support at least the targets compile, sim gui and clean.
The compile target should compile all required source files (i.e., vhd and vho files) using the
Questa/Modelsim compiler (vcom). The simulation target (sim gui) should start the graphical
user interface of Questa/Modelsim, load an appropriate waveform viewer configuration script to
add the relevant signals to the waveform viewer top/scripts/wave.do and run the simulation
for a few microseconds. Make a simulation showing the signals controlling the SRAM (sram we n,
sram ub n, sram oe n, sram lb n, sram ce n, sram dq, and sram addr) as well as the signals of the
serial interface of the LCD driver IC (scen, sda, sclk). Answer the questions in the report and
provide the required screenshots. The clean target should delete all files generated during the
compilation and simulation process.

Note that the example makefile of the ram module is just a suggestion. You are free to change
the makefile in any way you like or create a completely different implementation altogether. The

2 Exercise I (Deadline: 02.04.2021) 13

only requirement is that the targets compile, sim gui and clean work as specified.

Task 4: Postlayout Simulation [8 Points]

Use the netlist file (.vho) and the timing file (.sdo), which were generated during Task 2 by Quartus4,
for performing a post-layout simulation on the top-level entity. The testbench file used in the
behavioral simulation can also be employed for post-layout simulation.

The timing file provides information on the real physical signal delays. Therefore, in contrast
to a behavioral simulation, signals do not switch instantaneously after the clock edge. Every single
bit of a signal vector switches individually depending on the propagation and routing delays of
the corresponding circuitry. Run the simulation long enough in order to take a screenshot of the
switching of hex{6-7}. Zoom into the waveform until you can see the different delays of the signals
and use two markers to measure

• the duration between the first and the last bit toggling and

• the time between the (last) active clock edge (of clk) and the point in time when the hex{6-7}
outputs have stabilized.

Note that the markers must be visible in the screenshot (You may use a single screenshot for
both values). You don’t have to provide a simulation script for this task, the screenshot is sufficient.

Important: The time resolution for the post-layout simulation must be set to pico seconds.
If not set correctly Questa/Modelsim produces an error. Using the command line interface this is
achieved using the -t argument. In the GUI the time resolution is set in the “Start Simulation”
window.

Task 5: Testbench Design [10+12+(5) Points]

In this task you will design testbenches for two of the cores provided in the exercise tem-
plate. Both simulations are purely text-based, i.e., the waveform viewer is not used to ex-
amine the results of the simulation, although you can use it to design and debug your test-
benches. Furthermore, the simulations shall be controlled by the Makefiles (prng/Makefile and
lcd graphics controller/Makefile) similar to Task 3. Both makefiles should support the targets
compile sim and clean. You can, however, add further targets for your use during development.
Before you start your work on the testbenches consult the IP Cores Manual to learn about the
features and interfaces of the two cores.

(A) PRNG (Pseudo Random Number Generator) [10 Points]
Create a testbench for the prng named prng tb and place it in the prng/tb/prng tb.vhd file.
This testbench should apply a clock (the frequency can be chosen freely) and monitor the output
sequence of the prdata signal. Your task is to determine the period of the output sequence generated
by the PRNG for different values of seed and record the maximum and minimum periods. After all
required seed values (defined later) have been tried the simulation shall be stopped, i.e., the clock
shall be switched off and the results shall be reported (and the simulator program shall exit).

As documented in the IP Cores Manual, the PRNG internally uses a 16-bit linear feedback
shift register (LFSR), whose initial state and feedback polynomial can be controlled by the seed
input. Unfortunately nothing is known about how this seed value is processed and how it affects

4Depending on the settings, the Quartus timing analyzer might produce multiple sets of vho and sdo files: with
fast/slow timings. For this exercise use the conservative (slow) timing estimates.

2 Exercise I (Deadline: 02.04.2021) 14

the aforementioned parameters. Hence the period of the PRNG (i.e., its internal LFSR) can only
be determined by observing the prdata output. To do this in the testbench attach a shift register to
the prdata output of the PRNG (see Figure 2.6) and observe its value. Note that the shift register
must be 16 bits wide5, to allow it to capture the complete internal state of the LFSR. Recall that
the maximum period of a 16-bit LFSR is 216 − 1 = 65535.

QD

res

QD

res

QD

res

QD

res

QD

res

seq(0) seq(1) seq(2) seq(14) seq(15)

...

clk
res n

PRNG

clk

res n

seed

load seed

en

prdata

16 bit shift register

Figure 2.6: PRNG with shift register attached at prdata

To measure the period of the PRNG take a snapshot of the shift register’s output (seq in the
figure) and count the number of clock cycles until this value appears again. The value or point in
time of the initial snapshot does not matter, you only have to make sure that the shift register is
completely filled with data from the PRNG when you take the snapshot. This means that you have
to wait a certain number of clock cycles after a reset or when you change the seed before taking a
snapshot.

Figure 2.7 shows an example simulation for the PRNG initialized with the seed 0x00 (the default
seed after startup). It can be seen that in this case the period is 7.

Figure 2.7: Example simulation of the PRNG

The range [na, nb] of seed values to check in your simulation is based on your matriculation
number.

na = (([Your Matriculation Number] mod 15) + 1) << 4, nb = na + 15

For each of the 16 seed values your testbench should produce an output line reporting the seed
value itself and the measured period.

When make sim is executed in the prng/ directory, the simulation shall be performed and the
cycle count should be reported. After that the simulator should exit. The graphical user interface of
Questa/Modelsim should not be opened during this process. You can either use the textio package
or simple report statements for your output, which should look something like this:

seed: [SEED0], period: [PERIOD0]

seed: [SEED1], period: [PERIOD1]

5In fact it could also be larger, but then it would record the additional bits unnecessarily.

2 Exercise I (Deadline: 02.04.2021) 15

[...]

seed: [SEED15], period: [PERIOD15]

min period: [MIN_PERIOD], max period: [MAX_PERIOD]

If report statements are used additional information will be printed (e.g., the simulation time step
when the report occurred), this is completely fine for your submission.

(B) LCD Graphics Controller [12 Points]
Create a testbench for the lcd graphics controller named lcd graphics controller tb and place it in
lcd graphics controller/tb/lcd graphics controller tb.vhd. This testbench shall generate
the necessary clock signals with the right frequencies, set a user pattern (you are free to design one)
and use this user pattern to draw two nxn rectangles at (x, y) = (0, 0) and (x, y) = (400−n, 240−n)
with n = 16.

From the IP Cores Manual we know that the lcd graphics controller uses the external SRAM
of the board to store its frame buffer(s). Hence implement a simple model of this SRAM chip
(the datasheet is available in TUWEL) that can be attached to the SRAM interface signals of
the lcd graphics controller in the testbench. We already prepared an entity named sram in the file
lcd graphics controller/tb/sram.vhd. Be sure to not change the interface of this entity in any
way!

Your SRAM model shall have an internal memory reflecting the size of the real SRAM chip
on the FPGA board, where data written by the graphics controller is recorded. You don’t have
to support every write operation mode listed in the datasheet. The only constraint is that your
SRAM model has to work with the lcd graphics controller. For the sake of simplicity initialize every
location of the internal memory to zero. Note, however, that this is not the case with real SRAM,
which powers up to a random state.

In order to visualize the data stored in your SRAM, the entity of the SRAM module features
the write file input. Whenever the sram sees a rising edge on this signal it shall dump the image
with the resolution defined by the inputs width and height which is stored at the location specified
by the input base address to an image file. For that purpose we use the ASCII version of the
Portable PixMap6 format (magic number: P3). The file names of the dumped images shall be
sram dump [N].ppm, where [N] is a number increased with every image dump, starting at 0. The
image files should be placed in the directory specified by the generic OUTPUT DIRECTORY.

The layout of the image in memory is line based. The address of a pixel in memory can be
calculated with the following formula:

address of(x, y) = base address + y ∗ width + x

The pixel (x, y) = (0, 0) is stored at base address, while pixel (1, 0) is stored at base address+1. The
location base address+width refers to the pixel (0, 1).

Figure 2.8 shows the expected output of the simulation. For better visibility, we used larger
rectangles (n = 64) and a different primary color.

The lcd graphics controller tb shall wait for the issued graphics instructions to be completed
and then start a memory dump. Make sure that the image is saved in the same directory
where the Makefile of the lcd graphics controller module resides (the name of this image shall be
sram dump 0.ppm). The testbench shall consider the graphics controller to be finished when there
was no write operation for 100 clock cycles. After that the simulation shall be stopped and the
simulator shall exit. The whole simulation process should again be started by executing the make

sim command (without the Questa/Modelsim GUI opening).

6https://en.wikipedia.org/wiki/Netpbm

https://en.wikipedia.org/wiki/Netpbm

2 Exercise I (Deadline: 02.04.2021) 16

Figure 2.8: Sample SRAM dump (n = 64 and blue primary color for better visibility)

While solving this task, it may be beneficial to write only a few pixels to the SRAM for
testing purposes and only change to the required image after the SRAM model works.
The netlist of the lcd graphics controller is quite large, which leads to quite long simulation
times with the free version of ModelSim. Hence it is also a good idea to use the TILab
computers with the licensed (i.e., faster) version of Questa/Modelsim.

Bonus Task: SRAM reads [5 Points]
Extend your SRAM implementation to also support read operations, i.e., if the
lcd graphics controller performs a read operation supply the correct data from your internal memory.
Add a screenshot of a read access to your lab protocol.

Task 6: NES Controller [20 Points]

In this task you will implement the NES controller interface to be able to process inputs from a
controller attached to the board. The original NES as well as the SNES controller are based on a
simple parallel-in/serial-out shift register (like the CMOS 4021 shift register). The controller uses
a serial interface consisting of three signals, as shown in the timing diagram in Figure 2.9.

latch

clk

data A B SE ST ↑ ↓ ← →

Figure 2.9: NES controller serial interface protocol

To start a new transmission reading the state (pressed/not pressed) of each button, a pulse
must be generated at the latch signal. This pulse causes the shift register inside the controller to
latch the current state of every button (parallel load). Now a clock signal can be applied at the clk

2 Exercise I (Deadline: 02.04.2021) 17

input to serially shift out the button state over the data signal. Note that the data signal changes
with the rising edge of clk. However, to be on the safe side we only sample it at the next rising
edge indicated by the orange lines. This way the input signal at nes data has the maximum time
to stabilize (setup constraint).

Implementation Create an entity named nes controller and place it in the file
nes controller/src/nes controller.vhd. The required generics and the port signals are
described in Tables 2.6 and 2.7, respectively.

Name Functionality

CLK FREQ Actual clock frequency of the clk signal given in Hz

CLK OUT FREQ The desired clock frequency that should be generated for the nes clk signal
in Hz. Don’t use frequencies higher than 1 MHz.

REFRESH TIMEOUT The timeout in clk cycles the controller should wait in between button read-
outs. Set this generic to the equivalent of 8 ms.

Table 2.6: nes controller generics description

Name Dir. Width Functionality

clk in 1 Global clock signal

res n in 1 Global reset signal (low active, not internally synchronized)

nes latch out 1 The latch signal used to load the shift register in the NES controller
with the current state of all buttons.

nes clk out 1 The clock signal for the shift register in the NES controller.

nes data in 1 The data from the shift register in the NES controller.

button state out nes buttons t This is a record type defined in the nes controller pkg package.

Table 2.7: nes controller signal description

The state diagram of the nes controller is shown in Figure 2.10. Implement a state machine
according to this specification. The initial state is WAIT TIMEOUT.

Note that the button state output is updated only in the WAIT TIMEOUT state. Otherwise it
must hold the value of the last known button state. This implies that a register must be used to
buffer this output value. However, you don’t need (and shall not use) registers for the nes clk and
nes latch outputs. Don’t forget to initialize all used registers during reset.

The BIT TIME constant used in Figure 2.10 is the duration of a single bit transmitted on the
nes data line in clock cycles of clk. You have to calculate this constant from the generics.

Simulation: After implementation create a testbench for the nes controller entity and place it
in nes controller/tb/nes controller tb.vhd. Add a makefile to control the simulation process
(again implement the targets compile, clean and sim gui).

The sim gui target shall start a graphical (behavioral) simulation that shows the transmission
of two button state information frames. The waveform viewer shall show all inputs and outputs
of the controller as well as all internal state signals (FSM state, counters). Add a screenshot to
your lab protocol. Be sure to expand the button state output in the waveform viewer such that the
individual record elements are visible in the screenshot.

Your testbench shall simulate two button state transmissions, i.e., it has to wait for an appro-
priate trigger on the nes latch signal and then generate the appropriate input data on the nes data

2 Exercise I (Deadline: 02.04.2021) 18

WAIT TIMEOUT
nes latch := ’0’
nes clk := ’1’

[copy shiftreg to buttons]

LATCH
nes latch := ’1’
nes clk := ’1’

LATCH WAIT
nes latch := ’0’
nes clk := ’1’

CLK LOW
nes latch := ’0’
nes clk := ’0’

SAMPLE
nes latch := ’0’
nes clk := ’0’

shiftreg := shiftreg(6 downto 0) & not nes data

CLK HIGH
nes latch := ’0’
nes clk := ’1’

clk cnt = REFRESH TIMEOUT, clk cnt := 0

clk cnt = BIT TIME/2, clk cnt := 0

clk cnt = BIT TIME/2, clk cnt := 0

clk cnt = BIT TIME/2-1, clk cnt := 0

bit cnt 6= 7 ∧
clk cnt = BIT TIME/2,

bit cnt:=bit cnt+1,clk cnt:=0

bit cnt = 7 ∧
clk cnt = BIT TIME/2,
bit cnt:=0,clk cnt:=0

otherwise,
clk cnt := clk cnt + 1

otherwise,
clk cnt := clk cnt + 1

otherwise,
clk cnt := clk cnt + 1

otherwise,
clk cnt := clk cnt + 1

otherwise,
clk cnt := clk cnt + 1

Figure 2.10: nes controller state diagram

signal. Both transmissions shall be visible in the screenshot. Hence set the REFRESH TIMEOUT
to a rather low value.

To calculate the two button state values b0 and b1 in your testbench take the binary repre-
sentation of your matriculation number modulo 216 and use the lower 8 bits for b0 and the upper
8 bits for b1. Should one of these values only contain zeros or ones, take an alternating pattern
instead. The values b0 and b1 should be mapped to the vector given by the individual buttons
signals (A,B,Select,Start,↑,↓,←,→), where A is the MSB.

Example:
mn = 123456

123456 mod 216 = 57920 = 0xE240⇒ b1 = 0xE2, b0 = 0x40

System Integration If your simulation shows that your design works, add an instance of
nes controller to your top-level design and test it in hardware. Because of this year’s remote working
environment you will, of course, not be able to use a “real” controller with your design. Moreover,
there isn’t even a real controller connected to the boards. You might already have noticed the
NES related signals that connect the dbg port to inputs/outputs of the top-level entity. These
inputs/outputs are externally fed back into other GPIO pins of the FPGA (where normally the

2 Exercise I (Deadline: 02.04.2021) 19

real NES controller would be attached). Using these signals the dbg port is able to emulate the
behavior of a real controller

Figure 2.11 shows how the controller is connected to the board’s GPIO connector. Consult
the FPGA board manual for the pin locations and use the Pin Planner in Quartus the make the
appropriate configurations. Be sure to select the correct I/O Standard (3.3-V LVTTL).

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37 38

39 40

5.0V GND

3.3V GND

nes clk

nes data

nes latch

Figure 2.11: Physical controller/board interface

Reading the state of the emulated controller will return the value currently output by the
dbg port at the nes buttons output. Hence after integration of your nes controller simply replace
the dbg nes buttons signals with a signal connecting to the nes buttons output of your controller.
Additionally set the nes buttons output of the dbg port instance to open.

Task 7: Seven Segment Display II [20+(5) Points]

In this task you will extend the ssd controller, such that it is able to show a decimal representation
of the current player points on hex{0-3}. The points shall be read from the player points input.

For that purpose design and implement a state machine that converts the player points from
their binary representation to a BCD value 7 and then convert this BCD value to the corresponding
seven segment symbols (see Figure 2.12). Initially the FSM should start in state where it waits
for a change at the player points input and then starts the conversion process. After completion of
the conversion the state machine either directly returns to this initial state or lets the new output
value first blink for a certain number of times and then returns to the initial state. The decision
which path to take is based on the difference between the new and the old player points value. If
the new value exceeds the old one by 25 points or more, the hex display should blink. While the
hex display is blinking no new player points value shall be read or converted.

7https://en.wikipedia.org/wiki/Binary-coded_decimal

https://en.wikipedia.org/wiki/Binary-coded_decimal

2 Exercise I (Deadline: 02.04.2021) 20

Figure 2.12: Seven segment decimal number patterns

Add the generics shown in Table 2.8 and use them in your implementation. Configure the
instance in the top module, such that BLINK COUNT is set to three and BLINK INTERVAL is set
to a value corresponding to 0.25 seconds.

Generic Description

BLINK INTERVAL The amount of time in clock cycles the hex display should be on/off.

BLINK COUNT The number of times the hex display should blink. A value of one
indicates that after the conversion the hex display shall on for
BLINK INTERVAL and then off for BLINK INTERVAL. After
that it should stay on.

Table 2.8: Constants

The conversion itself must not be implemented using a division operation, but by successively
subtracting decimal powers (i.e., once every clock cycle) from the binary value. Start by subtracting
1000 until the value is smaller or equal to 999. By counting the number of times 1000 could be
subtracted, the thousands digit is obtained. Now repeat the process by subtracting 100 to obtain
the hundreds digit and finally 10 to obtain the tens digit. The rest corresponds to the ones digit.
Since we are dealing with 16-bit unsigned number the highest value that could appear at the input
is is 65535. However, the highest value we can display using 4 decimal places is 9999. Hence, if the
input exceeds this number simply display four dashes, as shown in Figure 2.13.

Figure 2.13: Output pattern for number greater 9999

Again, don’t use the all keyword for this task, but create explicit sensitivity lists for your
processes. Make sure that all required signals are contained in these lists and don’t add superfluous
signals!

Implement a testbench for your design (place it in ssd controller/tb/ssd controller tb.vhd)
and add a makefile to control the simulation process (again implement the targets compile, clean
and sim gui). The sim gui target should open the GUI of Questa/Modelsim and load an
appropriate waveform file showing all inputs and outputs of the ssd controller core, as well as the
internal state variables (this also includes counters). In the testbench use the following value for
player points.

player points = 1234 + ([Your Matriculation Number] mod 500).

Include a simulation screenshot of the conversion process in your report. Make sure that the
values of all intermediate states are visible in the simulation screenshot. You can make multiple
screenshots if this is not possible with one.

The ball game module increments the player points output every second. When the A button
on the controller is presses, 50 is added to the player points.

Note that after finishing this task your ssd controller core should still display the game state at
hex{6-7}, and the direction at hex{4-5} as implemented in Task 2.

2 Exercise I (Deadline: 02.04.2021) 21

Bonus Task: Animation [5 Points]
Animate the outputs hex6 to hex7 whenever the game is in the RUNNING state. Use the patterns
shown in Figure 2.14. Add a generic to your entity that specifies how many cycles the individual
animation steps should be shown by your core. In the top-level design, configure this value to the
equivalent of one second. Include a screenshot in your lab report showing a simulation run of your
core generating the outputs of one complete animation cycle. Set the generic to 4 clock cycles for
this simulation.

Note that the points for this task are only awarded if the other parts of your ssd controller core
are fully implemented.

Figure 2.14: Animation steps for the RUNNING state (Bonus Task)

2.4 Submission

To create an archive for submission in TUWEL execute the submission exercise1 makefile target
of the template we provided you with.

1 cd path/to/your/project

2 make submission_exercise1

The makefile creates a file named submission.tar.gz which should contain the following infor-
mation.

• Your lab protocol as PDF

• The source code of all IP cores

• The source code of the PLL

• The source code of your top-level module

• The source code and testbenches of your IP cores

• Your Quartus project (don’t forget a cleanup!)

• The SDC file containing the clock definition

• Your makefiles to start the individual simulations

Most of these points are automatically checked by the submission script. If the script reports
an error, no archive will be created. Carefully check the warnings that are generated. The created
archive should have the following structure.

submission.tar.gz

report.pdf..Your lab report
vhdl ..The source code of all IP cores

top

nes controller

ssd controller

[... all other IP cores]

2 Exercise I (Deadline: 02.04.2021) 22

Make sure the submitted Quartus project compiles and that your makefiles are working. All
submissions which can not be compiled will be graded with zero points! Don’t create the archive
manually. If you have problems running the makefile target consult a tutor.

3 Exercise II (Deadline: 30.04.2021) 23

3 Exercise II (Deadline: 30.04.2021)

3.1 Overview

In this exercise you have to extend the existing design such that (i) the complete game logic is
implemented and (ii) the VBS graphics controller can display the game’s output using a regular
analog baseband TV signal.

Please note that Tasks 1 and 2 do not depend on each other, and thus enable you to work on
them in any order or even in parallel. Nevertheless, before you start we highly recommend (i) to
read the whole assignment and (ii) to run the reference solution, to get an intuition how the game
is supposed to behave.

3.2 Required and Recommended Reading

All documents are available in TUWEL.

Essentials (read before you start!)

• Design flow tutorial

• VHDL introduction slides (Hardware Modeling)

• VHDL Coding and Design Guidelines

Consult as needed

• IP Cores Manual

• Datasheets and manuals

• SignalTap manuals

3.3 Task Descriptions

Task 1: VBS Graphics Controller [50 Points]

In this task you will implement a module named vbs graphics controller that interfaces with the
board’s ADV7123 digital-to-analog converter (DAC) to generate a video baseband signal (VBS). A
VBS is an analog unmodulated black and white TV signal, which will be used as an alternative to the
video output on the LCD (controlled by the lcd graphics controller). For that purpose the module
has to provide the exact same interface to the remaining system as the lcd graphics controller. It is
also supposed to support the same resolution (400x240 pixels), however, with a lower color depth
(see below). The template already provides

• an entity specification in vbs graphics controller.vhd

• and a package template in vbs graphics controller pkg.vhd.

Don’t change the interface or the name of the entity. Tables 3.1 and 3.2 show the generics and
signals of the vbs graphics controller entity.

To implement this module you can use a similar overall structure as described for the
lcd graphics controller. Use the cores provided by the gfx util pkg package to implement the

3 Exercise II (Deadline: 30.04.2021) 24

Name Functionality

CLK FREQ The frequency of the input clock.

Table 3.1: vbs graphics controller generics description

Name Dir. Width Functionality

clk in 1 Input clock signal

res n in 1 Low-active reset signal

gfx frame sync out 1 The frame synchronization signal

gfx instr in GFX INSTR

WIDTH

The actual instruction

gfx instr wr in 1 The write signal of the instruction FIFO

gfx instr full out 1 The full signal of the instruction FIFO

gfx data in GFX DATA

WIDTH

The data associated with the instruction (coordinates, colors, etc.)

gfx data wr in 1 The write signal of the data FIFO

gfx data full out 1 The full signal of the data FIFO

vga clk out 1 The clock signal used for the communication with the DAC

vga r out 8 Data for the red output channel (unused, drive with constant 0)

vga g out 8 Data for the green output channel

vga b out 8 Data for the blue output channel (unused, drive with constant 0)

vga sync n out 1 Control signal to set the output signal to the synchronization level

vga blank n out 1 Control signal to set the output signal to the blank (black) level

Table 3.2: vbs graphics controller signal description

rasterizer sub module. The template also already provides a frame reader module in the
frame reader.vhd file which you can use for your implementation.

Internal Interface The internal interface must match that of the lcd graphics controller, which
is specified in detail in the IP Cores Manual. The lcd graphics controller implements a simple
instruction interface, with an 8-bit instruction signal (gfx instr) and a 16-bit data signal (gfx data).
Your graphics controller must support all of the instructions and features specified in the IP Cores
Manual. The only difference to the lcd graphics controller is that the vbs graphics controller only
supports 4 shades of gray and hence only needs 2 bits for the “color” information. This means that
for the data associated with the SET COLOR instruction only bits 0 and 1 are used. The values 00
and 11 correspond to the colors black and white, respectively, while 01 and 10 should yield some
shade of gray of your choosing.

Use instances of the FIFO from the ram pkg package to buffer incoming instructions and data
and expose their write ports to the port signals gfx instr * and gfx data * of your graphics core. In-
ternally you can then read the instructions and data from these FIFOs and perform the appropriate
actions.

Video Memory The lcd graphics controller uses the external SRAM on the FPGA board to
store its frame buffers. For the sake of simplicity the vbs graphics controller uses only the embedded
memory of the FPGA. Because this resource is quite limited we can only support 2 bits per pixel.
Use the dual-port RAM from the ram pkg package to implement the video RAM.

3 Exercise II (Deadline: 30.04.2021) 25

Using this type of memory comes with the added benefit that no arbiter is required to manage
simultaneous write operations from the rasterizer and read operation from the frame reader. Both
components use completely separate ports of the video RAM and can, hence, access it completely
independent from each other.

External Interface The external interface has to communicate with the ADV7123 DAC to
generate the appropriate video signal. As can be surmised from the datasheet and its utilization on
the DE2-115 FPGA board this DAC is actually intended to implement a VGA interface. However,
it has all the necessary features to generate an analog TV signal as well. For that purpose, we will
simply use one of the three output channels of the DAC (namely the green one, i.e., vga g) and
set the other channels (i.e., vga b and vga r) to constant zero. The I/O mapping for all signals
connected to the ADV7123 is already preconfigured in the template.

A video baseband signal (also called composite video signal8 is usually transmitted over a single
wire pair using an RCA9 connector. The analog signal operates in a voltage range of 0 V to ≈ 1 V,
where 1 V corresponds to the white level and 0.3 V to the black level. Voltages below 0.3 V are
only used for synchronization information.

Video information is transmitted frame by frame with a rate of 25 frames per second (FPS)
10 As shown in Figure 3.1, a frame consists of 625 scanlines and can be further subdivided into
two so-called fields. Since frames are transmitted in an interlaced fashion, first all even lines are
transmitted in the first field and then the odd lines are transmitted in the second field. Note that
only 288 lines per field contain actual (visible) image information, the other lines are used solely
for synchronization. This is the reason why PAL is often said to have a “resolution” of 576i.

A single scanline has a length of 64 µs and always starts with a synchronization pulse which
goes down to 0 V (synchronization level). Depending on the type of the line this synchronization
pulse can have a length of 2.35 µs (e.g., line 4), 4.7 µs (e.g., line 6) or 27.3 µs (e.g., line 1). A line
always ends on the black voltage level (≈ 0.3 V). A visible scanline (i.e., a scanline containing
actual image information) always starts with a (horizontal) synchronization pulse (4.7 µs) followed
by 5.7 µs of the black voltage level (back porch), which is then followed by an analog waveform
between 0.3 and 1V encoding the brightness information of the line. Finally the signal level returns
to the black level for 1.65 µs (front porch) to end the line.

For our purpose in this exercise we are not going to deal the hassle of interlaced video transmis-
sion and handle each field as if it was a separate frame. This means that we output 50 FPS, i.e.,
the frame buffer in the video RAM is read 50 times per second. The vertical resolution supported
by the vbs graphics controller is 240 lines. Since one field has 288 visible lines we are only going to
use a portion of that, the unused lines shall simply stay black. This means that we use lines 47-286
(field 1) and lines 359-598 (field 2) for our application. Note that it does not matter if you are
off by one with the start of the frame in your solution, just make sure that the image is vertically
centered. Use the signal pattern of line 6 for the visible lines that are not used in this exercise (e.g.,
lines 23-47).

To produce the horizontal resolution of 400 pixels divide the display area (gray area in Fig-
ure 3.1) into 400 equally sized sections, where you keep the output level (produced by DAC)
constant. You may also add black sections at the left and right side of the image to simplify this
division.

8https://en.wikipedia.org/wiki/Composite_video
9https://en.wikipedia.org/wiki/RCA_connector

10This actually depends on the transmission standard. PAL systems use 25 FPS (except for PAL-M) where NTSC
uses ≈ 30 FPS. All information presented from here on is compatible with (25 FPS) PAL systems.

https://en.wikipedia.org/wiki/Composite_video
https://en.wikipedia.org/wiki/RCA_connector

3 Exercise II (Deadline: 30.04.2021) 26

Figure 3.1: VBS frame format (Source: http://www.batsocks.co.uk/readme/video_timing.

htm)

Use the full 50 MHz to drive the vga clk signal of the DAC (i.e., don’t use an additional PLL
to generate a different clock signal). To generate the 0 V and 0.3 V output levels (required e.g.,
for the synchronization scanlines and the front and back porch sections of visible lines) the signals
vga blank n and vga sync n must be used. See the DAC’s datasheet for details.

The template provides a test pattern generator (tpg) in the tpg.vhd file, which you can use
to test your VBS signal without the need to implement the rest of the graphics controller. To
interface with the tpg only two signals (pix rd and pix data) are necessary. Whenever pix rd is
asserted, pix data will output the next pixel value in the following clock cycle starting with the
pixel at (x, y) = (0, 0)(see Figure 3.2). When 400∗240 = 96000 pixels have been read the tpg starts
at (x, y) = (0, 0) again. Note that the signals pix rd and pix data of the frame reader core behave in
exactly the same way.

Every board/remote work place in the lab is equipped with a video grabber connected to the
FPGA board. You can access it using the signal stream. Figure 3.3 shows how the test pattern
should look like. The outer white frame is a rectangle located at (x, y) = (0, 0) with a width of 400
and a height of 240 pixels. It marks the visible bounds of the generated image. In the center are 4
squares with a width of 16, 32, 48 and 64 pixels showing the different brightness levels.

http://www.batsocks.co.uk/readme/video_timing.htm
http://www.batsocks.co.uk/readme/video_timing.htm

3 Exercise II (Deadline: 30.04.2021) 27

clk

res n

pix rd

pix data undef. pix(0,0) pix(1,0) pix(2,0) pix(3,0)

Figure 3.2: test pattern generator interface protocol

Figure 3.3: VBS test pattern as generated by the test pattern generator

Testing To test all features of your graphics controller you can use the --gfx command line
argument of the remote.py script. The commands below demonstrate how to generate the test
pattern of Figure 3.3 using graphics instructions instead of the tpg.

1 remote.py --gfx 0x01 # issue a clear screen instruction

2 remote.py --gfx 0x51 3 # set the primary color to "11"

3 remote.py --gfx 0x98 0 0 400 240 # draw the white frame

4 remote.py --gfx 0x9f 168 88 64 64 # draw the white box in the center

5 remote.py --gfx 0x51 2 # set the primary color to "10"

6 remote.py --gfx 0x9f 176 96 48 48 # draw the gray box in the center

7 remote.py --gfx 0x51 1 # set the primary color to "01"

8 remote.py --gfx 0x9f 184 104 32 32 # draw the gray box in the center

9 remote.py --gfx 0x51 0 # set the primary color to "00"

10 remote.py --gfx 0x9f 192 112 16 16 # draw the black box in the center

Note that all values supplied to the remote.py script can make use of the bit-wise OR operator
(i.e., |-operator). Hence the following two commands are equivalent.

1 remote.py --gfx 0x51 "0x2 | 0x1"

2 remote.py --gfx "0x50 | 0x1" 3

Note, that after the FPGA board has been programmed, the display switch is configured such
that the ball game module is connected to the lcd graphics controller and the dbg port is connected
to vbs graphics controller. If you want to test how the lcd graphics controller reacts to certain com-
mands you can reverse this assignment by using the --dsc command line argument of the remote.py
script.

1 remote.py --dsc 0 # ball_game -> vbs_graphics_controller

2 remote.py --dsc 1 # ball_game -> lcd_graphics_controller

3 Exercise II (Deadline: 30.04.2021) 28

Oscilloscope Measurement Perform oscilloscope measurements to demonstrate the correctness
of the VBS signal you are generating. For that purpose, configure the hardware to provide the test
pattern presented in Figure 3.3 (either by using the tpg or by issuing the appropriate commands
to your design using the remote.py script). The output of the DAC is connected to channel 1 of
the oscilloscopes located at the hosts ti40 and ti41, whereat the oscilloscope ui.py script can
be used to interact with it.

Make a measurement of scanline 3 and use the cursors of the oscilloscope to validate the timing.
Additionally, make a measurement of one of the scanlines in the center of the test pattern, showing
all 4 brightness levels. Consult the report template to learn about the exact screenshots that are
required.

You can use the TV trigger to easily step through all the lines of your VBS signal. See
the help of the oscilloscope ui.py tool for further details.

Task 2: Fully implement the Ball Game module [50 Points]

For Exercise I we supplied you with an architecture for the ball game module (ball game ex1.vhd),
which only implemented very basic functions, like moving a ball using the controller, generating
data for the player points and game state outputs as well as playing simple sounds when certain
controller buttons are pressed.

In this task you will implement your own ball game architecture which shall provide the ac-
tual game logic. The architecture must be called ball game ex2 and must be placed in the file
ball game/src/ball game ex2.vhd.

The general concept of the game you should implement is the following: The player controls a
ball that “falls” down a well and is blocked by upwards moving bricks (i.e., rectangular blocks). It
is only possible to control the sideways movement of the ball. Figure 3.4 shows a screenshot of the
game.

Figure 3.4: Ball game screenshot

The width and horizontal position of bricks are randomly generated (see below). However, they
always appear in rows with a constant distance in between them. The player has to avoid touching
the upper and lower edge of the screen. Doing so ends the game (game over). The left and right
screen border simply block the player, touching them has no effect. To score points while moving
downwards, the player has to collect items that appear on the bricks. There are 3 different types of
items, which each yield a different amount of points. After specific time intervals the game’s pace
is increased, which gradually makes it more difficult.

3 Exercise II (Deadline: 30.04.2021) 29

Game Behavior Figure 3.5 shows a state diagram describing the overall behavior of the game
logic and the different states it can be in. The current state should be reflected by the game state
output of the ball game module. Note that the game states don’t necessarily directly correspond
to a state machine in your code with exactly these states.

IDLE

RUNNING PAUSED

GAME OVER

Figure 3.5: Ball game states

After the reset the game starts in the IDLE state, where it should display a set of randomly
placed bricks arranged in four rows. In this state the bricks don’t move upwards, but stay static.
Define and use a user pattern to draw the bricks (the design is completely up to you). Figure 3.6
shows a possible example. The player points output shall be reset to 0 in this state.

Figure 3.6: Ball game screenshot (IDLE state)

In the IDLE state the ball is not controlled by the player but shall move randomly through the
randomly generated brick arrangement. This means that on each frame the ball should start/stop
moving and/or change direction with a certain probability. Eventually, when the ball hits the lower
screen border it should be re-positioned at the top again. Simply reset the player’s y coordinate to
zero in this case. Pressing Start on the NES controller switches the game into the RUNNING state.

When the RUNNING state is entered the screen is cleared, a single brick row is added at the
bottom of the screen and the player is placed at the top of the screen. The player will immediately
fall down towards the brick row, while the row itself moves upwards. The sideways movement of
the ball can now be controlled using the Left and Right buttons of the NES controller. New brick
rows are always added at the lower edge of the screen. After the currently lowest brick row moved
upwards sufficiently far a new row is added. Choose a distance such that 5 rows fit on the screen.
As soon as the top edge of a brick collides with the upper edge of the screen the brick is removed
from the game.

3 Exercise II (Deadline: 30.04.2021) 30

Whenever a new row is added, one item is placed somewhere on that row (it does not matter if
it is placed on a brick or if it “hovers” in the space between the bricks). There are three different
items types, that are each worth a different number of points. You are free to chose appropriate
point values but make sure that the highest value is 25 such that the ssd controller will let the hex
displays blink when the respective item is collected. The items shall be visually distinguishable,
hence, use different patterns and sizes and/or colors. When the player collides with an item, the
item shall immediately be removed from the game and the points shall be added to the player points
output. The item with the highest value shall appear with a probability of ≈ 1/16, while the item
with the second highest value shall appear with a probability of ≈ 1/8.

After a certain amount of time the game should get faster to make it more difficult (i.e.,
the upwards movement of the bricks as well as the downwards movement of the player shall be
increased).

Pressing the Start button when the game is in the RUNNING state switches the game into the
PAUSED state. In this state the movement of the player and the bricks is stopped and arrow key
inputs are ignored. Pressing Start again resumes the game. Note that when the game is paused,
the timer that controls when to increase the speed of the game must also be paused.

When the player collides with the top or bottom edge of the screen the game shall transition
into the GAME OVER state. In this state the visual output shall be frozen, to show the last frame
with the collision. Pressing the Start button on the controller shall put the game back into the
IDLE state.

Use constants for all the values that determine the game play (e.g., row distance, movement
speed, item points, speed increase interval, etc.).

It is a good idea to run the reference solution of Exercise 2 now, such that you fully
understand the game mechanics before starting with your implementation.

Collision Detection: To assist you with the implementation of the collision detection between
the player and the bricks/items in the game, we provide you with the object collider. See the
IP Cores Manual for details on how to interface with it. Besides the manual, we also provide
you with a testbench for this module to better visualize its operation (run make sim gui in the
object collider directory to start the simulation)

To demonstrate its usage in a real design we added another architecture for the ball game
module to the template. This architecture is called arch ex2 demo and is located in the file
ball game ex2 demo.vhd. You can use this architecture as a basis for your implementation
of the game. However, keep in mind that your implementation must be placed in the file
ball game ex2.vhd. Note that although the player is represented by a ball, for the collision detec-
tion it is treated as a rectangle by the object collider. Further note that collision with the left and
right screen borders is already handled by the object collider.

3 Exercise II (Deadline: 30.04.2021) 31

During the game you will need to keep track of a large (and varying) number of game
objects (i.e., bricks and items). One way to store them in your design is via a FIFO (from
the ram pkg package). Whenever you have to go through the game objects, because either
the object collider requests it or you have to update their positions (upwards movement
of the bricks) you can simply read this FIFO. After the game object has been processed
you can then either write it back to the FIFO or discard it (e.g., if an item has been
collected by the player or a brick moved out of the screen). You can use the functions
go to slv and slv to go provided by the object collider pkg package to convert between the
game object t and std logic vector types. To keep track of the number of game objects
you can either use a counter or simply add a special item to the FIFO that marks the
end of the list (e.g., a game object with zero width and height). If you use a sufficiently
large FIFO (e.g., containing 128 game objects) it is fine if you don’t check its full flag
(i.e., you don’t have to worry about overflows).

Brick Generation and Placement: As already mentioned above, brick rows shall be generated
randomly. Listing 1 shows a Python version of the algorithm you shall implement in your VHDL
design. The code of this listing can be found in the file ball game/gen bricks.py.

1 #!/bin/env python3

2

3 import random

4

5 BLOCK_WIDTH = 16

6 DISPLAY_WIDTH = 400

7

8 cur_x = random.randrange (0,3)*BLOCK_WIDTH

9 while (True):

10 width = random.randrange (1,10)*BLOCK_WIDTH

11 if(cur_x + width >= DISPLAY_WIDTH):

12 width = DISPLAY_WIDTH - cur_x

13

14 print("Brick: x=" + str(cur_x) + ", width=" + str(width))

15

16 cur_x += width + random.randrange (2,5)*BLOCK_WIDTH

17 if(cur_x >= DISPLAY_WIDTH):

18 break

Listing 1: Brick generation algorithm

Note that, the arch ex2 demo architecture also contains example code that shows how to gen-
erate (pseudo) random numbers that lie within a certain range. The height of the bricks shall be
fixed at ≈12 pixels.

Audio Output: The game shall play sounds at the following occasions (when it is in the RUN-
NING state):

• The player collects an item
Play a single tone for ≈ 0.2 s

• The game is over
Play two successive single tones (≈ 0.25 s each) with increasing frequency

Architecture: You may use the object collider module as is, but you don’t have to. Feel free to
modify it, change its interface, or just pick specific parts of it.

3 Exercise II (Deadline: 30.04.2021) 32

You may also create new entities that implement parts of the described game behavior and in-
stantiate them in the ball game module (similar to what is already done with the object collider
module in the arch ex2 demo architecture). If you do so, put all additional entities in the
ball game/src/ directory. It may, for example, be beneficial/useful to create a separate entity
for the game object FIFO described above.

Testing: You might have already noticed that the remote.py script has a quite long latency when
generating input for the NES controller in the interactive mode. To fix this problem we provide
you with a simpler tool called nes cntrl.py, that is optimized for low latency input and that does
not interact with the other I/O devices (switches, LEDs, etc.). To use the tool, you first need to
execute the following command to install the required packages (in the TILab):

1 pip3 install --user pynput dataclasses

The tool also lets you directly control the display switch, to make it easy to change the out-
put graphics controller of your design (run nes cntrl.py --help for details). If you don’t use
rpa shell.py to connect to the TILab computers, please make sure that you activate X-forwarding
(-X command line argument of the ssh command).

Task 3: Bonus: SignalTap Measurement [12 Points]

Use a SignalTap II Logic Analyzer to analyze the behavior of your design during run-time. For this
purpose trace the followings port signals of the ball game module:

• gfx instr

• gfx instr wr

• gfx instr full

• gfx data

• gfx data wr

• gfx data full

Bring the game into the RUNNING state and trigger on the first instruction that is issued to the
graphics controller for some frame (probably a CLEAR SCREEN instruction). Include a screenshot
of the trigger condition in your lab protocol. Furthermore, add a screenshot to your lab protocol
showing at least the first 4 instructions issued to the graphics controller (you can use either the
lcd graphics controller or the vbs graphics controller, i.e., it does not matter how the display switch is
configured). Make sure that the value of the vector signals (i.e., gfx instr and gfx data) are visible in
the figure (split the screenshot into multiple images if necessary). Decode the first four instructions
using the table provided in the template.

3.4 Submission

To create an archive for submission in TUWEL execute the submission exercise2 makefile target
of the provided template.

3 Exercise II (Deadline: 30.04.2021) 33

1 cd path/to/your/project

2 make submission_exercise2

The makefile creates a file named submission.tar.gz.

A submission script checks whether all required files are present and in the right location. If the
script reports an error, no archive will be created. Carefully check the warnings that are generated.
The created archive should have the following structure.

submission.tar.gz

report.pdf..Your lab report
vhdl ..The source code of all IP cores

top

vbs graphics controller

ball game

[... all other IP cores]

All submissions which can not be compiled will be graded with zero points! Don’t manually
create the archive. If you have problems running the makefile target consult a tutor.

3 Exercise II (Deadline: 30.04.2021) 34

Revision History

Revision Date Author(s) Description

2.0 05.04.2020 FH Added Exercise 2.
1.4 20.03.2020 FH Fixed I/O signal names of the display switch module

in Figure 2.4.
1.3 17.03.2020 FH Added player points input to Table 2.2.
1.2 16.03.2020 FH Fixed clock name in Task 4 (nclk → clk).
1.1 10.03.2020 FH Fixed description of signals hex{0-3} in Ta-

ble 2.2, added missing outputs (sclk, scen) to
lcd graphics controller in Figure 2.5

1.0 08.03.2020 FH Initial version

Author Abbreviations:

FH Florian Huemer
JM Jürgen Maier

	Introduction
	Coding Style
	Software
	Submission
	Allowed Warnings

	Exercise I (Deadline: 02.04.2021)
	Overview
	Required and Recommended Reading
	Task Descriptions
	Structural Modeling [8 Points]
	Seven Segment Display I [14 Points]
	Behavioral Simulation [8 Points]
	Postlayout Simulation [8 Points]
	Testbench Design [10+12+(5) Points]
	NES Controller [20 Points]
	Seven Segment Display II [20+(5) Points]

	Submission

	Exercise II (Deadline: 30.04.2021)
	Overview
	Required and Recommended Reading
	Task Descriptions
	VBS Graphics Controller [50 Points]
	Fully implement the Ball Game module [50 Points]
	Bonus: SignalTap Measurement [12 Points]

	Submission

	Revision History

