
Digital Design and

Computer Architecture LU

IP Cores Manual

Florian Huemer, Jürgen Maier
{fhuemer, jmaier}@ecs.tuwien.ac.at

Department of Computer Engineering
TU Wien

Vienna, April 12, 2021

Contents 1

Contents

1 Mathematical Support Package 3

1.1 Description . 3

1.2 Dependencies . 3

1.3 Required VHDL files . 3

1.4 Supported Functions . 3

2 Synchronizer 4

2.1 Description . 4

2.2 Dependencies . 4

2.3 Required VHDL Files . 4

2.4 Component Declaration . 4

2.5 Interface Protocol . 5

2.6 Internal Structure . 5

3 On-chip RAM 6

3.1 Description . 6

3.2 Dependencies . 6

3.3 Required VHDL Files . 6

3.4 Component Declarations . 6

3.4.1 Single clock dual-port RAM . 6

3.4.2 Single clock FIFO . 7

3.5 Interface Protocol . 8

3.5.1 Single clock dual-port RAM . 8

3.5.2 Single clock FIFO . 8

4 Pseudo Random Number Generator (PRNG) 10

4.1 Dependencies . 10

4.2 Required VHDL Files . 10

4.3 Component Declaration . 10

4.4 Interface Protocol . 11

5 LCD Graphics Controller 12

5.1 Features . 12

5.2 Dependencies . 13

5.3 Required VHDL Files . 14

5.4 Component Declaration . 14

5.5 Interface Protocol . 15

5.6 Graphics Interface Package . 19

5.7 Graphics Controller Package . 20

Contents 2

6 Audio Controller 21

6.1 Dependencies . 21

6.2 Required Source Files . 21

6.3 Component Declaration . 21

6.4 Interface Protocol . 22

7 GFX Utility Package 24

7.1 Description . 24

7.2 Dependencies . 24

7.3 Required VHDL Files . 24

7.4 Component Declarations . 24

7.4.1 GFX Line . 24

7.4.2 GFX Circle . 25

7.4.3 GFX Rectangle . 26

7.5 Interface Protocol . 27

8 Object Collider 29

8.1 Description . 29

8.2 Dependencies . 29

8.3 Required VHDL Files . 29

8.4 Component Declarations . 29

8.5 Interface Protocol . 31

Revision History 34

1 Mathematical Support Package 3

1 Mathematical Support Package

1.1 Description

The mathematical support package (math pkg) adds support for mathematical functions which are not
available in VHDL.

1.2 Dependencies

• None

1.3 Required VHDL files

• math pkg.vhd

1.4 Supported Functions

• function log2c(constant value : in integer)return integer;

Calculates the logarithm dualis of the integer operand and rounds it up to the next integer. Its main
usage is to calculate the minimum required memory address width to store a certain amount of data
words.

• function max(constant value1, value2 : in integer)return integer;

function max(constant value1, value2, value3 : in integer)return integer;

Determines the maximum of the integer operands. This function is available with two and three
operands.

2 Synchronizer 4

2 Synchronizer

2.1 Description

The synchronizer component is used to connect external signals (e.g., from push buttons or serial ports) to a
design. As these input devices generate signals which not synchronous to internal FPGA clocks, using them
without proper synchronization can lead to upsets and hence malfunction of a design.

2.2 Dependencies

• None

2.3 Required VHDL Files

• sync pkg.vhd

• sync.vhd

2.4 Component Declaration

The declaration of the synchronizer can be found in Listing 1, while the functionality of each generic and
port signal is described in Table 2.1 and 2.2, respectively.

1 component sync is

2 generic (

3 SYNC_STAGES : integer range 2 to integer ’high; -- Number of synchronizer stages

4 RESET_VALUE : std_logic -- Value of data_out directly after reset

5);

6 port (

7 clk : in std_logic;

8 res_n : in std_logic;

9 data_in : in std_logic; -- External interface

10 data_out : out std_logic -- Internal interface

11);

12 end component;

Listing 1: Synchronizer declaration.

Name Functionality

SYNC STAGES Number of flip flop stages used for synchronization

RESET VALUE The value, the output signal should have directly after reset

Table 2.1: Synchronizer generics description

Name Dir. Width Functionality

clk in 1 Global clock signal

res n in 1 Global reset signal (low active, not internally synchronized)

data in in 1 The signal which should be synchronized

data out out 1 The synchronized version of the input signal

Table 2.2: Synchronizer signal description

In the special case that the synchronizer is used for an external global reset signal, the res n port is set
to constant one and the reset signal is connected to data in. The processed reset signal can be accessed on
port data out.

2 Synchronizer 5

2.5 Interface Protocol

The synchronizer has no special interface protocol. The input signal is sampled with the clock signal clk.
Therefore an output signal generated which is aligned to the clk and has a delay of n clock cycles, where n
is the number of synchronizer stages (i.e., SYNC STAGES). Spikes or glitches not overlapping a rising clock
edge (see example trace in Figure 2.1) will not show up at the synchronizer output.

Not processed by the system

Stages

clk

data in

data out

Figure 2.1: Synchronizer timing

2.6 Internal Structure

The synchronizer internally consists of a D flip-flop chain. Figure 2.2 shows an example of a three stage
synchronizer.

QD

res

QD

res

QD

res

data outdata in

clk

res n

Figure 2.2: Synchronizer circuit

3 On-chip RAM 6

3 On-chip RAM

3.1 Description

Important components in nearly every integrated circuit are memories. If storage with full access speed is
required, only on-chip memories are viable options. This package provides an easy way to instantiate on-chip
RAMs.

Currently there are two RAM memories available, a single clock dual-port RAM with one read and one
write port and a single clock dual port FIFO with one read and one write port.

3.2 Dependencies

• Mathematical support package (math pkg)

3.3 Required VHDL Files

• ram pkg.vhd

• dp ram 1c1r1w.vhd

• fifo 1c1r1w.vhd

3.4 Component Declarations

3.4.1 Single clock dual-port RAM

The declaration of the single clock dual-port RAM with one read and one write port can be found in Listing 2,
while the functionality of each generic and port signal is described in Table 3.1 and 3.2.

1 component dp_ram_1c1r1w is

2 generic (

3 ADDR_WIDTH : integer;

4 DATA_WIDTH : integer

5);

6 port (

7 clk : in std_logic;

8 -- read port

9 rd1_addr : in std_logic_vector(ADDR_WIDTH - 1 downto 0);

10 rd1_data : out std_logic_vector(DATA_WIDTH - 1 downto 0);

11 rd1 : in std_logic;

12 --write port

13 wr2_addr : in std_logic_vector(ADDR_WIDTH - 1 downto 0);

14 wr2_data : in std_logic_vector(DATA_WIDTH - 1 downto 0);

15 wr2 : in std_logic

16);

17 end component;

Listing 2: RAM Component declaration

Name Functionality

ADDR WIDTH The number of address bits

DATA WIDTH The number of data bits

Table 3.1: RAM generics description

3 On-chip RAM 7

Name Dir. Width Functionality

clk in 1 Global clock signal

rd1 addr in ADDR WIDTH Address signal of the read port

rd1 data out DATA WIDTH Data signal of the read port

rd1 in 1 If 1, a read operation is performed on the next rising edge of the clock
signal

wr2 addr in ADDR WIDTH Address signal of the write port

wr2 data in DATA WIDTH Data signal of the write port

wr2 in 1 If 1, the data of wr2 data is written to address wr2 addr of the memory

Table 3.2: RAM signal description

3.4.2 Single clock FIFO

The declaration of the single clock FIFO with one read and one write port can be found in Listing 3, while
the functionality of each generic is described in Table 3.3 and of each signal in Table 3.4.

1 component fifo_1c1r1w is

2 generic (

3 MIN_DEPTH : integer;

4 DATA_WIDTH : integer

5);

6 port (

7 clk : in std_logic;

8 res_n : in std_logic;

9 --read port

10 rd_data : out std_logic_vector(DATA_WIDTH - 1 downto 0);

11 rd : in std_logic;

12 --write port

13 wr_data : in std_logic_vector(DATA_WIDTH - 1 downto 0);

14 wr : in std_logic;

15 --status signals

16 empty : out std_logic;

17 full : out std_logic;

18 half_full : out std_logic

19);

20 end component;

Listing 3: FIFO declaration.

Name Functionality

DEPTH The depth of the FIFO. This generic must be set to a power of two.

DATA WIDTH The number of data bits

Table 3.3: FIFO generics description

Name Dir. Width Functionality

clk in 1 Global clock signal

res n in 1 Global reset signal, low active, not internally synchronized

rd data out DATA WIDTH Output data

rd in 1 If 1, a read operation is performed at the next rising edge of the clock
signal. If the FIFO is empty, the result is undefined

wr data in DATA WIDTH Data for the write operation

wr in 1 If 1, the data of data in2 is written to the next free memory location. If
the FIFO is full, the write request is ignored

empty out 1 1, if the memory is empty

full out 1 1, if the memory is full

half full out 1 1, if at least half of the memory of the FIFO contrains data.

Table 3.4: FIFO signal description

3 On-chip RAM 8

3.5 Interface Protocol

3.5.1 Single clock dual-port RAM

A standard synchronous memory access protocol is used for accessing the RAM. At any rising edge of the
clk signal, when the rd1 signal is high, the data word stored at address rd1 addr is written to the rd1 data
port (see Figure 3.1).

clk

rd1 addr addr0 addr1

rd1

rd1 data data0 data1

Figure 3.1: RAM read timing.

At any rising edge of the clk signal, when the wr2 signal is high, the data word at wr2 data is written to
address wr2 addr (see Figure 3.2).

clk

wr2 addr addr0 addr1

wr2

wr2 data data0 data1

Figure 3.2: RAM write timing

3.5.2 Single clock FIFO

The FIFO memory uses a similar interface but does not require the address inputs. The read operation is
again initiated by asserting the rd signal. If the FIFO is not empty the next data word is assigned to the
output rd data (see Figure 3.3). If the FIFO is empty, the result of the read operation is undefined.

clk

rd

rd data data0 data1

Figure 3.3: FIFO read timing

Asserting the input wr performs a write operation on the FIFO. The data word at wr data is stored to
the next free location of the internal memory (see Figure 3.4). While the FIFO is full, write operations are
ignored.

If the first item is written to the FIFO, the empty signal becomes zero in parallel to the storage operation.
If the last item is read from the FIFO, the empty signal becomes one at the same time the output data is
set (see Figure 3.5).

If the FIFO becomes full by a write operation, parallel to the storing process the full signal becomes one.
If afterwards a data word is read, the full signals becomes zero again at the same time as the output port is
set (see Figure 3.6).

3 On-chip RAM 9

clk

wr

wr data data0 data1

Figure 3.4: FIFO write timing

clk

rd

rd data data0

wr

wr data data0 data1

empty

Figure 3.5: FIFO empty handling

clk

rd

rd data data0

wr

wr data data0 data1

full

Figure 3.6: FIFO full handling

4 Pseudo Random Number Generator (PRNG) 10

4 Pseudo Random Number Generator (PRNG)

The prng module implements a simple pseudo random number generator using a 16-bit linear feedback shift
register (LFSR).

4.1 Dependencies

• None

4.2 Required VHDL Files

The prng is supplied as a precomplied module that comes in the form of a Quartus II Exported Partition
File (.qxp) for synthesis and a netlist file (.vho) for simulation.

• prng.vhd

• prng.vho

• prng.qxp

Hence, if you want to simulate your design in Questa/Modelsim, use the package file prng pkg.vhd and
the netlist file prng.vho. For synthesis in Quartus use the package prng pkg.vhd and the Exported Partition
File prng.qxp file.

4.3 Component Declaration

The declaration of the prng can be found in Listing 4, the functionality of each signal is described in Table 4.1.

1 component prng is

2 port (

3 clk : in std_logic;

4 res_n : in std_logic;

5 load_seed : in std_logic;

6 seed : in std_logic_vector (7 downto 0);

7 en : in std_logic;

8 prdata : out std_logic

9);

10 end component;

Listing 4: PRNG declaration

Name Dir. Width Functionality

clk in 1 Global clock signal

res n in 1 Global reset signal (low active not internally synchronized)

en in 1 The enable signal for the PRNG. If en is high, the core outputs a new
random bit at prdata in the next cycle.

prdata out 1 The output holding the random data

load seed in 1 If load seed is high, the core loads uses the value at the seed input to ini-
tialize its internal shift register and to configure the LFSR’s polynomial.
As long as load seed is asserted, en has no effect.

seed in 8 The seed value to (re-)initialize the core.

Table 4.1: PRNG signal description.

4 Pseudo Random Number Generator (PRNG) 11

4.4 Interface Protocol

Figure 4.1 shows an example timing diagram of the PRNG. During a reset the core is internally initialized
with the seed value 0x00. The seed affects the inital value of the shift register as well as the polynomial used.
This means that depending on the seed the period of the PRNG can be vastly different. Asserting en yields
a new (pseudo) random bit at prdata at the next rising clock edge. In the example timing diagram shown
in Figure 4.1 the core outputs the stream (r0,r1,r2,r3). The timing diagram also shows how the PRNG is
reinitialized with a (new) seed value. Since in this example again 0x00 is used to initalize the PRNG, the
same sequence of random bits appears at the output.

clk

en

prdata r0 r1 r2 r3 r0 r1 r2 r3

load seed

seed don’t care 0x00 don’t care

Figure 4.1: PRNG example timing diagram

5 LCD Graphics Controller 12

5 LCD Graphics Controller

The LCD Graphics Controller is used to draw simple geometric shapes (lines, rectangles and circles) onto a
display. It supports a color depth of 16 bits per pixel and a resolution of 400x240 pixels. For this purpose
it utilizes an external SRAM to store the frame buffer (or buffers if double buffering is enabled), i.e., the
video RAM. Figure 5.1 shows an overview of the architecture of this core. The FIFO-like instruction/data
interface of the rasterizer sub component is used to issue commands to the core. The instructions are then
executed over the course of multiple clock cycles using the cores in the gfx util pkg package, which will color
the required pixels in the frame buffer in the external SRAM. The framereader constantly reads the SRAM
and forwards the data to the display controller, which implements the display interface protocol.

For accessing the SRAM the LCD Graphics Controller uses an internal bus system with 16 bit data
width (which is also the data width of the external SRAM). The access to the bus is controlled by the bus
arbiter with priority scheduling. The frame reader has higher priority, since a certain minimum data rate
(for reading the frame buffer) has to be guaranteed for the display controller to work correctly. Using the
internal signals base addr and frame start the frame reader communicates with the rasterizer, to enable the
synchronization of drawing operations to the start of a frame and to organize a frame buffer switch (base addr
pointing to the video RAM address form where the frame reader fetches the data to be displayed).

Rasterizer

Frame Reader

Bus Arbiter SRAM Controller

Display Controller

frame startbase addr

r
g
b
hd
vd
den

nclk

grest

sclk

sda

scen

gfx instr

gfx instr wr

gfx instr full gfx data

gfx data wr

gfx data full

gfx frame sync

sram ub n
sram lb n
sram we n
sram ce n
sram oe n

sram dq

sram addr

Figure 5.1: LCD Graphics Controller architecture overview

5.1 Features

These colors are user configurable via the SET COLOR instruction1. The LCD Graphics Controller has two
internal color registers referred to as the primary and secondary drawing color. Clearing the screen using

1Specific information about all supported instructions and their bit-level representations can be found in Section 5.5

5 LCD Graphics Controller 13

the CLEAR instruction will use the secondary color. The graphical operations performed by the SET PIXEL,
DRAW LINE and DRAW CIRCLE instructions use the primary drawing color. The DRAW RECT instruction also
uses the primary color, but has certain variants where the secondary color is used as well.

Drawing a circle (i.e., DRAW CIRCLE) only draws the outer perimeter. Rectangles can also be filled using
simple patterns. A pattern is specified by the 5-tuple (bw, bh, dx, dy, ls), consisting of the block width and
block height parameters bw and bh, the x and y distances dx and dy as well as the line shift parameter ls (see
Figure 5.2). Pixels that belong to a block (i.e., the black pixels in the figure), are drawn using the primary
color. The others pixels are either drawn with the secondary color or not drawn at all (alpha mode), which
means that the background “shines through” in these areas.

b
h

d
y

bw dx

ls

Figure 5.2: LCD Graphics Controller rectangle pattern specification

Figure 5.3 shows how various different pattern styles can be generated using this technique.

(a) bw = bh = 1, dx = dy = ls = 0 (b) bw = bh = dy = 2, dx = ls = 0 (c) bw = bh = dx = 2, dy = ls = 0

(d) bw = bh = dx = 4, dy = 0, ls = 4 (e) bw = bh = dx = 4, dy = 0, ls = 2 (f) bw = bh = ls = 0 dx = dy = 1

Figure 5.3: Rectangle fill patterns examples

The LCD Graphics Controller supports two predefined patterns and six user patterns which can be
configured using the SET PATTERN instruction. The predefined patterns correspond to patterns shown in
Figures 5.3a and 5.3f. These patterns are meant to be used when a solid rectangle filled with the primary
or secondary drawing color should be drawn.

Special instructions are used to enable double buffering and switch frame buffers.

5.2 Dependencies

Since the LCD Graphics Controller is provided as a precompiled module, there are no external dependencies.

5 LCD Graphics Controller 14

5.3 Required VHDL Files

The LCD Graphics Controller is supplied as a precompiled module in the form of a Quartus II Exported
Partition File (.qxp) for synthesis and a netlist file (.vho) for simulation. Additionally two packages
(lcd graphics controller pkg and gfx if pkg) containing the component declaration and some utility functions
and constants are provided.

• gfx if pkg.vhd

• lcd graphics controller pkg.vhd

• lcd graphics controller.qxp

• lcd graphics controller.vho

Hence, if you want to simulate your design in Questa/Modelsim, use the files gfx if pkg.vhd and
lcd graphics controller pkg.vhd as well as the netlist file lcd graphics controller.vho. For synthe-
sis in Quartus use gfx if pkg.vhd, lcd graphics controller pkg.vhd and the Exported Partition File
lcd graphics controller.qxp file.

5.4 Component Declaration

The declaration of the LCD Graphics Controller can be found in Listing 5, the functionality of each signal
is listed in Table 5.1. Figure 5.1 shows to which sub components of the LCD Graphics Controller these port
signals are connected to (the clock and reset signals have been omitted from the figure).

1 component lcd_graphics_controller is

2 port (

3 clk : in std_logic;

4 res_n : in std_logic;

5 display_clk : in std_logic;

6 display_res_n : in std_logic;

7 --instruction interface

8 gfx_instr : in std_logic_vector(GFX_INSTR_WIDTH -1 downto 0);

9 gfx_instr_wr : in std_logic;

10 gfx_instr_full : out std_logic;

11 gfx_data : in std_logic_vector(GFX_DATA_WIDTH -1 downto 0);

12 gfx_data_wr : in std_logic;

13 gfx_data_full : out std_logic;

14 gfx_frame_sync : out std_logic;

15 --external interface to the SRAM

16 sram_dq : inout std_logic_vector(SRAM_DATA_WIDTH -1 downto 0);

17 sram_addr : out std_logic_vector(SRAM_ADDRESS_WIDTH -1 downto 0);

18 sram_ub_n : out std_logic;

19 sram_lb_n : out std_logic;

20 sram_we_n : out std_logic;

21 sram_ce_n : out std_logic;

22 sram_oe_n : out std_logic;

23 --external interface to the LCD

24 nclk : out std_logic;

25 hd : out std_logic;

26 vd : out std_logic;

27 den : out std_logic;

28 r : out std_logic_vector (7 downto 0);

29 g : out std_logic_vector (7 downto 0);

30 b : out std_logic_vector (7 downto 0);

31 grest : out std_logic;

32 --serial interface to LCD driver IC

33 sda : out std_logic;

34 sclk : out std_logic;

35 scen : out std_logic

36);

37 end component;

Listing 5: LCD Graphics Controller declaration

5 LCD Graphics Controller 15

Name Dir. Width Functionality

clk in 1 Global clock signal

res n in 1 Global reset signal (low active, not internally synchronized)

display clk in 1 The clock signal used to interface with the display (max. 8.3 MHz)

display res n in 1 Display clock reset signal (low active, not internally synchronized)

gfx frame sync out 1 The frame synchronization signal

gfx instr in GFX INSTR

WIDTH

The actual instruction

gfx instr wr in 1 The write signal of the instruction FIFO

gfx instr full out 1 The full signal of the instruction FIFO

gfx data in GFX DATA WIDTH The data associated with the instruction (coordinates, colors, etc.)

gfx data wr in 1 The write signal of the data FIFO

gfx data full out 1 The full signal of the data FIFO

sram dq inout SRAM DATA

WIDTH

SRAM data inputs/outputs

sram addr out SRAM ADDRESS

WIDTH

SRAM address input

sram lb n out 1 SRAM lower-byte control

sram ub n out 1 SRAM upper-byte control

sram we n out 1 SRAM write enable

sram ce n out 1 SRAM chip enable

sram oe n out 1 SRAM output enable

nclk out 1 LCD clock signal

grest out 1 LDC Global reset, low active

hd out 1 LCD Horizontal sync input

vd out 1 LCD Vertical sync input

den out 1 LCD RGB data enable

r out 8 LCD red color data bus

g out 8 LCD green color data bus

b out 8 LCD blue color data bus

sda out 1 Data signal of the serial interface to LCD Driver IC

scen out 1 Chip select signal of the serial interface to LCD Driver IC

sclk out 1 Clock signal of the serial interface to LCD Driver IC

Table 5.1: LCD Graphics Controller signal description

5.5 Interface Protocol

Internally the LCD Graphics Controller uses two FIFOs to buffer instructions and data issued to it. We
refer to these FIFOs as the instruction and the data FIFO. Instructions are 8 bit wide, while data items
have a width of 16 bit. The write ports of these FIFOs are exposed at the signals gfx instr, gfx instr wr
and gfx instr full as well as gfx data, gfx data wr and gfx data full. Figure 5.4 shows how to operate these
interfaces. The figure only shows the interface to the instruction FIFO, the data FIFO interface behaves
identical. To issue a new instruction, it must be applied to the gfx instr port and the gfx instr wr must be
high for one clock cycle. Note that if gfx instr full is one, gfx instr wr must not be set to one.

Most instructions need additional data (coordinates, color information etc.) which has to be supplied
using the data FIFO. Instructions can have 0 to 4 data FIFO entries associated with them. The sequence
in which the data items and the actual instruction are pushed into the FIFOs does not matter. The data
items can be written first and then the instruction or the other way around. An instruction is executed when
all required data items are present. The LCD Graphics Controller uses three instruction formats shown in
Figure 5.5, referred to as Formats A, B and C.

In the following all individual instructions supported by the LCD Graphics Controller are listed. Recall
that the display resolution supported by the core is 400x240 pixels. Hence, for coordinate entries in the data

5 LCD Graphics Controller 16

clk

gfx instr instr0 instr1 instr2

gfx instr wr

gfx instr full

Figure 5.4: Instruction interface timing

co
ns

ta
nt

:
00

00

7 4

op
co

de

3 0 Format A

co
ns

ta
nt

:
01

7 6

op
co

de

5 4

im
m

ed
ia
te

3 0 Format B

co
ns

ta
nt

:
1

7

op
co

de

6 5

im
m

ed
ia
te

4 0 Format C

Figure 5.5: LCD Graphics Controller instruction formats

FIFO only the lower 9 (or 8) bits contain actual data, the unused bits should be set to zero. The origin of
the display’s coordinate system (i.e., the point (0, 0)) is the upper left corner.

co
ns

ta
nt

:
00

00

7 4

op
co

de
:
00

00

3 0 NOP

Format A

Data Operands None

Description Do nothing.

co
ns

ta
nt

:
00

00

7 4

op
co

de
:
00

01

3 0 CLEAR

Format A

Data Operands None

Description Sets every pixel in the frame buffer to the secondary color.

co
ns

ta
nt

:
00

00

7 4

op
co

de
:
10

00

3 0 SET PIXEL

5 LCD Graphics Controller 17

Format A

Data Operands x, y

Description Sets the pixel at the coordinates (x, y) to the primary drawing color.

co
ns

ta
nt

:
00

00

7 4

op
co

de
:
10

01

3 0 DRAW LINE

Format A

Data Operands x0, y0, x1, y1

Description Draws a line from (x0, y0) to (x1, y1) using the primary drawing color.

co
ns

ta
nt

:
00

00

7 4

op
co

de
:
10

10

3 0 DRAW CIRCLE

Format A

Data Operands x, y, r

Description Draws a circle with the center at (x, y) and a radius of r using the primary drawing color.

co
ns

ta
nt

:
1

7

op
co

de
:
00

6 5

A

4

B

3

ID

2 0 DRAW RECT

Format C

Data Operands x, y, w, h

Description Draws a rectangle with the upper left corner at (x, y), a width and height defined by the
operands w and h and uses the pattern specified by ID to fill it. If B is set to one the border of
the rectangle will be drawn (see Figure 5.6a). Figure 5.6b shows the same pattern without a border.
Notice that the border does not affect the position of the blocks in the pattern. In both cases the first
block of the pattern is drawn at position (x0, y0), the border is then simply drawn “over” the pattern.

The blocks of the pattern as well as the border are drawn using the primary color. Depending on the
value of A, the other pixels will either be drawn with the secondary color (A=0), or not drawn at all
(A=1, alpha mode).

The pattern IDs 1-6 refer to the user patterns (see SET PATTERN). Pattern ID 0 specifies a pattern
where all pixels are set to the secondary color (see Figure 5.3f), while pattern ID 7 fills every pixel
with the primary color (see Figure 5.3a).

5 LCD Graphics Controller 18

(a) Pattern with border (b) Pattern without border

Figure 5.6: Rectangle pattern (bw = bh = 2, dx = 4, dy = 1, ls = 3)

co
ns

ta
nt

:
01

7 6

op
co

de
:
10

5 4

un
us

ed
:
0

3

ID

2 0 SET PATTERN

Format B

Data Operands p0, p1

Description Sets the user pattern with the specified ID. Valid IDs are numbers from 1 to 6, the IDs 0 and
7 refer to the predefined patterns that cannot be changed. If such an ID is encountered, the instruction
and the associated data items are simply ignored. The data item p0 contains the concatenated 4 bit
pattern parameters dx, dy, bw and bh in that order from MSB to LSB. This means that the bits 15 to
12 correspond to dx, bits 11 to 8 to dy and so one. The data item p1 only contains the 5 bit parameter
ls in its lower bits (4 to 0).

co
ns

ta
nt

:
01

7 6

op
co

de
:
01

5 4

un
us

ed
:
00

0

3 1

C

0 SET COLOR

Format B

Data Operands color

Description Depending on the value of C, this instruction either sets the primary (C=1) or the secondary
(C=0) drawing color to color. Initially the primary color is set to 0xffff (i.e., white) and the secondary
color is set to 0x0 (i.e., black).

co
ns

ta
nt

:
01

7 6

op
co

de
:
00

5 4

un
us

ed
:
00

0

3 1

D

0 SET CFG

Format B

Data Operands None

5 LCD Graphics Controller 19

Description This instruction enables (D=1) or disables (D=0) double buffering. When double buffering
is enabled the graphics controller uses two separate frame buffers. The contents of one buffer are
output on the LCD while the other one is used for performing the drawing operations. Executing a
FRAME SYNC instructions switches those two buffers.

co
ns

ta
nt

:
00

00

7 4

op
co

de
:
00

10

3 0 FRAME SYNC

Format A

Data Operands None

Description This instruction simply waits for the start of a new frame and then assert the gfx frame sync for
exactly one clock cycle. It thus blocks the execution of the following instructions until the framereader
starts to fetch a new frame. If double buffering is enabled, this instruction also switches the frame
buffers after the new frame started.

5.6 Graphics Interface Package

The package gfx if pkg contains constants that define the opcodes for the various instructions as well as some
helper functions to create instructions that can be used in e.g., testbenches.

The following listings shows the opcodes of all supported instructions.

1 --Format A opcodes

2 constant OPCODE_NOP : std_logic_vector (3 downto 0) := x"0";

3 constant OPCODE_CLEAR : std_logic_vector (3 downto 0) := x"1";

4 constant OPCODE_FRAME_SYNC : std_logic_vector (3 downto 0) := x"2";

5 constant OPCODE_SET_PIXEL : std_logic_vector (3 downto 0) := x"8";

6 constant OPCODE_DRAW_LINE : std_logic_vector (3 downto 0) := x"9";

7 constant OPCODE_DRAW_CIRCLE : std_logic_vector (3 downto 0) := x"a";

8 --Format B opcodes

9 constant OPCODE_SET_CFG : std_logic_vector (1 downto 0) := "00";

10 constant OPCODE_SET_COLOR : std_logic_vector (1 downto 0) := "01";

11 constant OPCODE_SET_PATTERN : std_logic_vector (1 downto 0) := "10";

12 --Format C opcodes

13 constant OPCODE_DRAW_RECT : std_logic_vector (1 downto 0) := "00";

For A type instructions the package also contains constant declarations for the complete 8-bit instruction:

1 constant GFX_INSTR_NOP : std_logic_vector (7 downto 0) := x"0" & OPCODE_NOP;

2 constant GFX_INSTR_CLEAR : std_logic_vector (7 downto 0) := x"0" & OPCODE_CLEAR;

3 constant GFX_INSTR_FRAME_SYNC : std_logic_vector (7 downto 0) := x"0" & OPCODE_FRAME_SYNC;

4 constant GFX_INSTR_SET_PIXEL : std_logic_vector (7 downto 0) := x"0" & OPCODE_SET_PIXEL;

5 constant GFX_INSTR_DRAW_LINE : std_logic_vector (7 downto 0) := x"0" & OPCODE_DRAW_LINE;

6 constant GFX_INSTR_DRAW_CIRCLE : std_logic_vector (7 downto 0) := x"0" & OPCODE_DRAW_CIRCLE;

B and C type instructions cannot be declared as constants since they contain immediate values. Hence
here functions are used:

1 function GFX_INSTR_SET_CFG(enable_double_buffering : boolean) return std_logic_vector;

2 function GFX_INSTR_SET_COLOR(color_selector : boolean) return std_logic_vector;

3 function GFX_INSTR_SET_PATTERN(pattern_id : integer) return std_logic_vector;

4 function GFX_INSTR_DRAW_RECT(enable_alpha : boolean; draw_border : boolean; pattern_id :

integer) return std_logic_vector;

5 LCD Graphics Controller 20

Additionally there are functions to test whether a given (8-bit) vector is an A, B or C type instruction.

1 function is_instr_format_A(instr : std_logic_vector) return boolean;

2 function is_instr_format_B(instr : std_logic_vector) return boolean;

3 function is_instr_format_C(instr : std_logic_vector) return boolean;

5.7 Graphics Controller Package

The package lcd graphics controller pkg contains the component declaration of the core as well as constants
and functions to process color values. The following constants define the width of the individual color
channels (red, green and blue) in the 16-bit color values.

1 constant GCNTL_COLOR_RED_WIDTH : integer := 5;

2 constant GCNTL_COLOR_GREEN_WIDTH : integer := 6;

3 constant GCNTL_COLOR_BLUE_WIDTH : integer := 5;

To extract a particular channel the following functions can be used.

1 function get_blue(color : std_logic_vector) return std_logic_vector;

2 function get_green(color : std_logic_vector) return std_logic_vector;

3 function get_red(color : std_logic_vector) return std_logic_vector;

6 Audio Controller 21

6 Audio Controller

The audio cntrl module implements a simple synthetic sound generator that interfaces with the board’s
audio DAC (digital to analog converter) WM8731. This chip has two separate (serial) interfaces, one for
configuration purposes (control interface) and another one to receive the actual audio samples (digital audio
interface). The control interface is only required during start-up to configure the sampling rate and set up
the digital audio interface. Figure 6.1 shows to the general structure of the audio controller.

I2C Master

Digital Audio
Interface MasterMixer

Init FSM
sdat

sclk

dacdat

daclrck

bclk

Synthesizer 0

Synthesizer N-1

...

synth cntrl(0)

synth cntrl(N-1)

Figure 6.1: Audio controller internal structure

The audio controller must be clocked by a 12 MHz clock (which will internally be forwarded to the xck
output). The synth cntrl signals can be written from any clock domain since the core uses synchronizers to
bring the required signals into its (12 MHz) clock domain (see Section 6.4).

Note that the audio controller is provided as a precompiled modulue with two synthesizers
(SYNTH COUNT = 2).

6.1 Dependencies

Since the audio controller is provided as a precompiled module, there are no external dependencies.

6.2 Required Source Files

The audio controller is supplied as a precompiled module in the form of a Quartus II Exported Partition
File (.qxp) for synthesis and a netlist file (.vho) for simulation. Additionally a wrapper module audio cntrl s2
is required. The audio cntrl pkg package provides the component declaration as well as the required type
declaration for the synthesizer interface.

• audio cntrl pkg.vhd

• audio cntrl s2.vhd

• audio cntrl top.vho

• audio cntrl top.qxp

Hence, if you want to simulate your design in Questa/Modelsim, use the files audio cntrl s2.vhd

and audio cntrl pkg.vhd as well as the netlist file audio cntrl top.vho. For synthesis in Quartus use
audio cntrl s2.vhd and audio cntrl pkg.vhd and the Exported Partition File audio cntrl top.qxp file.

6.3 Component Declaration

The declaration of the audio controller can be found in Listing 6, the functionality of each signal in Table 6.1.

6 Audio Controller 22

1 component audio_cntrl_2s is

2 port (

3 clk : in std_logic; --12 MHz input clock

4 res_n : in std_logic;

5

6 --clock output signal for the wm8731

7 wm8731_xck : out std_logic;

8

9 --cfg interface to wm8731: i2c configuration interface

10 wm8731_sdat : inout std_logic;

11 wm8731_sclk : inout std_logic;

12

13 --data interface to wm8731: digital audio interface

14 wm8731_dacdat : out std_logic;

15 wm8731_daclrck : out std_logic;

16 wm8731_bclk : out std_logic;

17

18 --internal interface to the stynthesizers

19 synth_cntrl : in synth_cntrl_vec_t (0 to 1)

20);

21 end component;

Listing 6: Audio controller declaration

Name Dir. Width Functionality

clk in 1 12 MHz clock signal

res n in 1 Reset signal (low active, not internally synchronized)

wm8731 xck out 1 The 12 MHz clock signal from the clk input.

wm8731 sdat inout 1 The data signal of the I2C bus of the WM8731’s control interface

wm8731 sclk inout 1 The clock signal of the I2C bus of the WM8731’s control interface

wm8731 dacdat out 1 DAC Digital Audio Data Input of the WM8731’s digital audio interface

wm8731 daclrck out 1 DAC Sample Rate Left/Right Clock of the WM8731’s digital audio in-
terface

wm8731 bclk out 1 Digital Audio Bit Clock of the WM8731’s digital audio interface

synth cntrl in synth cntrl vec t (0

to 1)

The synthesizer control signals

Table 6.1: audio cntrl signal description

6.4 Interface Protocol

To interface with the audio controller, the synth cntrl input is used, which allows to control the individual
synthesizers. This signal is a 2-element vector of the record type synth cntrl t shown below.

1 type synth_cntrl_t is record
2 play : std_logic;
3 high_time : std_logic_vector (7 downto 0);
4 low_time : std_logic_vector (7 downto 0);
5 end record;

Every synthesizer produces a PWM signal which can be configured via the high time and low time entries of
this record. These values have to be interpreted with respect to the sampling frequency of the DAC (in this
case 8 KHz). If both values are 1, the maximum frequency output signal is generated. This means that in
this case the actual samples that are sent to the DAC switch between the maximum and minimum value at
every sampling period.

The high-active play signal controls the sound play-back, i.e., as long as this signal is high, the respective
is played. When the play signal switches from low to high, the synthesizer reads the current values of
high time and low time and uses those values to generate the PWM signal until play returns to zero again
(this means that changing those values while play is high has no effect). Hence, to change the PWM signal,
the play signal must be low for at least one clock cycle (of the 12MHz input clock of the audio controller).

6 Audio Controller 23

Since the audio controller can be controlled from any clock domain, care must be taken, to correctly
handle the clock domain crossing. For that purpose, the core uses 3-stage synchronizers on the play signals.
The high time and low time are not synchronized! This means that whenever these values are changed, it
must be made sure that they are stable long enough such that the audio controller can sample them, without
errors. Hence one has to take the synchronization delay into account.

7 GFX Utility Package 24

7 GFX Utility Package

7.1 Description

The gfx util pkg package contains three cores that implement simple graphical operations:

• GFX Line (gfx line)
Draws a line between two points.

• GFX Circle (gfx circle)
Draws a circle given a center point and a radius.

• GFX Rectangle (gfx rect)
Draws rectangles and (optionally) fills them with simple user definable patterns.

All three cores in this package have very similar interfaces. The meaning of the input/output signals start,
stall, busy, pixel valid, pixel x and pixel y is the same for all cores. After a drawing operation has been started
(using the start input) the cores output a sequence of coordinates that describe the respective geometric
shape (using the output signals pixel valid, pixel x and pixel y and in the case of gfx rect also pixel color).
These coordinates can then be used to e.g., calculate and access a memory location that stores the color
information for the pixel.

7.2 Dependencies

• Mathematical support package (math pkg)

7.3 Required VHDL Files

• gfx util pkg.vhd

• gfx line.vhd

• gfx circle.vhd

• gfx rect.vhd

7.4 Component Declarations

Note that all three cores have the same generics (Table 7.1).

7.4.1 GFX Line

The declaration of the gfx line module can be found in Listing 7, while the functionality of each generic and
port signal is described in Table 7.1 and 7.2.

1 component gfx_line is

2 generic (

3 WIDTH : integer;

4 HEIGHT : integer

5);

6 port (

7 clk : in std_logic;

8 res_n : in std_logic;

9 start : in std_logic;

10 stall : in std_logic;

11 busy : out std_logic;

12 x0 : in std_logic_vector(log2c(WIDTH)-1 downto 0);

13 x1 : in std_logic_vector(log2c(WIDTH)-1 downto 0);

14 y0 : in std_logic_vector(log2c(HEIGHT)-1 downto 0);

15 y1 : in std_logic_vector(log2c(HEIGHT)-1 downto 0);

7 GFX Utility Package 25

16 pixel_valid : out std_logic;

17 pixel_x : out std_logic_vector(log2c(WIDTH)-1 downto 0);

18 pixel_y : out std_logic_vector(log2c(HEIGHT) -1 downto 0)

19);

20 end component;

Listing 7: gfx line Component declaration

Name Functionality

WIDTH The width of the target image. Determines the vector length of input/output
signals that carry x coordinates.

HEIGHT The height of the target image. Determines the vector length of input/output
signals that carry y coordinates.

Table 7.1: Generics description for gfx line, gfx circle and gfx rect

Name Dir. Width Functionality

clk in 1 Global clock signal

res n in 1 Low active reset signal

start in 1 This signal is used initiate the drawing operation. It must be asserted
for exactly one clock cycle. The core will react to this event by asserting
the busy signal. The drawing parameters must be valid when this start
is asserted and must remain valid (and unchanged) until the busy signal
goes low.

stall in 1 This signals can be used to pause the drawing operation. Asserting it will
cause the pixel valid to remain low, until the signal is deasserted again. If
this functionality is not required, this input can be driven with constant
’0’.

busy out 1 The core asserts this signal to indicate that it is currently performing a
drawing operation. As soon as the drawing operation is complete, the busy
goes low again, which allows for a new drawing operation to be started.

x0 in WIDTH The x coordinate of the first point of the line (i.e., the start point of the
line). [drawing parameter]

y0 in HEIGHT The y coordinate of the first point of the line (i.e., the start point of the
line). [drawing parameter]

x1 in WIDTH The x coordinate of the second point of the line (i.e., the end point of
the line). [drawing parameter]

y1 in HEIGHT The y coordinate of the second point of the line (i.e., the end point of the
line). [drawing parameter]

pixel valid out 1 This signal indicates that the current data at the pixel * is valid. It will
only go high during a drawing operation, i.e., when busy is asserted.

pixel x out WIDTH The x coordinate of the output pixel.

pixel y out HEIGHT The y coordinate of the output pixel.

Table 7.2: gfx line signal description

7.4.2 GFX Circle

The declaration of the gfx circle module can be found in Listing 8, while the functionality of each generic
and port signal is described in Table 7.1 and 7.3.

1 component gfx_circle is

2 generic (

3 WIDTH : integer;

4 HEIGHT : integer

5);

6 port (

7 clk : in std_logic;

8 res_n : in std_logic;

9 start : in std_logic;

10 stall : in std_logic;

11 busy : out std_logic;

12 x_center : in std_logic_vector(log2c(WIDTH)-1 downto 0);

13 y_center : in std_logic_vector(log2c(HEIGHT) -1 downto 0);

7 GFX Utility Package 26

14 radius : in std_logic_vector(log2c(WIDTH)-1 downto 0);

15 pixel_valid : out std_logic;

16 pixel_x : out std_logic_vector(log2c(WIDTH)-1 downto 0);

17 pixel_y : out std_logic_vector(log2c(HEIGHT) -1 downto 0)

18);

19 end component;

Listing 8: gfx line Component declaration

Name Dir. Width Functionality

clk in 1 Global clock signal

res n in 1 Low active reset signal

start in 1 This signal is used initiate the drawing operation. It must be asserted
for exactly one clock cycle. The core will react to this event by asserting
the busy signal. The drawing parameters must be valid when this start
is asserted and must remain valid (and unchanged) until the busy signal
goes low.

stall in 1 This signals can be used to pause the drawing operation. Asserting it will
cause the pixel valid to remain low, until the signal is deasserted again. If
this functionality is not required, this input can be driven with constant
’0’.

busy out 1 The core asserts this signal to indicate that it is currently performing a
drawing operation. As soon as the drawing operation is complete, the busy
goes low again, which allows for a new drawing operation to be started.

x in WIDTH The x coordinate of the center point of the circle. [drawing parameter]

y in HEIGHT The y coordinate of the center point of the circle. [drawing parameter]

radius in WIDTH The radius r of the circle. Note that the resulting circle has a diameter
of 2 ∗ r + 1 pixels. [drawing parameter]

pixel valid out 1 This signal indicates that the current data at the pixel * is valid. It will
only go high during a drawing operation, i.e., when busy is asserted.

pixel x out WIDTH The x coordinate of the output pixel.

pixel y out HEIGHT The y coordinate of the output pixel.

Table 7.3: gfx circle signal description

7.4.3 GFX Rectangle

The declaration of the gfx line module can be found in Listing 9, while the functionality of each generic and
port signal is described in Table 7.1 and 7.4. For more information on the input signals bw, bh, dx, dy and
ls please refer to the Section 5.1.

1 component gfx_rect is

2 generic (

3 WIDTH : integer;

4 HEIGHT : integer

5);

6 port (

7 clk : in std_logic;

8 res_n : in std_logic;

9 start : in std_logic;

10 stall : in std_logic;

11 busy : out std_logic;

12 x : in std_logic_vector(log2c(WIDTH)-1 downto 0);

13 y : in std_logic_vector(log2c(HEIGHT)-1 downto 0);

14 w : in std_logic_vector(log2c(WIDTH)-1 downto 0);

15 h : in std_logic_vector(log2c(HEIGHT)-1 downto 0);

16 bw : in std_logic_vector (3 downto 0);

17 bh : in std_logic_vector (3 downto 0);

18 dx : in std_logic_vector (3 downto 0);

19 dy : in std_logic_vector (3 downto 0);

20 ls : in std_logic_vector (4 downto 0);

21 fill : in std_logic;

22 draw : in std_logic;

23 pixel_valid : out std_logic;

24 pixel_x : out std_logic_vector(log2c(WIDTH)-1 downto 0);

25 pixel_y : out std_logic_vector(log2c(HEIGHT) -1 downto 0);

7 GFX Utility Package 27

26 pixel_color : out std_logic

27);

28 end component;

Listing 9: gfx line Component declaration

Name Dir. Width Functionality

clk in 1 Global clock signal

res n in 1 Low active reset signal

start in 1 This signal is used initiate the drawing operation. It must be asserted
for exactly one clock cycle. The core will react to this event by asserting
the busy signal. The drawing parameters must be valid when this start
is asserted and must remain valid (and unchanged) until the busy signal
goes low.

stall in 1 This signals can be used to pause the drawing operation. Asserting it will
cause the pixel valid to remain low, until the signal is deasserted again. If
this functionality is not required, this input can be driven with constant
’0’.

busy out 1 The core asserts this signal to indicate that it is currently performing a
drawing operation. As soon as the drawing operation is complete, the busy
goes low again, which allows for a new drawing operation to be started.

x in WIDTH The x coordinate of the upper left corner of the rectangle. [drawing
parameter]

y in HEIGHT The y coordinate of the upper left corner of the rectangle. [drawing
parameter]

w in WIDTH The width of the rectangle. [drawing parameter]

h in HEIGHT The height of the rectangle. [drawing parameter]

bw in 4 The block width used for the fill pattern (only relevant when fill is one).
[drawing parameter]

bh in 4 The block height used for the fill pattern (only relevant when fill is one).
[drawing parameter]

dx in 4 The x distance used for the fill pattern (only relevant when fill is one).
[drawing parameter]

dy in 4 The y distance used for the fill pattern (only relevant when fill is one).
[drawing parameter]

ls in 5 The line shift used for the fill pattern (only relevant when fill is one).
[drawing parameter]

draw in 1 Specifies whether the core should draw the rectangle’s border. [drawing
parameter]

fill in 1 Specifies whether the core should fill the rectangle with the pattern spec-
ified by the inputs bw, bh, dx, dy and ls. [drawing parameter]

pixel valid out 1 This signal indicates that the current data at the pixel * is valid. It will
only go high during a drawing operation, i.e., when busy is asserted.

pixel x out WIDTH The x coordinate of the output pixel.

pixel y out HEIGHT The y coordinate of the output pixel.

pixel color out 1 This signals indicates whether the pixel at the current coordinates
(pixel x, pixel y) is part of a pattern block (pixel color=’1’) or the border
(pixel color=’1’). A value of ’0’ indicates that the pixel neither belongs to
a block/border.

Table 7.4: gfx rect signal description

7.5 Interface Protocol

Because the interface protocols of the cores are essentially the same, only one example timing diagram is
presented (Figure 7.1). The trace labeled drawing parameters refers to the set of signals marked as drawing
parameters in the signal description tables. These signals must be kept stable throughout the whole drawing
process (i.e., when start is asserted until busy is deasserted).

When the drawing process has been started the core outputs n pixel coordinates, where n, of course,
depends on the size of the geometric shape currently drawn. Whenever a new set of (x, y) coordinates has
been calculated by the core the pixel valid signal is asserted for exactly one clock cycle. Note, however, that
the core may not output new coordinate data on every cycle. In the example shown in Figure 7.1 the core

7 GFX Utility Package 28

clk

start

stall

busy

drawing parameters don’t care parameters don’t care

pixel valid

pixel x undefined x0 x1 undefined x2 xn−1 undefined

pixel y undefined y0 y1 undefined y2 yn−1 undefined

(pixel color) undefined c0 c1 undefined c2 cn−1 undefined

Figure 7.1: Example timing diagram for gfx line, gfx circle and gfx rect

introduces a 2 cycle long “break” between the coordinates (x1, y1) and (x2, y2). The outputs pixel x, pixel y
and pixel color (for the gfx rect core) must only be used when pixel valid is asserted, otherwise their value is
undefined.

The behavior of the core with respect to stall is not shown, because you won’t need it for the exercise.
Don’t supply coordinates to the cores that cause them to draw “outside” of the image dimensions specified
by the generics WIDTH and HEIGHT.

8 Object Collider 29

8 Object Collider

8.1 Description

The object collider is intended to be used by simple games to move the player object across a 2D game
board (i.e., the screen), where it can collide with other game objects. For that purpose the record type
game object t shown in the listing below (defined in the object collider pkg package) is used. It keeps track
of the relevant information associated with a game object.

1 type game_object_t is
2 record
3 id : std_logic_vector(GAME_OBJECT_ID_WIDTH -1 downto 0);
4 x : std_logic_vector(COORDINATE_WIDTH -1 downto 0);
5 y : std_logic_vector(COORDINATE_WIDTH -1 downto 0);
6 w : std_logic_vector(COORDINATE_WIDTH -1 downto 0);
7 h : std_logic_vector(COORDINATE_WIDTH -1 downto 0);
8 end record;

As the definition of the game object t record implies, all game object are treated as rectangles for the
collision detection. The id field of the record is not used by the core, i.e., its value has no effect on its
operation. Its intended use is to attach other information to a game object that is not directly relevant for
the movement/collision detection. To use the core it has to be supplied with a game object representing the
player (input player), as well as information about the intended movement (inputs player speed, player dir,
gravity, apply movement and apply gravity). The movement operation is then initiated using the start input.
During a movement operation, which we also refer to as a run, the object collider goes through the “list” of
all game object placed on the screen multiple times. To access this list the signals object req, object valid,
object is blocking, object eol and object are used. Collisions with other game objects are indicated using the
collision detected signal. Finally the core uses the done output to signal that the current run is complete.
The final position of the player is then reported using the player x and player y outputs.

The object collider also performs collision detection between the player and the left and right border of
the screen. This means that it will not let the player move to an x position less than 0 or to values larger
than or equal to DISPLAY WIDTH. It will however, not check for collisions between to top or bottom edge
of the screen.

8.2 Dependencies

• None

8.3 Required VHDL Files

• object collider pkg.vhd

• object collider.vhd

8.4 Component Declarations

The declaration of the object collider module can be found in Listing 10, while the functionality of each
generic and port signal is described in Table 8.1 and 8.2.

1 component object_collider is

2 generic (

3 DISPLAY_WIDTH : integer := 400;

4 DISPLAY_HEIGHT : integer := 240

5);

6 port (

7 clk : in std_logic;

8 res_n : in std_logic;

9 start : in std_logic;

10 done : out std_logic;

11 apply_movement : in std_logic;

8 Object Collider 30

12 apply_gravity : in std_logic;

13 player_x : out std_logic_vector(COORDINATE_WIDTH -1 downto 0);

14 player_y : out std_logic_vector(COORDINATE_WIDTH -1 downto 0);

15 player : in game_object_t;

16 player_speed : in std_logic_vector(GAME_OBJECT_SPEED_WIDTH -1 downto 0);

17 player_dir : in std_logic;

18 gravity : in std_logic_vector(GAME_OBJECT_SPEED_WIDTH -1 downto 0);

19 object : in game_object_t;

20 object_req : out std_logic;

21 object_valid : in std_logic;

22 object_is_blocking : in std_logic;

23 object_eol : in std_logic;

24 collision_detected : out std_logic

25);

26 end component;

Listing 10: object collider Component declaration

Name Functionality

DISPLAY WIDTH The width of the game board (screen)

DISPLAY HEIGHT The height of the game board (screen)

Table 8.1: object collider generics description

8 Object Collider 31

Name Dir. Width Functionality

clk in 1 Global clock signal

res n in 1 Low active reset signal

start in 1 Asserting this signal for one clock cycle starts the player movement pro-
cess (i.e., the run).

done out 1 This signal indicates when the current run is complete. It will be asserted
for exactly one clock cycle.

player in game object t The game object representing the player. Must be valid exactly when
start is asserted.

player speed in GAME OBJECT

SPEED WIDTH

The horizontal speed of the player, i.e., the maximal horizontal distance
it is allowed to be moved by the object collider during one run. Must be
valid exactly when start is asserted.

player dir in 1 The direction the player should move in (’0’ → Left, ’1’ → Right). Must
be valid exactly when start is asserted.

gravity in GAME OBJECT

SPEED WIDTH

The vertical speed of the player, i.e., the maximal vertical distance it is
allowed to be moved by the object collider during one run. Must be valid
exactly when start is asserted.

apply movement in 1 A flag indicating if the player should be moved horizontally during the
run. Must be valid exactly when start is asserted.

apply gravity in 1 A flag indicating if the player should be moved vertically during the run.
Must be valid exactly when start is asserted.

object req out 1 This signal is used by the core to request the next game object from the
game object list to check for a collision with the player. This signal stays
asserted until either object valid or object eol go high.

object in game object t The actual game object requested by the core. This signal must only be
changed when the object valid is being asserted, otherwise it has to keep
its value.

object valid in 1 This signal indicates that the data at the object and object is blocking in-
puts is valid. It must only be asserted for exactly one clock cycle and
only as a response to an object request (object req going high).

object is blocking in 1 This flag indicates that the game object supplied at the object input is
blocking. Blocking object stop the movement of the player and collisions
with them are not reported using the collision detected output signal (i.e.,
for a blocking object collision detected will always be deasserted). This
input must only be changed when the object valid is being asserted, oth-
erwise it has to keep its value.

object eol in 1 The object end-of-list signal is asserted instead of object valid to notify the
core that all objects from the game object list have been processed. It
must only be asserted for exactly one clock cycle and only as a response
to an object request (object req going high).

collision detected out 1 This output indicates whether the player collided with the game object
currently applied at the object input. It is only valid for exactly one
clock cycle, one clock cycles after object valid has been asserted (i.e., after
asserting object valid there is one wait cycle before collision detected can be
evaluated).

player x out COORDINATE

WIDTH

The final horizontal position of the player. Valid as soon as the done
output is asserted until a new run is started using the start input.

player y out COORDINATE

WIDTH

The final vertical position of the player. Valid when player x is valid.

Table 8.2: object collider signal description

8.5 Interface Protocol

Figure 8.1 shows an example timing diagram, demonstrating its interface protocol. Trace sections marked
with D/C, indicate “don’t care” values. In the beginning the start signal is asserted to initiate the run. To
perform its operation the core also needs a game object at the player input as well as values for all the other
movement parameters (i.e., player speed, player dir, gravity, apply movement and apply gravity). For the sake
of clarity these signals have been combined into a single trace and their combined values are denoted with
Pn. Notice that until the start signal is asserted the previous output values for player x and player y are still
valid.

After 2 clock cycles the core starts to request game objects from the game object list to check them for
collisions with the player. In this example there are two game objects, where obj0 is blocking and obj1 is non
blocking. Note that there may be an arbitrary number of clock cycles between the assertion of the object req

8 Object Collider 32

signal and the point in the time when the actual game object is supplied to the core. After two objects
have been processed, the core request another object, but is notified with the object eol signal that there are
no objects left to check. It then goes over the whole list again. The second time it detects a collision with
obj1, which is indicated using the collision detected signal. Recall that the collision detected signal must only
be read one clock cycle after object valid has been asserted, otherwise it is undefined. Collisions are only
reported for non-blocking game objects.

Notice that the number of game objects does not need to stay constant during one run. It may be the
case that, depending on the actual game (logic), a game object is removed because of a collision with the
player.

Finally the core asserts the done signal to indicate that the run is complete. The final position of the
player can then be obtained at the player x and player y outputs.

8 Object Collider 33

ar
b

it
ra

ry
n

u
m

b
er

of
cy

cl
es

ex
ac

tl
y

on
e

cl
o

ck
cy

cl
e

on
e

ru
n

cl
k

st
ar

t

d
on

e

p
la

ye
r,

p
la

ye
r

*,
ap

p
ly

*,
et

c.
D

/C
P
n

D
/C

ob
je

ct
re

q

ob
je

ct
D

/C
ob
j 0

ob
j 1

D
/C

ob
j 0

ob
j 1

D
/C

ob
je

ct
va

lid

ob
je

ct
is

b
lo

ck
in

g

ob
je

ct
eo

l

co
lli

si
on

d
et

ec
te

d
u

n
d

efi
n

ed
u

n
d

efi
n

ed
u

n
d

efi
n

ed
u

n
d

efi
n

ed
u

n
d

efi
n

ed

p
la

ye
r

x
x
n
−

1
u

n
d

efi
n

ed
x
n

p
la

ye
r

y
y n
−

1
u

n
d

efi
n

ed
y n

F
ig

u
re

8
.1

:
ob

je
ct

co
lli

d
er

ex
a
m

p
le

ti
m

in
g

d
ia

g
ra

m

8 Object Collider 34

Revision History

Revision Date Author(s) Description

2.1 12.04.2021 FH Clarified the meaning of the pattern IDs 0 and 7 (LCD
Graphics Controller).

2.0 05.04.2021 FH Added GFX Utility Package and Object Collider.
1.2 23.03.2021 FH Fixed instruction format figure and opcodes for the

SET CFG and SET PATTERN instructions.
1.1 14.03.2021 FH Fixed the operand description and instruction format figure

of the DRAW RECT instruction.
1.0 11.03.2021 FH Initial version

Author Abbreviations:

FH Florian Huemer
JM Jürgen Maier

	Mathematical Support Package
	Description
	Dependencies
	Required VHDL files
	Supported Functions

	Synchronizer
	Description
	Dependencies
	Required VHDL Files
	Component Declaration
	Interface Protocol
	Internal Structure

	On-chip RAM
	Description
	Dependencies
	Required VHDL Files
	Component Declarations
	Single clock dual-port RAM
	Single clock FIFO

	Interface Protocol
	Single clock dual-port RAM
	Single clock FIFO

	Pseudo Random Number Generator (PRNG)
	Dependencies
	Required VHDL Files
	Component Declaration
	Interface Protocol

	LCD Graphics Controller
	Features
	Dependencies
	Required VHDL Files
	Component Declaration
	Interface Protocol
	Graphics Interface Package
	Graphics Controller Package

	Audio Controller
	Dependencies
	Required Source Files
	Component Declaration
	Interface Protocol

	GFX Utility Package
	Description
	Dependencies
	Required VHDL Files
	Component Declarations
	GFX Line
	GFX Circle
	GFX Rectangle

	Interface Protocol

	Object Collider
	Description
	Dependencies
	Required VHDL Files
	Component Declarations
	Interface Protocol

	Revision History

