
Digital Design and

Computer Architecture LU

Lab Exercises III and IV

Florian Huemer, Jürgen Maier
{fhuemer, jmaier}@ecs.tuwien.ac.at

Department of Computer Engineering
TU Wien

Vienna, June 7, 2021

Contents 1

Contents

1 Introduction 3

1.1 Coding Style . 3

1.2 Submission . 3

2 Overview 4

3 Level 0: Basic Elements [30 Points] 5

3.1 ALU . 6

3.2 Memory Unit . 8

3.3 Register File . 12

4 Level 1: Pipeline [70 Points] 14

4.1 Fetch . 15

4.2 Decode . 17

4.3 Execute . 21

4.4 Memory . 23

4.5 Write-Back . 25

4.6 Pipeline . 26

5 Level 2: Hazards [50 Points] 27

5.1 Forwarding . 28

5.2 Branch Hazards . 29

5.3 Integration . 30

6 Level 3: Cache [50 Points] 31

6.1 Overview . 32

6.2 Cache . 33

6.3 Cache Management Information . 35

6.4 Cache Management Information Per Way . 36

6.5 Cache Data . 37

6.6 Cache Data For One Way . 38

6.7 2&4-way Set Associative Cache (Advanced Implementation) 39

7 Template 40

7.1 Overview . 40

7.2 File Overview . 40

7.2.1 Memory Package . 40

7.2.2 Core Package . 40

Contents 2

7.2.3 Operation Package . 41

7.3 Template Usage . 41

7.3.1 Run Tests . 41

7.3.2 Software Compilation Process . 41

7.3.3 Run Simulations . 43

7.3.4 Synthesis and Run Programs . 44

8 Submission Requirements 45

8.1 Exercise III . 45

8.2 Exercise IV . 46

References 47

Revision History 48

1 Introduction 3

1 Introduction

This document contains the assignment for Exercise III (Level 0 and Level 1) and Exercise IV
(Level 2 and Level 3). The deadline for the exercises is:

• Exercise III: 04.06.2021, 23:55

• Exercise IV: 30.06.2021, 23:55

The combined points achieved in Exercise III and Exercise IV count 25 % to the overall grade of
the course. Please hand in your solutions via TUWEL. We would also like to encourage you to fill
out the feedback form in TUWEL after you submitted your solution. The feedback is anonymous
and helps us to improve the course.

Please note that this document is only one part of the assignment. Take a look at the protocol
template for all required measurements, screenshots and questions to be answered. Make sure that
all necessary details can be seen in the figures you put into your report, otherwise they will be
graded with zero points.

1.1 Coding Style

Again the “VHDL Coding and Design Guidelines” apply. We further stronly recommend to use
the “named association” method for creating and connecting instances. For the instance naming,
use the corresponding entity name followed by the suffix _inst (e.g., alu_inst for the ALU). In case
multiple instances are required, use _inst1, _inst2, ...

1.2 Submission

Please note that it is mandatory to keep the files exactly in the required folders as defined by the
provided template. Do not add additional packages, source files, etc., but use the provided files
and packages appropriately. The submission script will assist you yo avoid mistakes. Moreover, the
interfaces and record/type definitions which are explained in this document (and can be found in
the corresponding source files) must not be changed.

2 Overview 4

2 Overview

This section provides an overview of the architecture to be implemented: MiRiV – a minimal RISC-
V implementation. It covers the majority (but not all) instructions of the RV32I Base Integer
Instruction Set [3] without any extensions and, for the most part, follows the implementation
described in [2]. Note that RISC-V is a load-store architecture, where memory is addressed as
(8-bit) bytes using little-endian ordering.

P
C 4 regfile

imem

decode

m
u

lti
p

le
x

A
L
U

branch

memu

ctrl

fwd

dmem

Figure 2.1: MiRiV pipeline

Figure 2.1 shows the pipeline of the processor to be implemented. It comprises 5 pipeline stages:
fetch, decode, execute, memory and write-back. The data path is makred in black; the red signal
is the clock, signals that flush a pipeline stage are blue and signals that stall the pipeline are green.
Also take note of the pipeline registers and make sure to implement them at the correct place with
an appropriate reset. The figure shows an abstract view of the MiRiV pipeline. In order to provide
a quick overview, several details are not shown, but they are described in the following sections.

In the upcoming assignments, the parts to be implemented will be shown in light blue and
entities to be instantiated will be shaded, to ease your navigation through the design.

3 Level 0: Basic Elements [30 Points] 5

3 Level 0: Basic Elements [30 Points]

Level 0 consits of 3 tasks that implement three relatively simple hardware units. Implement the
units described in this section, and write appropriate testbenches (store the testbenches in the
location described in Section 7.3.1). Test the units thoroughly, as errors introduced at this stage
might be very difficult to find in later stages.

Evaluation

The assignment will be evaluated with testbenches, which test the individual components. Points
will be granted if the testbenches are passed successfully.

3 Level 0: Basic Elements [30 Points] 6

3.1 ALU

alu.vhd

P
C 4 regfile

imem

decode

m
u
lti

p
le

x

A
L
U

branch

memu

ctrl

fwd

dmem

Description

As the name suggests, the arithmetic logic unit (ALU) carries out arithmetic and logic operations.
The interface of the ALU is described in Table 3.1; it shall implement the operations described in
Table 3.2. The computation of the zero flag Z is shown in Table 3.3. Note that the shift operations
can be implemented conveniently with the functions shift_left() and shift_right() from the package
numeric_std.

Signal Direction Type Description

op in ALU_OP_TYPE Operation
A in DATA_TYPE Operand A
B in DATA_TYPE Operand B
R out DATA_TYPE Result
Z out std_logic Zero flag

Table 3.1: ALU interface

op R

ALU_NOP B

ALU_SLT A < B ? 1 : 0, signed
ALU_SLTU A < B ? 1 : 0, unsigned
ALU_SLL† A sll B(4 downto 0)

ALU_SRL? A srl B(4 downto 0)

ALU_SRA§ A sra B(4 downto 0)

ALU_ADD A + B, signed
ALU_SUB A - B, signed
ALU_AND A and B

ALU_OR A or B

ALU_XOR A xor B

†shift left logical; ?shift right logical;
§shift right arithmetic

Table 3.2: ALU result computation

3 Level 0: Basic Elements [30 Points] 7

op Z

ALU_SUB if A = B then Z <= ’1’; else Z <= ’0’; end if;

ALU_SLT not R(0)

ALU_SLTU not R(0)

otherwise ’-’∗

∗ use ’-’, not an arbitrary value

Table 3.3: ALU zero-flag computation

3 Level 0: Basic Elements [30 Points] 8

3.2 Memory Unit

memu.vhd

P
C 4 regfile

imem

decode

m
u
lti

p
le

x

A
L
U

branch

memu

ctrl

fwd

dmem

Description

The memory unit is responsible for issuing memory access commands to the external interface,
which connects the pipeline to the data memory (dmem). As the external interface is word-based
(a word being 32 bits wide), the memory unit must translate sub-word accesses. The interface of
the memory unit is described in Table 3.4. MEMU_OP_TYPE, MEM_IN_TYPE and MEM_OUT_TYPE are record
types; their fields are described in Tables 3.5, 3.6 and 3.7.

The basic types for memory addressing and data are shown in Table 3.8. For the pipeline,
data_type is used for both data and addresses. Note the difference between mem_data_type and
data_type. While the former type is used by the memory, the latter type is used by the pipeline. In
general, the available memory and the addressable memory by the pipeline might differ, similarly
the expected data access granularities might be different. To partially avoid this complication, the
pipeline data type is identical to the memory data type here. Note, however, that the pipeline
operates on byte addresses while the interface to the memory operates on word addresses.

Table 3.9 shows how M.byteena and M.wrdata are computed. For this table, it is assumed that W

consists of four bytes b3b2b1b0, with b3 being the most significant byte and b0 the least significant
byte. A value b0XXX in the last column states that the most significant byte of M.wrdata is the least
significant byte from W, and other bytes are irrelevant and may contain arbitrary values. The value
of M.address is the word address of A; other outputs must be set as described below.

How values from the external interface are translated is shown in Table 3.10. Here it is assumed
that D.rddata consists of four bytes b3b2b1b0, with b3 being the most significant byte and b0 the
least significant byte. Furthermore, 0 signifies that the byte is set to zero, and S that the value is
sign-extended. For example, the value SSSb3 means R is the sign-extended most significant byte of
D.rddata.

Assert B if a valid memory read access is starting or ongoing. An ongoing read access is indicated
by D.busy.

Tables 3.11 and 3.12 show how the load exception signal XL and the store exception signal XS

are computed. Note that usually M.rd is assigned the value of op.memread, and M.wr the value of
op.memwrite. However, if XL or XS are asserted, M.rd and M.wr must be zero, i.e., the processor must
not issue a memory access that raises an exception.

Note that RISC-V uses little-endian ordering, i.e., the least significant byte is stored at the
lowest memory address (e.g., the hexadecimal number 0x1234 is stored as 0x34 0x12).

3 Level 0: Basic Elements [30 Points] 9

Signal Direction Type Description

op † in MEMU_OP_TYPE Access type
A † in DATA_TYPE Address
W † in DATA_TYPE Write data
R † out DATA_TYPE Result of memory load
B † out std_logic Memory busy
XL † out std_logic Load exception
XS † out std_logic Store exception
D ? in MEM_IN_TYPE Interface from memory
M ? out MEM_OUT_TYPE Interface to memory

†to be connected to memory stage; ?to be connected to memory interface

Table 3.4: Memory Unit interface

Field Type Description

memread std_logic Read from memory
memwrite std_logic Write to memory
memtype MEMTYPE_TYPE Word, half-word or byte access

Table 3.5: MEMU_OP_TYPE fields

Field Type Description

busy std_logic Memory busy
rddata MEM_DATA_TYPE Actual data read from memory

Table 3.6: MEM_IN_TYPE fields

Field Type Description

address MEM_ADDRESS_TYPE Address to read from or write to
rd std_logic Asserted for reads
wr std_logic Asserted for writes
byteena MEM_BYTEENA_TYPE Byte-enable signal for sub-word writes
wrdata MEM_DATA_TYPE Data to be written

Table 3.7: MEM_OUT_TYPE fields

Type Width Description

mem_address_type ADDR_WIDTH Type for memory addresses
mem_data_type DATA_WIDTH Type for actual data transferred to/from memory
mem_byteena_type BYTEEN_WIDTH Type for byte enable

Table 3.8: Basic types w.r.t. memory

3 Level 0: Basic Elements [30 Points] 10

Operation A(1 downto 0) M.byteena M.wrdata

MEM_B | MEM_BU "00" "1000" b0XXX

"01" "0100" Xb0XX

"10" "0010" XXb0X

"11" "0001" XXXb0

MEM_H | MEM_HU "00" "1100" b0b1XX

"01" "1100" b0b1XX

"10" "0011" XXb0b1

"11" "0011" XXb0b1

MEM_W "00" "1111" b0b1b2b3

"01" "1111" b0b1b2b3

"10" "1111" b0b1b2b3

"11" "1111" b0b1b2b3

Use ’-’ for ’X’, not an arbitrary value

Table 3.9: Computation of M.byteena and M.wrdata, W = b3b2b1b0

Operation A(1 downto 0) R

MEM_B "00" SSSb3

"01" SSSb2

"10" SSSb1

"11" SSSb0

MEM_BU "00" 000b3

"01" 000b2

"10" 000b1

"11" 000b0

MEM_H "00" SSb2b3

"01" SSb2b3

"10" SSb0b1

"11" SSb0b1

MEM_HU "00" 00b2b3

"01" 00b2b3

"10" 00b0b1

"11" 00b0b1

MEM_W "00" b0b1b2b3

"01" b0b1b2b3

"10" b0b1b2b3

"11" b0b1b2b3

Table 3.10: Computation of R, D.rddata = b3b2b1b0

3 Level 0: Basic Elements [30 Points] 11

op.memread op.memtype A(1 downto 0) XL

’1’ MEM_H "01" ’1’

’1’ MEM_H "11" ’1’

’1’ MEM_HU "01" ’1’

’1’ MEM_HU "11" ’1’

’1’ MEM_W "01" ’1’

’1’ MEM_W "10" ’1’

’1’ MEM_W "11" ’1’

otherwise ’0’

Table 3.11: Memory load exception computation

op.memwrite op.memtype A(1 downto 0) XS

’1’ MEM_H "01" ’1’

’1’ MEM_H "11" ’1’

’1’ MEM_HU "01" ’1’

’1’ MEM_HU "11" ’1’

’1’ MEM_W "01" ’1’

’1’ MEM_W "10" ’1’

’1’ MEM_W "11" ’1’

otherwise ’0’

Table 3.12: Memory store exception computation

3 Level 0: Basic Elements [30 Points] 12

3.3 Register File

regfile.vhd

P
C 4 regfile

imem

decode

m
u
lti

p
le

x

A
L
U

branch

memu

ctrl

fwd

dmem

Description

The register file is a memory with two read ports and one write port, with 2**REG_BITS words that
are DATA_WIDTH bits wide. The clock signal clk has the usual meaning and causes the circuit to record
the read and write addresses. The reset signal res_n is active low and resets internal registers, but
not necessarily the contents of the register file (initializing all registers of the register file with 0
might help avoiding problems, though). The signal stall causes the circuit not to preserve input
values such that old values are kept in all registers. Reads from address 0 must always return 0,
which may be achieved by an appropriate power-up value and ignoring writes to that location or
by intercepting reads from that location. When reading from a register that is written in the same
cycle, the new value shall be returned.

As explained in [2], for many implementations of register files it is assumed that writing takes
place in the first half of the clock cycle while reading is performed in the second half. This way
writes to the register file are guaranteed to be finished, before the reads take place, ensuring that
the most up-to-date values are being read. However, this approach does not work in the FPGAs
used in this lab course. Therefore, the required behavior has to be implemented differently: If the
internal register for a read address matches wraddr and regwrite = ’1’, the register file shall return
wrdata (i.e., you have to add an appropriate pass-through logic).

Hint: Refer to [1] for implementation guidelines on memories.
H

Signal Direction Type

clk in std_logic

res_n in std_logic

stall in std_logic

rdaddr1 in REG_ADR_TYPE

rdaddr2 in REG_ADR_TYPE

rddata1 out DATA_TYPE

rddata2 out DATA_TYPE

wraddr in REG_ADR_TYPE

wrdata in DATA_TYPE

regwrite in std_logic

Table 3.13: Register file interface

3 Level 0: Basic Elements [30 Points] 13

clk

reset

stall

rdaddr1 0x0 0x1 0x0 0x1 0x0 0x2

rddata1 0x0 0xAB 0x0 0xAB 0x0 0xCD 0x44

rdaddr2 0x0 0x1 0x2 0x1 0x0

rddata2 0x0 0xAB 0xCD 0x7 0x33 0x7 0x0

regwrite

wraddr 0x0 0x1 0x2 0x1 0x0 0x1 0x0 0x2

wrdata 0x0 0xFF 0xAB 0xCD 0xEF 0x55 0x7 0x33 0x11 0x44

regfile.x0 0x0

regfile.x1 0x0 0xAB 0x7

regfile.x2 0x0 0xCD 0x44

Figure 3.1: Examples for the required behavior of the register file

4 Level 1: Pipeline [70 Points] 14

4 Level 1: Pipeline [70 Points]

In this assignment, the first version of the pipeline shall be implemented. The pipeline shall be
able to execute code, though without resolving any hazards in the pipeline. This means that the
results of operations are not available until two cycles later, and that branches have a three-cycle
branch delay. This means that the three instructions following the branch instruction are executed,
regardless of whether the branch is taken or not.

The pipeline is a classic 5-stage pipeline design, consisting of fetch, decode, execute, memory,
and write-back stages.

Hint: When implementing the (pipeline) registers, refer to the illustration at the start of each
subsection to add them at the correct place.

H

Evaluation

The assignment will be tested with testbenches, which check the correctness of the behavior at the
memory interface for a given content of the instruction memory. Note that this means that testing
is only possible if memory operations are implemented. Points will be granted if the design passes
the test suites.

4 Level 1: Pipeline [70 Points] 15

4.1 Fetch

fetch.vhd

P
C 4 regfile

imem

decode

m
u
lti

p
le

x

A
L
U

branch

memu

ctrl

fwd

dmem

Description

In the fetch stage, the instruction memory is read, and the next value of the program counter is
computed. Table 4.1 shows the interface of the fetch stage. clk and res_n have their usual meaning,
res_n is active low. After a reset, the fetch stage shall return the instruction located at address
0 in the instruction memory (Hint: Think about an appropriate reset value for the internal PC
register to achieve that). In this regard, make sure that after a reset the correct instruction is
fetched and no unwanted instructions enter pipeline. Additionally, be careful that no instruction
is unintentionally skipped or executed multiple times.

In case flush is asserted, insert a nop instruction into the pipeline. stall causes the fetch stage
not to change internal registers, i.e., the program counter must not change while stall is asserted.
If the fetch stage is not stalled and pcsrc is asserted, the next program counter shall be pc_in, if
pcsrc is zero, it shall be the current program counter incremented by 4.

Note that the read port of the instruction memory is registered, which entails that it must be
connected to the next program counter in order to output the instruction that corresponds to the
current program counter register. The program counter is also passed on to the decode stage (see
Figure 2.1). Further note, that the program counter holds a byte address, while the instruction
memory is accessed word-wise. The lowest two bits of the program counter – which are always zero
anyways – are therefore not used to address the instruction memory. As RISC-V uses little-endian
as standard byte ordering, make sure that the individual bytes of the instruction word are in the
correct order when passing them to the decode stage.

The interface used for the instruction memory is the same interface as for the data memory,
however writing to the instruction memory is not required, thus some signals in the memory
interface will not be used. Select appropriate default values for those signals. For this exercise it
can be assumed that a read access to the instruction memory always returns the value in the next
cycle and therefore, mem_in.busy will always be ’0’. Nevertheless, connect mem_in.busy to mem_busy to
be able to react to the busy signal later.

4 Level 1: Pipeline [70 Points] 16

Signal Dir. Type Description

clk in std_logic Clock
res_n in std_logic Reset (low-active)
stall in std_logic Stall
flush in std_logic Flush
mem_busy out std_logic Instruction Memory busy (towards control)
pcsrc in std_logic Use pc_in or incremented program counter as new pro-

gram counter
pc_in in PC_TYPE New program counter
pc_out out PC_TYPE Current program counter
instr out INSTR_TYPE Fetched instruction
mem_out out MEM_OUT_TYPE Output to memory controller
mem_in in MEM_IN_TYPE Input from memory controller

Table 4.1: Fetch stage interface

4 Level 1: Pipeline [70 Points] 17

4.2 Decode

decode.vhd

P
C 4 regfile

imem

decode

m
u
lti

p
le

x

A
L
U

branch

memu

ctrl

fwd

dmem

Description

The decode stage contains the register file and translates the raw instructions to signals that are
used subsequently in the pipeline. More than one instruction may be mapped to an operation
of a functional unit such as the ALU. For example, an addition of two registers, of a register
and an immediate and calculations for memory accesses all make use of the ALU instruction
ALU_ADD. Table 4.2 shows the interface of the decode stage. Definitions for the types EXEC_OP_TYPE,
MEM_OP_TYPE, and WB_OP_TYPE are provided. The definitions for EXEC_OP_TYPE, MEM_OP_TYPE and WB_OP_TYPE

are described in Tables 4.3, 4.4 and 4.5.

The signals clk and res_n have their usual meaning, res_n is active low. Asserting stall causes
the stage not to transfer inputs into its internal registers; asserting flush causes the unit to store a
nop to its internal instruction register.

Figure 4.1 shows the RISC-V 32-bit instruction formats. The operations that the processor
must support are shown in Table 4.7. The operation semantics in these tables are given in C-
syntax. The decoding exception signal exc_dec shall be asserted if an instruction cannot be found
in one of these tables.

The immediate calculation depending on the instruction type is shown in Figure 4.2. Although
the immediate calculation seems awkward at first glance, it is designed to minimize the number of
multiplexers for each bit.

4 Level 1: Pipeline [70 Points] 18

Signal Dir. Type Description

clk in std_logic Clock
res_n in std_logic Reset (low-active)
stall in std_logic Stall
flush in std_logic Flush
pc_in in PC_TYPE Program counter from fetch stage
instr in INSTR_TYPE Instruction to be decoded
reg_write in REG_WRITE_TYPE Information required for writing to register file
pc_out out PC_TYPE Program counter for subsequent stages
exec_op out EXEC_OP_TYPE Operation for execute stage
mem_op out MEM_OP_TYPE Operation for memory stage
wb_op out WB_OP_TYPE Operation for write-back stage
exc_dec out std_logic Decoding exception

Table 4.2: Decode stage interface

Field Type Description

aluop ALU_OP_TYPE ALU operation
alusrc1 std_logic Selecting ALU input
alusrc2 std_logic Selecting ALU input
alusrc3 std_logic Selecting new PC to be calculated for jmp/branch
rs1 REG_ADDR_TYPE Specifies first register operand
rs2 REG_ADDR_TYPE Specifies second register operand
readdata1 DATA_TYPE Data from first register file read port
readdata2 DATA_TYPE Data from second register file read port
imm DATA_TYPE Immediate value from instruction

Table 4.3: EXEC_OP_TYPE fields

Field Type Description

branch BRANCH_TYPE Branch operation
mem MEMU_OP_TYPE Operation for memory unit

Table 4.4: MEM_OP_TYPE fields

In Table 4.7, apart from C syntax, the following symbols are used:

∅ Unsigned or zero-extended value
± Signed or sign-extended value
ra:b Bits a to b of register r
DMEM[a] Value at memory address a

The value pc corresponds to the value of the program counter as it is passed on from the fetch
stage, i.e., it corresponds to the address of the currently executed instruction.

4 Level 1: Pipeline [70 Points] 19

Field Type Description

rd REG_ADR_TYPE Address of register to be written to
write std_logic Write to register
src WBSRC_TYPE Source of data to be written to the register file

Table 4.5: WB_OP_TYPE fields

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

R funct7 rs2 rs1 funct3 rd opcode

I imm[11:0] rs1 funct3 rd opcode

S imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

B
imm
[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm

[11] opcode

U imm[31:12] rd opcode

J
imm
[20] imm[10:1] imm

[11] imm[19:12] rd opcode

Figure 4.1: Instruction formats

31 30 20 19 12 11 10 5 4 1 0

I inst[31] inst[30:25] inst[24:21] inst
[20]

S inst[31] inst[30:25] inst[11:8] inst
[7]

B inst[31] inst
[7] inst[30:25] inst[11:8] 0

U
inst
[31] inst[30:20] inst[19:12] 0

J inst[31] inst[19:12] inst
[20] inst[30:25] inst[24:21] 0

Figure 4.2: Types of immediates

opcode Type

0000011 OPC LOAD

0100011 OPC STORE

1100011 OPC BRANCH

1100111 OPC JALR

1101111 OPC JAL

0010011 OPC OP IMM

0110011 OPC OP

0010111 OPC AUIPC

0110111 OPC LUI

Table 4.6: MiRiV base opcodes

4 Level 1: Pipeline [70 Points] 20

Opcode Funct3 Funct7 Fmt Syntax Semantics

OPC LUI – – U LUI rd, imm rd=imm±<<12

OPC AUIPC – – U AUIPC rd, imm rd=pc+(imm±<<12)

OPC JAL – – J JAL rd, imm rd=pc+4; pc=pc+(imm±<<1)

OPC JALR 000 – I JALR rd,rs1,imm rd=pc+4; pc=imm±+rs1; pc[0]=’0’

OPC BRANCH 000 – B BEQ rs1,rs2,imm if(rs1==rs2)pc=pc+(imm±<<1)

OPC BRANCH 001 – B BNE rs1,rs2,imm if(rs1!=rs2)pc=pc+(imm±<<1)

OPC BRANCH 100 – B BLT rs1,rs2,imm if(rs1±<rs2±)pc=pc+(imm±<<1)

OPC BRANCH 101 – B BGE rs1,rs2,imm if(rs1±>=rs2±)pc=pc+(imm±<<1)

OPC BRANCH 110 – B BLTU rs1,rs2,imm if(rs1∅<rs2∅)pc=pc+(imm±<<1)

OPC BRANCH 111 – B BGEU rs1,rs2,imm if(rs1∅>=rs2∅)pc=pc+(imm±<<1)

OPC LOAD 000 – I LB rd,rs1,imm rd=(int8_t)DMEM[rs1+imm±]

OPC LOAD 001 – I LH rd,rs1,imm rd=(int16_t)DMEM[rs1+imm±]

OPC LOAD 010 – I LW rd,rs1,imm rd=(int32_t)DMEM[rs1+imm±]

OPC LOAD 100 – I LBU rd,rs1,imm rd=(uint8_t)DMEM[rs1+imm±]

OPC LOAD 101 – I LHU rd,rs1,imm rd=(uint16_t)DMEM[rs1+imm±]

OPC STORE 000 – S SB rs1,rs2,imm DMEM[rs1+imm±]=rs27:0

OPC STORE 001 – S SH rs1,rs2,imm DMEM[rs1+imm±]=rs215:0

OPC STORE 010 – S SW rs1,rs2,imm DMEM[rs1+imm±]=rs2

OPC OP IMM 000 – I ADDI rd,rs1,imm rd=rs1+imm±

OPC OP IMM 010 – I SLTI rd,rs1,imm rd=(rs1±<imm±)? 1 : 0

OPC OP IMM 011 – I SLTIU¶rd,rs1,imm rd=(rs1∅<(imm±)∅)? 1 : 0

OPC OP IMM 100 – I XORI rd,rs1,imm rd=rs1^imm±

OPC OP IMM 110 – I ORI rd,rs1,imm rd=rs1|imm±

OPC OP IMM 111 – I ANDI rd,rs1,imm rd=rs1&imm±

OPC OP IMM 001 – I SLLI†rd,rs1,shamt rd=rs1<<shamt

OPC OP IMM 101 – I SRLI?rd,rs1,shamt rd=rs1∅>>shamt

OPC OP IMM 101 – I SRAI§rs,rs1,shamt rd=rs1±>>shamt

OPC OP 000 0000000 R ADD rd,rs1,rs2 rd=rs1+rs2

OPC OP 000 0100000 R SUB rd,rs1,rs2 rd=rs1-rs2

OPC OP 001 0000000 R SLL rd,rs1,rs2 rd=rs1<<rs24:0

OPC OP 010 0000000 R SLT rd,rs1,rs2 rd=(rs1±<rs2±)? 1 : 0

OPC OP 011 0000000 R SLTU rd,rs1,rs2 rd=(rs1∅<rs2∅)? 1 : 0

OPC OP 100 0000000 R XOR rd,rs1,rs2 rd=rs1^rs2

OPC OP 101 0000000 R SRL rd,rs1,rs2 rd=rs1∅>>rs24:0

OPC OP 101 0100000 R SRA rd,rs1,rs2 rd=rs1±>>rs24:0

OPC OP 110 0000000 R OR rd,rs1,rs2 rd=rs1|rs2

OPC OP 111 0000000 R AND rd,rs1,rs2 rd=rs1&rs2

0001111 000 – I FENCE nop

†?§ imm[4:0]=shamt — †? imm[10]=0 — § imm[10]=1
¶ First sign-extend the immediate, then treat the resulting value as unsigned for the comparison

Table 4.7: MiRiV instructions

4 Level 1: Pipeline [70 Points] 21

4.3 Execute

exec.vhd

P
C 4 regfile

imem

decode

m
u
lti

p
le

x

A
L
U

branch

memu

ctrl

fwd

dmem

Description

The execute stage contains the ALU, and therefore “executes” the arithmetic and logic instructions.
Furthermore, the ALU is used to compute the addresses for memory accesses. Also, the addition for
branches relative to the program counter is computed in this stage. Table 4.8 shows the interface
of the execute stage.

The signals clk and res_n have their usual meaning, res_n is active low. Asserting stall causes
the stage not to save inputs into its internal registers; asserting flush causes the unit to store a nop

to the pipeline registers.

The information from op coming from the decode stage is meant to be used for controlling the
ALU and feeding it with the correct input values in order to produce the required result. The ALU
result is passed to the next pipeline stage via aluresult. Note that for some instructions using only
the ALU is insufficient, since multiple operations have to be performed in parallel. One example
are branch instructions, where the ALU can be used to perform the comparison (with the result
being provided via the zero flag), while the branch target address has to be calculated by a separate
component.

For regular operation, information in the signals suffixed _in and _out shall be passed on to
subsequent pipeline stages without being modified. The only exception for this is pc_new_out, which
is meant to carry the branch target address which is calculated in this stage. Finally, the content
to be written to memory has to be made available to the memory stage using the wrdata signal.

The signals exec_op, reg_write_mem and reg_write_wr are irrelevant for this assignment and can
be ignored here. They will be used for forwarding the correct data to the ALU and for control
purposes in Lab Exercise IV.

4 Level 1: Pipeline [70 Points] 22

Signal Dir. Type Description

clk in std_logic Clock
res_n in std_logic Reset (low-active)
stall in std_logic Stall
flush in std_logic Flush
op in EXEC_OP_TYPE Operation for this stage
pc_in in PC_TYPE Program counter from decode stage
pc_old_out out PC_TYPE Program counter for the memory stage
pc_new_out out PC_TYPE Program counter (i.e., branch target) for the memory

stage
aluresult out DATA_TYPE Result from ALU
wrdata out DATA_TYPE Value to be written to memory
zero out std_logic Zero flag from ALU
memop_in in MEM_OP_TYPE Memory operation from decode stage
memop_out out MEM_OP_TYPE Memory operation to memory stage
wbop_in in WB_OP_TYPE Write-back operation from decode stage
wbop_out out WB_OP_TYPE Write-back operation to memory stage
exec_op out EXEC_OP_TYPE Operation of this stage to ctrl

reg_write_mem in REG_WRITE_TYPE Register to be written by current instr. in memory
stage (for fwd)

reg_write_wr in REG_WRITE_TYPE Register to be written by current instr. in writeback
stage (for fwd)

Table 4.8: Execute stage interface

4 Level 1: Pipeline [70 Points] 23

4.4 Memory

mem.vhd

P
C 4 regfile

imem

decode

m
u
lti

p
le

x

A
L
U

branch

memu

ctrl

fwd

dmem

Description

Most of the data memory-related functionality is already provided by the memory unit implemented
earlier. Therefore, the further data memory-related implementation for this stage mainly consists
of registering the inputs and passing them to the memory unit. The interface for this stage is shown
in Table 4.9.

Despite its name, the memory stage does not only contain the memory unit, but is also used to
evaluate and pass on the branch decision (taken/not taken via pcsrc) as well as the target address
of the branch (via pc_new_out) to the fetch stage.

The signals clk and res_n have their usual meaning, res_n is active low. Asserting flush causes
the unit to store nops to the pipeline registers. Asserting stall causes the stage not to transfer
inputs into its internal registers; additionally, neither op.memread nor op.memwrite of the memory unit
may be asserted while the stall signal is asserted.

For regular operation, information in the signals suffixed _in and _out shall be passed on to
subsequent pipeline stages without being modified.

In this exercise it can be assumed that the memory read result is available at the next clock
cycle. Therefore, memu’s busy signal (B) is high for exactly one cycle per read access.

4 Level 1: Pipeline [70 Points] 24

Signal Dir. Type Description

clk in std_logic Clock
res_n in std_logic Reset (low-active)
stall in std_logic Stall
flush in std_logic Flush
mem_busy out std_logic Signaling to ctrl that data memory is busy
mem_op in MEM_OP_TYPE Memory operation from execute stage
wbop_in in WB_OP_TYPE Write-back operation from execute stage
pc_new_in in PC_TYPE Program counter (i.e., branch target) from execute

stage
pc_old_in in PC_TYPE Program counter from execute stage
aluresult_in in DATA_TYPE Result from ALU from execute stage
wrdata in DATA_TYPE Data to be written to memory
zero in std_logic Zero flag from ALU
reg_write out REG_WRITE_TYPE Register to be written by current instruction (for fwd)
pc_new_out out PC_TYPE Program counter (i.e., branch target) to fetch stage
pcsrc out std_logic Asserted if a branch is to be executed; to fetch stage
wbop_out out WB_OP_TYPE Write-back operation to writeback stage
pc_old_out out PC_TYPE Program counter to writeback stage
aluresult_out out DATA_TYPE Result from ALU to writeback stage
memresult out DATA_TYPE Result of memory load to writeback stage
mem_out out MEM_OUT_TYPE Memory operation sent to outside the pipeline
mem_in in MEM_IN_TYPE Memory load result received from outside the pipeline
exc_load out std_logic Load exception
exc_store out std_logic Store exception

Table 4.9: Memory stage interface

4 Level 1: Pipeline [70 Points] 25

4.5 Write-Back

wb.vhd

P
C 4 regfile

imem

decode

m
u
lti

p
le

x

A
L
U

branch

memu

ctrl

fwd

dmem

Description

The purpose of the write-back stage is to select between the result from the ALU, the result from
a memory load or the PC and to relax the critical path(s) in the pipeline. Table 4.10 shows its
interface.

Signal Dir. Type Description

clk in std_logic Clock
res_n in std_logic Reset (low-active)
stall in std_logic Stall
flush in std_logic Flush
op in WB_OP_TYPE Write-back operation from memory stage
aluresult in DATA_TYPE Result from ALU from memory stage
memresult in DATA_TYPE Result from memory load for memory stage
pc_old_in in PC_TYPE Program counter
reg_write out REG_WRITE_TYPE Register to be written by current instruction

(for decode stage and fwd)

Table 4.10: Write-back stage interface

4 Level 1: Pipeline [70 Points] 26

4.6 Pipeline

pipeline.vhd

Description

The individual pipeline stages described above shall be connected to form a pipeline. The interface
of the pipeline is shown in Table 4.11. The clk and res_n signals have their usual meaning, res_n

is active low. If mem_busy from the fetch stage or memory stage is asserted, the pipeline shall be
stalled. As the ctrl unit is not yet implemented, these two signals should be passed to all pipeline
stages to stall them if required. As the pipeline in its current state does not resolve any hazards,
the flush signal of the individual pipeline stages can be hardwired to ’0’.

Signal Dir. Type Description

clk in std_logic Clock
res_n in std_logic Reset (low-active)
mem_i_out out MEM_OUT_TYPE Interface from the pipeline to the instruction

memory
mem_i_in in MEM_IN_TYPE Interface from the instruction memory to the

pipeline
mem_d_out out MEM_OUT_TYPE Interface from the pipeline to the data memory
mem_d_in in MEM_IN_TYPE Interface from the data memory to the pipeline

Table 4.11: Pipeline interface

The pipeline should now be able to execute sequences of assembly code. As hazards are not
resolved, the results from operations only become available two instructions later. Also, branches
require a three-cycle branch delay. The assembler code shown in Listing 1 shows an endless loop
that stores the numbers 1, 2, . . . to address 16. Note that after initializing or incrementing register
x5 two nop instructions are necessary for correct operation.

1 addi x5, x0, 0

2 nop

3 nop

4 loop:

5 addi x5, x5, 1

6 nop

7 nop

8 sw x5 , 16(x0)

9 jal x0, loop

10 nop

11 nop

12 nop

Listing 1: Assembler example without forwarding (see submission.S)

5 Level 2: Hazards [50 Points] 27

5 Level 2: Hazards [50 Points]

In this assignment, the data and control hazards shall be resolved. After this step your pipeline is
finally ready to execute compiler-generated RISC-V code, as long as the instructions do not exceed
the implemented RISC-V feature set. Thus you are then able to test the processor by compiling
regular C programs and check their correct execution.

Evaluation

The correctness of the design will be assessed with testbenches, which check the correct behavior of
the pipeline for given instruction memory contents. Furthermore, the design will be verified with
test programs, to ensure that the design can be correctly synthesized and runs at a frequency of at
least 75 MHz. Points will be awarded if the design passes the test suites and operates correctly in
hardware (a correct simulation alone is not enough for all points to be awarded).

5 Level 2: Hazards [50 Points] 28

5.1 Forwarding

fwd.vhd

P
C 4 regfile

imem

decode

m
u
lti

p
le

x

A
L
U

branch

memu

ctrl

fwd

dmem

Description

When executing the sequence of instructions in Listing 2, the and instruction uses the results of
the two preceding instructions. However, these results are not available from the register file when
the and reaches the execute stage. The value of register x1 is still in the write-back stage, while the
value of register x2 is in the memory stage. For correct operation, these values must be forwarded
to the execute stage. While forwarding increases the complexity of a pipeline, it is usually more
efficient to resolve this hazard in hardware than by having the compiler reorder code and insert nop

instructions where necessary.

Implement a forwarding unit, which compares information from the execute stage, the mem-
ory stage, and the write-back stage and decides for a single input read register address whether
forwarding is necessary (Note that therefore the component has to be instantiated twice). The
inputs reg_write_mem and reg_write_wb provide (a) the information if the instruction in the memory
and write-back stages write to a register and if they do (b) also the respective data and (c) the
write register address. In addition, the read register address (reg) also has to be provided to the
forwarding unit. Based on this information the output do_fwd indicates if forwarding is required and
provides the respective data on output val. Finally, extend the execute stage to properly handle
these signals, e.g., to forward the required value(s) to the ALU.1

Hint: handle writes to the x0 register appropriately.

1 addi x1, x0, 7

2 addi x2, x0, 5

3 and x1, x2, x1

4 nop

5 nop

Listing 2: Assembly example with forwarding

Note that forwarding a result of a memory load to an instruction executed immediately after the
load is not possible. Therefore, in such situations the pipeline has to be stalled2 until forwarding
the correct data is possible. The pipeline should only be stalled if it is necessary, i.e., in case
the loaded value is actually used when executing the next instruction. Not every load instruction
causes a hazard.

1Note that it is permitted to relax the earlier constraint that updating the register file during a stall is not allowed,
if required.

2It is recommended to implement this functionality in ctrl.vhd.

5 Level 2: Hazards [50 Points] 29

5.2 Branch Hazards

ctrl.vhd

P
C 4 regfile

imem

decode

m
u
lti

p
le

x

A
L
U

branch

memu

ctrl

fwd

dmem

Description

When performing a branch in the memory stage, the fetch, decode and execute stages already hold
instructions that follow the branch. This means that the instructions in the fetch, decode and
execute stages need to be flushed in case a branch is taken. Implement a control unit that flushes
the appropriate pipeline stages when branching. When operating correctly, the assembly code in
Listing 3 must not increment registers x1, x2 and x3.

1 loop: j loop

2 addi x1, x1, 1

3 addi x2, x2, 1

4 addi x3, x3, 1

Listing 3: Assembly example for branches

5 Level 2: Hazards [50 Points] 30

5.3 Integration

The processor is now ready to be tested in hardware. The corresponding I/O modules for commu-
nication with the outside world are already integrated. See Section 7 for further details.

Note that the timing analysis for your design must yield a maximum frequency fmax of at least
75 MHz.

6 Level 3: Cache [50 Points] 31

6 Level 3: Cache [50 Points]

In modern processor implementations, CPU cores are usually much faster than the corresponding
main memory. This requires a processor to stall for many cycles for each main memory access.
A common strategy to cope with this performance gap is caching. Caching provides a fast but
small memory that is used to facilitate copies of memory areas of the main memory that are often
accessed by the processor. This enables the processor to perform fast accesses on heavily used
locations while having a huge amount of cheap main memory available.

Evaluation

The design will be verified with test programs, to ensure that it can be correctly synthesized and
runs at a frequency of at least 75 MHz. Points will be awarded if the design operates correctly in
hardware when being integrated into your existing processor implementation.

Description

In this assignment, a cache for the data memory should be added to the processor implemented
so far. It is recommended to ensure that your design is able to execute the provided applications
successfully before starting with this part of the lab task.

The cache to be implemented should have the following properties:

• Direct Mapped Cache: Every memory location has one unique cache location.

• Write-around On Miss: If there is a write access to a location that is currently not in
the cache, the cache should be bypassed and the write operation should be performed on the
main memory directly (i.e., without transferring the data to the cache).

• Write-back On Hit: If there is a write operation on a cached memory location, only update
the cache (and do not update the main memory) until the cache block is evicted from the
cache.

If you want to implement a more advanced version of the data cache, bonus points can be
earned by implementing a 2-way and 4-way set-associative cache (in addition to the direct mapped
one). The details are explained in Section 6.7.

6 Level 3: Cache [50 Points] 32

6.1 Overview

Description

The cache entity is instantiated in the core.vhd file. It intercepts the signals of the memory
interface from the core to the devices.

The cache entity should be implemented in cache.vhd, which is placed in the subdirectory
cache in the vhdl directory. A template for this file along with additional sub-components are
provided. The corresponding interfaces are described in the following sections. The interface
defined in cache.vhd must be adhered to, while the interface(s) of the sub-components of the
cache are flexible and can be changed. In case you decide to define your own interface(s), add a
description in the corresponding file(s).

Initially, cache.vhd only contains a “bypass implementation” (simply connecting the resepec-
tive incoming and outgoing signals without any interference) named bypass. The actual imple-
mentation has to be added as impl. In this way, testing the design with and without your cache
implementation should be simplified. Note that the intended configuration (i.e., either bypass or
impl) needs to be selected in core.vhd.

Memory interface

So far, the read access to the data memory was quite fast (i.e., the memory read result was available
at the next clock cycle). As explained above this is oftentimes not the case for real processors,
which are usually much faster than their corresponding main memory. Therefore, to simulate a
slow memory, the busy signal of the memory interface is used to indicate that a memory operation
is ongoing. To make the implementation easier, only read accesses are slowed down, while write
accesses are handled immediately.3 This can be tested by adapting DMEM_DELAY in sim/tb/tb.vhd.

The memory access follows the protocol shown in Figure 6.1. The read result is valid for one
cycle after the busy signal is zero. This protocol applies for the interface between memory and
cache, as well as between cache and processor.

To make your cache implementation easier, it can be assumed that the processor adheres to the
protocol, so make sure your processor implementation actually does!

clk

address

rd

busy

rddata

Figure 6.1: Read accesses

Note that in this lab task a cache is only implemented for the data memory.

3In practice there are other techniques (e.g., a write queue) in place trying to achieve immediate write accesses.
Therefore, the assumption of immediate write access is not that far-fetched.

6 Level 3: Cache [50 Points] 33

6.2 Cache

cache.vhd

Description

The cache entity should be implemented in cache.vhd. The generics and the interface are described
in Table 6.1 and Table 6.2.

Generic Type Description

SETS_LD natural The ld (binary logarithm) of the number of sets
(i.e., the number of sets is 2SETS LD)

WAYS_LD natural The ld (binary logarithm) of the number of ways
(i.e., the number of ways is 2WAYS LD)

ADDR_MASK mem_address_type Mask for the address line to bypass the cache on device
access.

Table 6.1: Cache interface generics

Signal Direction Type Description

clk in std_logic Clock
res_n in std_logic Reset
mem_out_cpu in mem_out_type Memory requests from the processor
mem_in_cpu out mem_in_type Memory results to the processor
mem_out_mem out mem_out_type Memory requests to the memory
mem_in_mem in mem_in_type Memory results from the memory

Table 6.2: Cache interface signals

The number of cache sets is given by the parameter defined in the generic of the entity. Subdivide
the address accordingly into tag and index. As the memory interface operates on 32 bit words,
which is the same width as the processor, the size of the address offset is zero.

When a read request is issued by the processor, check if the corresponding data can be found
in the cache. In case of a hit (read hit), return the cached data. In case the corresponding data are
currently not cached (read miss), fetch the data from the memory, add it into the corresponding
location in the cache and provide the required data to the processor.

On a write access to a cached location (write hit), update the location in the cache instead
of the main memory and mark the location as being dirty. If the write destination is not cached
(write miss), perform a write to the main memory directly and ignore the cache (i.e., no fetch on
write).

Design a state machine that handles the different cases appropriately. The state machine could
have the following states:

• IDLE No memory operation ongoing (i.e., no memory request from the processor).

• READ_CACHE Read access to the cache.

• READ_MEM_START First cycle of the memory read (assert the read line to the memory).

6 Level 3: Cache [50 Points] 34

• READ_MEM Waiting for the memory request to finish and write the result in the cache.

• WRITE_BACK_START First cycle of the memory write if the evicted cache location was dirty.

• WRITE_BACK Finishing the write operation.

Note that the state machine does not have a state corresponding to a write hit. In this situation,
writing to the cache must be handled immediately (as it would also happen in case of a write miss),
i.e., it is not allowed to raise busy in this case. For a read hit, busy can be high for one clock cycle
at most.

The cache must be bypassed if an access to a device (e.g., the UART) is performed. To identify
such an access, the ADDR_MASK generic parameter is used. If an address bit is high, which is not set
in the ADDR_MASK, the access shall bypass the cache (i.e., no caching of such addresses).

When implementing the reset functionality, ensure to clear only the necessary parts of the
cache’s management information instead of the whole cache. This is important to enable Quartus
to use on-chip memory blocks during synthesis which improves performance and fitting time dras-
tically. On-chip memory does not provide a clear (i.e., reset) functionality, therefore, all storage
with clear functionality will be implemented using the flip-flop in the normal logic cells.

Note that the generic parameter WAYS_LD can be ignored for the implementation of the direct
mapped cache.

6 Level 3: Cache [50 Points] 35

6.3 Cache Management Information

mgmt st.vhd

Description

This entity contains the complete management information required for keeping track of the cache
entries and their status.

The interface is shown in Table 6.3, the generics should be used as described in Table 6.1.

Signal Direction Type Description

clk in std_logic Clock
res_n in std_logic Reset
index in c_index_type Index, i.e., the set to be accessed
wr in std_logic Control updating the management information
rd in std_logic Control reading the management information
valid_in in std_logic Validity information of entry to be written
dirty_in in std_logic Dirty information of entry to be written
tag_in in c_tag_type Tag of entry to be written
way_out out c_way_type Way where a hit occurred or where data has to be

updated (for the advanced implementation)
valid_out out std_logic Validity information of the accessed entry
dirty_out out std_logic Dirty information of the accessed entry
tag_out out c_tag_type Tag of the accessed entry
hit_out out std_logic Hit

Table 6.3: Management interface signals

This entity should encapsulate the handling of management information, this means (among
others):

• Accessing the correct set

• Deciding whether an access is a hit (tag comparison)

• Handling updates for the management information (e.g., valid, dirty, ...)

• Searching for entries in all ways (for the advanced implementation)

• Keeping track of the replacement information (for the advanced implementation)

Note that the meaning of reading (i.e., rd) and writing (i.e., wr) the management information
differs from a read and write access to the memory system. For example, when writing to the
memory system (store), it is first required to check if the corresponding entry is present and valid
in the cache (i.e., read access to management information). Afterwards, in case of a write hit, the
management information might have to be updated (dirty flag). Similarly, a read to the memory
system (load) requires finding out if the corresponding entry is present and valid in the cache and
might afterwards require a write to the management information in case an entry has to be evicted.

The constants, type definitions, etc. can be found in cache pkg.vhd.

6 Level 3: Cache [50 Points] 36

6.4 Cache Management Information Per Way

mgmt st 1w.vhd

Description

This entity contains the management information required for one way. It is mainly a storage
for saving/accessing the management information. Implement this storage using registers. It is
required to be able to reset the management information stored, as otherwise old values might be
accessed from the cache although the processor was reset.

The interface is shown in Table 6.4, the generics should be used as described in Table 6.1.

Signal Direction Type Description

clk in std_logic Clock
res_n in std_logic Reset
index in c_index_type Index, i.e., the set to be accessed
we in std_logic Control updating the management information
we_repl in std_logic Control updating the replacement information
mgmt_info_in in c_mgmt_info For updating the management information
mgmt_info_out out c_mgmt_info For receiving the stored management information

Table 6.4: Management interface signals per way

6 Level 3: Cache [50 Points] 37

6.5 Cache Data

data st.vhd

Description

This entity contains the data storage required for all cache entries.

The interface is shown in Table 6.5, the generics should be used as described in Table 6.1.

Signal Direction Type Description

clk in std_logic Clock
we in std_logic Control updating the stored data
rd in std_logic Control reading the stored data
way in c_way_type Way to be accessed (for the advanced implementation)
index in c_index_type Index, i.e., the set to be accessed
byteena in mem_byteena_type Byte-enable signal for sub-word writes
data_in in mem_data_type For updating the stored data
data_out out mem_data_type For receiving the stored data

Table 6.5: Data storage interface signals

As the storage required for the data is typically larger than the one required for the management
information (especially when having larger block sizes), instantiate memory blocks for the data
storage. A RAM implementation (single-clock, dual-port, synchronous, new data read during
write) is provided in single clock rw ram.vhd.

Note that even when accessing only e.g., one byte and a read miss occurs, still the complete
block must be brought to the cache. Similarly, when evicting a dirty cache entry, the complete
block needs to be written to the data memory.

6 Level 3: Cache [50 Points] 38

6.6 Cache Data For One Way

data st 1w.vhd

Description

This entity contains the data storage required for the cache entries of one way.

The interface is shown in Table 6.6, the generics should be used as described in Table 6.1.

Signal Direction Type Description

clk in std_logic Clock
we in std_logic Control updating the stored data
rd in std_logic Control reading the stored data
index in c_index_type Index, i.e., the set to be accessed
byteena in mem_byteena_type Byte-enable signal for sub-word writes
data_in in mem_data_type For updating the stored data
data_out out mem_data_type For receiving the stored data

Table 6.6: Data storage interface signals per way

Note that it is required to be able to write individual bytes of the data to the storage, while
leaving other bytes in the same block untouched. Therefore, make sure the data storage you
implement supports this.

6 Level 3: Cache [50 Points] 39

6.7 2&4-way Set Associative Cache (Advanced Implementation)

This part of the assignment is an optional bonus task. If you implement this part correctly, up to
16 bonus points will be awarded.

If you plan to implement the advanced cache, we recommend to start with a direct mapped
cache, but use or design the interfaces and types in a fashion such that you can increase the number
of ways later.

Hint: Use for generate constructs for instantiations or to perform certain operations (e.g., check-
ing for a hit) on all ways without code duplication. You can further use or_reduce to combine signals
you have to generate for every way (e.g., to check whether there was a hit in any way). Also note
that multiple instances of mgmt_st_1w and data_st_1w are required when implementing the 2-way and
4-way set associative cache.

Depending on the WAYS_LD generic parameter generate a 1-way (i.e., direct-mapped), 2-way, or
4-way set associative cache. Any value of WAYS_LD beyond 2 (i.e., 4-way) is invalid and you may rise
an error using an assertion.

Replacement Policy

repl.vhd

Description

This entity contains the replacement policy. The interface is shown in Table 6.7, use the WAYS

generic parameter for defining the number of ways.

Signal Direction Type Description

valid_in in std_logic_vector Valid information of all ways of the current set
dirty_in in std_logic_vector Dirty information of all ways of the current set
replace_in in std_logic_vector Replacement information of all ways of the current set
replace_out out std_logic_vector Updated replacement information for all ways of the

current set

Table 6.7: Replacement policy interface

For a cache with multiple ways, a strategy needs to be found to decide which entry is removed
from the cache, if there is no free entry for the requested index. As a replacement policy, least-
recently-used (LRU) has proven to be very efficient in practical applications.

For a 2-way set associative cache LRU should be implemented. One potential implementation
could be setting the replacement bit accordingly when accessing an entry. Start by using invalid
entries (use lowest way ID in case multiple invalid entries are present) to avoid eviction of valid
entries. If only valid entries are present, evict the one which has not been used for the longest time.

Implementing LRU for more than two ways is complicated and requires more management
information. Therefore, a simplified strategy should be used for the 4-way cache. For this, the four
ways are partitioned into two groups of two (grouping way0&1 and way2&3). As a first priority,
invalid entries should be used irrespective of the group to avoid eviction of valid entries. If only
valid entries are present, evict an entry from the way group which has not been used for the longest
time. Within this group evicting dirty entries should be avoided.

The entity for the replacement policy should be embedded in the mgmt_st module.

7 Template 40

7 Template

7.1 Overview

The provided template gives you a starting point for your implementation and significantly reduces
the effort for setting up your project. The template already provides all you need to compile
software for your processor, simulate the processor and synthesize it for the target FPGA. During
this exercise you will need to develop your implementation as well as tests for (parts of) the
processor.

The template contains 5 folders:

quartus This folder contains the Quartus project. It contains all
Quartus files as well as VHDL files that are required for
synthesis only.

sim This folder contains the simulation environment, i.e., the
testbench to simulate the processor as a whole as well as im-
plementations of the required peripherals (UART and mem-
ory).

software This folder contains the software build environment as well
as some example software, which can be used to test the
processor.

test This folder contains test cases for the individual entities.
vhdl This folder contains the code of your processor.

Note: It should not be required to change anything in the quartus and sim folder.
!

7.2 File Overview

In the vhdl folder all entities you need to implement your processor are already provided. Stick to
this file structure, as otherwise submission tests will not work.

Consult the assignment description on how to implement the entities. Don’t change the entity
definitions as this might fail submission tests.

In addition to the entities, there are three VHDL packages provided for your convenience.

7.2.1 Memory Package

The package in file mem pkg.vhd defines the memory interface. You are not supposed to change
this file as your code must be compatible with this interface, otherwise simulation and synthesis
will not work as expected.

7.2.2 Core Package

The package in file core pkg.vhd contains definitions for fundamental types of the processor. You
shall not change this definitions, but you are welcome to add further types and constants if required.

7 Template 41

7.2.3 Operation Package

This package is in file op pkg.vhd. It contains types and constants to specify the operations in
various parts of the processor. Signals of those types are created in the decode stage and used
in the appropriate entities later in the pipeline. Don’t change existing types, as they are used in
entity definitions. You are however welcome to add other types and helper functions when needed.

7.3 Template Usage

This section describes how to use the template during the development of your processor.

7.3.1 Run Tests

You are supposed to come up with your own tests and place them in the test folder. Create a
sub-folder for each test and design the tests in a way that all tests can be run separately.

As an example on how a test can be created, one test is already provided. You are welcome to
use this test as a template for further ones, but you are of course allowed to come up with your
own ideas. However, each test has to contain a Makefile supporting the the targets compile, clean
and sim, which have the usual meaning.

The sample test further provides the possibility to use the Questa/Modelsim GUI via the
sim gui taget, which can be handy for debugging.

7.3.2 Software Compilation Process

The software folder contains two sub-folders: one for assembly and one for C code. The build
process is slightly different between the two as the C compiler needs some initialization code, which
is provided by the framework. For debugging your processor it is strongly recommended to write
assembly code as this gives you (almost) full control on what is actually executed. Later in the
development you can switch to C to try more elaborate programs.

Compilation
To compile a file called test.S (an upper case S is the recommended file extension for assembly

code) or test.c, run the following commands in the appropriate folder:

make test.imem.mif

make test.dmem.mif

You can also build all files in the folder at once with

make all

For each program there are two files to be generated: one with extension .imem.mif and one
with .dmem.mif. The first one contains the initialization of the instruction memory, i.e., your
compiled code. The second file is the initial content of the data section, which can also be empty.
The generated files can both be used in the simulation environment as well as on the FPGA.

7 Template 42

Library Functions
There are some library functions to be used in your C programs. They can be found in util.h.

Use those functions to write and read from the UART interface. Please note that the program is
not linked against a full-featured libc. Therefore, not all standard functions are working.

Hint:

• Don’t use the C compiler until Exercise IV.
The compiler generates code that is not compatible with the limitations of the first
pipeline implementation as there are still hazards to be resolved in hardware.

• Use a lot of nop instructions.
To debug your processor, it can help to insert 5 nop instructions between two meaningful
instructions to add an artificial pipeline flush.

• If you are unsure how to write something in asm, let the compiler do it.
There is a compiler option (’-S’) to generate asm code instead of a binary. You can do
this for short code snippets and copy the result in your asm program. There are also
websites to do this.

• Don’t try to access the null pointer.
Although this might sound reasonable as memory location zero exists like any other
location and there is no OS in place, according to the C standard accessing memory
location zero is undefined behavior, which lets the compiler generate unexpected code.

• You can access any other memory location.
There is no memory management and OS in place. If you want to access a
memory location you can cast the address to a pointer: (*((volatile unsigned

int*)0x0000BEE0))

• Take the memory alignment into account.
It is illegal to perform a non-aligned memory accessa. This means if you are accessing a
2 or 4 byte word, your address must be a multiple of 2 or 4, respectively.

• RISC-V is little endian.
If you have a look at some memory dump or compiler result, note that all 2 and 4 byte
words are byte-wise reversed.

• When writing an assembly program, consider adding an infinite loop at the end.
Otherwise the processor will continue executing the instruction memory beyond your
program. For C programs you can simply return from the main function, an infinite loop
is added by the framework.

aA RISC-V implementation may handle misaligned access either in HW directly or in SW using an exception.
If you are wondering what we are doing, have a look at your memu implementation.

H

7 Template 43

Note: In order to compile any software in the VM, you first have to copy the appropriate
RISC-V compiler from the lab. Execute the following commands inside the VM.

1 scp -r USERNAME@ssh.tilab.tuwien.ac.at:/opt/ddca/riscv .

2 sudo mkdir -p /opt/ddca

3 sudo mv riscv /opt/ddca

!

Building the C Compiler This section is only relevant to people who want to build the C
compiler used in the lab exercise by themselves. For the CentOS 7 systems used in the lab (and
the VM) the following commands can be used to build the compiler.

1 sudo yum install autoconf automake python3 libmpc -devel mpfr -devel gmp -devel gawk bison

flex texinfo patchutils gcc gcc -c++ zlib -devel expat -devel

2 git clone --recursive https :// github.com/riscv/riscv -gnu -toolchain

3 cd riscv -gnu -toolchain/

4 mkdir build

5 cd build

6 ../ configure --prefix =/opt/ddca/riscv --with -arch=rv32i --with -abi=ilp32

7 make

For other Linux distributions the packages that have to be installed (line 1) may have different
names, but the rest of the script should work the same.

7.3.3 Run Simulations

Once you are done with the first implementation of your processor, you can use the simulation
environment to simulate the execution of a real program on the processor.

Note: This simulation environment is not a replacement for testing, as it is difficult to produce
specific test vectors for individual components when simulating a real program.

!

Navigate to the sim folder. To build your (VHDL) code and the testbench (sim/tb/tb.vhd)
for the simulation, run

1 make compile

To run a program (provided as prog.imem.mif and prog.dmem.mif) for 1 ms, execute the
following command:

1 make sim IMEM=prog.imem.mif DMEM=prog.dmem.mif TIME=1ms

Note: You can use relative paths to the software folder to avoid copying around the files (e.g.,
../software/c/foo.imem.mif) .

!

The simulation environment will print all lines that are written to the UART.

7 Template 44

7.3.4 Synthesis and Run Programs

Although synthesis for MiRiV is rather fast, you should still get used to perform extensive simula-
tions before starting an actual synthesis. Debugging problems in hardware can be very challenging.

To run a synthesis go to the quartus folder, where a preconfigured Quartus project resides and
execute

1 make all

To start the Quartus GUI, you can use the quartus gui target. At the end of the synthesis
run there will be a report containing all warnings and errors.

During synthesis, additional precompiled hardware is added to your design, which handles
memory access and printing. Do not to change the PLL configuration and clock frequency as this
will break the UART connection used for printing.

If the synthesis run was successful, you can download your design using

1 make download

To run a program (provided as prog.imem.mif and prog.dmem.mif) use

1 make run IMEM=prog.imem.mif DMEM=prog.dmem.mif

This command resets the processor, downloads the data and instruction memory and restarts
the processor.

Finally, to receive date printed by the processor (over the UART interface) use

1 make minicom

All these commands assume that the board is directly connected to the computer the commands
are executed on. In order to simplify working with the remote environment in the lab, the Makefile
also provides the targets remote download, remote run and remote minicom. To implement those
targets the Makefile makes use of the rpa shell.py script. Note that the targets remote download

and remote run should only be executed when you have already checked out (i.e., acquired) a host
in the lab (because they exit after performing their task). You can do this by either running
rpa shell.py separately, or by using the remote minicom target first. However, keep in mind
that if you do so and you exit minicom, the connection will be terminated (i.e., you give up your
host). The remote run target works exactly the same as the run target. It automatically copies
the provided mif files to the lab computer.

8 Submission Requirements 45

8 Submission Requirements

8.1 Exercise III

To create an archive for submission in TUWEL (Deadline: 04.06.2021) execute the
submission exercise3 makefile target of the template we provided you with.

1 cd /path/to/ddca_ss2021/ca

2 make submission_exercise3

The makefile creates a file named submission.tar.gz which should contain the following infor-
mation.

For your reference, the submitted archive should therefore have the following structure:

submission.tar.gz

report.pdf..Your lab report.
quartus...The (clean) Quartus project.
sim...All files required for running a simulation.
software...........All test programs. Additional programs for testing are recommended.
testAll test cases. A test for each individual component is highly recommended.
vhdl..The complete VHDL source code.

For a successful submission, your project must fulfill the following criteria:

• Quartus must successfully compile the project.

• Questa/Modelsim must successfully compile and simulate your processor.

• All submitted assembly programs must compile using the provided Makefiles.

• All tests must successfully compile and run without errors.

We will check these points with the provided Makefiles as described in the template description.
This means that the following commands have to run without errors:

1 make -C quartus all

2 make -C software/asm all

3 make -C sim compile

4 make -C sim sim IMEM =../ software/asm/submission.imem.mif DMEM =../ software/asm/

submission.dmem.mif

And for each of your tests:

1 make -C test/your_test compile

2 make -C test/your_test sim

8 Submission Requirements 46

8.2 Exercise IV

To create an archive for submission in TUWEL (Deadline: 30.06.2021) execute the
submission exercise4 makefile target of the template we provided you with.

1 cd /path/to/ddca_ss2021/ca

2 make submission_exercise4

The makefile creates a file named submission.tar.gz which should basically have the same overall
structure as for the Exercise III submission.

For a successful submission, your project must fulfill the following criteria:

• Quartus must successfully compile the project.

• Questa/Modelsim must successfully compile and simulate your processor.

• All submitted assembly and C-programs must compile using the provided Makefiles.

• All tests must successfully compile and run without errors.

• The synthesized design must operate correctly in hardware.

We will check these points with the provided Makefiles as described in the template description.
This means that the following commands have to run without errors:

1 make -C quartus all

2 make -C software/asm all

3 make -C sim compile

4 make -C sim sim IMEM =../ software/asm/submission.imem.mif DMEM =../ software/asm/

submission.dmem.mif

And for each of your tests:

1 make -C test/your_test compile

2 make -C test/your_test sim

Additionally, we will test the design in hardware using:

1 make -C quartus all

2 make -C quartus download

3 make -C quartus run IMEM=prog.imem.mif DMEM=prog.dmem.mif

References 47

References

[1] Altera Corporation. Intel quartus prime pro edition user guide - design recommenda-
tions. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/

ug/ug-qpp-design-recommendations.pdf, 2021. [Online; accessed May-2021].

[2] David A. Patterson and John L. Hennessy. Computer Organization and Design RISC-V Edition:
The Hardware Software Interface. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 2017.

[3] Editors Andrew Waterman and Krste Asanović. The RISC-V Instruction Set Manual, Volume
I: User-Level ISA, Document Version 20190608-Base-Ratified. RISC-V Foundation, March
2019.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-design-recommendations.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-design-recommendations.pdf

References 48

Revision History

Revision Date Author(s) Description

2.0 07.06.2021 FH, JM Added Exercise IV
1.1 07.06.2021 FH, JM Fixed description of Listing 1
1.0 07.05.2021 FH, JM Initial version of Exercise III

Author Abbreviations:

FH Florian Huemer
JM Jürgen Maier

Acknowledgements

The main contributors to the MiRiVimplementation and this exercise are Thomas Hader and
Florian Kriebel.

The lab assignment is based on an earlier assignment for the MIPS ISA, which was written
by Wolfgang Puffitsch, with contributions of several other people, who have helped in improving
it: Jomy Chelackal, Florian Huemer, Thomas Preindl, Jörg Rohringer, Markus Schütz, Thomas
Polzer, Robert Najvirt and others.

	Introduction
	Coding Style
	Submission

	Overview
	Level 0: Basic Elements [30 Points]
	ALU
	Memory Unit
	Register File

	Level 1: Pipeline [70 Points]
	Fetch
	Decode
	Execute
	Memory
	Write-Back
	Pipeline

	Level 2: Hazards [50 Points]
	Forwarding
	Branch Hazards
	Integration

	Level 3: Cache [50 Points]
	Overview
	Cache
	Cache Management Information
	Cache Management Information Per Way
	Cache Data
	Cache Data For One Way
	2&4-way Set Associative Cache (Advanced Implementation)

	Template
	Overview
	File Overview
	Memory Package
	Core Package
	Operation Package

	Template Usage
	Run Tests
	Software Compilation Process
	Run Simulations
	Synthesis and Run Programs

	Submission Requirements
	Exercise III
	Exercise IV

	References
	Revision History

