Package | Description |
---|---|
org.deidentifier.arx |
This package provides the public API for the ARX anonymization framework.
|
org.deidentifier.arx.criteria |
This package implements different variants of class-based privacy criteria,
such as k-anonymity, l-diversity, t-closeness and d-presence.
|
org.deidentifier.arx.gui.model |
Modifier and Type | Method and Description |
---|---|
<T extends PrivacyCriterion> |
ARXConfiguration.getPrivacyModel(java.lang.Class<T> clazz)
Returns an instance of the class, if any.
|
<T extends PrivacyCriterion> |
ARXConfiguration.ARXConfigurationInternal.getPrivacyModel(java.lang.Class<T> clazz) |
<T extends PrivacyCriterion> |
ARXConfiguration.getPrivacyModels(java.lang.Class<T> clazz)
Returns all privacy models which are instances of the given class.
|
<T extends PrivacyCriterion> |
ARXConfiguration.removeCriterion(PrivacyCriterion arg)
Removes the given criterion.
|
Modifier and Type | Method and Description |
---|---|
PrivacyCriterion[] |
ARXConfiguration.ARXConfigurationInternal.getClassBasedPrivacyModelsAsArray()
Returns all class-based criteria (except k-anonymity) as an array.
|
Modifier and Type | Method and Description |
---|---|
java.util.Set<PrivacyCriterion> |
ARXConfiguration.getPrivacyModels()
Returns all privacy models.
|
java.util.Set<PrivacyCriterion> |
ARXConfiguration.ARXConfigurationInternal.getPrivacyModels()
Returns all criteria.
|
Modifier and Type | Method and Description |
---|---|
ARXConfiguration |
ARXConfiguration.addPrivacyModel(PrivacyCriterion c)
Adds a privacy model to the configuration.
|
<T extends PrivacyCriterion> |
ARXConfiguration.removeCriterion(PrivacyCriterion arg)
Removes the given criterion.
|
Modifier and Type | Method and Description |
---|---|
boolean |
ARXConfiguration.isPrivacyModelSpecified(java.lang.Class<? extends PrivacyCriterion> clazz)
Returns whether the configuration contains a privacy model which is an instance of the given class.
|
boolean |
ARXConfiguration.ARXConfigurationInternal.isPrivacyModelSpecified(java.lang.Class<? extends PrivacyCriterion> clazz) |
Modifier and Type | Class and Description |
---|---|
class |
AverageReidentificationRisk
This criterion ensures that an estimate for the average re-identification risk falls
below a given threshold.
|
class |
BasicBLikeness
Basic-beta-Likeness:
Jianneng Cao, Panagiotis Karras: Publishing Microdata with a Robust Privacy Guarantee VLDB 2012. |
class |
DDisclosurePrivacy
Delta-disclosure privacy as proposed in:
Justin Brickell and Vitaly Shmatikov: The Cost of Privacy: Destruction of Data-mining Utility in Anonymized Data Publishing Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2008 |
class |
DistinctLDiversity
The distinct l-diversity privacy criterion.
|
class |
DPresence
The d-presence criterion
Published in:
Nergiz M, Atzori M, Clifton C.
|
class |
EDDifferentialPrivacy
(e,d)-Differential Privacy implemented with SafePub as proposed in:
Bild R, Kuhn KA, Prasser F.
|
class |
EnhancedBLikeness
Enhanced-beta-Likeness:
Jianneng Cao, Panagiotis Karras: Publishing Microdata with a Robust Privacy Guarantee VLDB 2012. |
class |
EntropyLDiversity
The entropy l-diversity privacy model.
|
class |
EqualDistanceTCloseness
The t-closeness criterion with equal-distance EMD.
|
class |
ExplicitPrivacyCriterion
A privacy criterion that is explicitly bound to a sensitive attribute.
|
class |
HierarchicalDistanceTCloseness
The t-closeness criterion with hierarchical-distance EMD.
|
class |
ImplicitPrivacyCriterion
A privacy criterion that is implicitly bound to the quasi-identifiers.
|
class |
Inclusion
This is a special criterion that does not enforce any privacy guarantees
but allows to define a data subset.
|
class |
KAnonymity
The k-anonymity criterion
Published in:
Sweeney L.
|
class |
KMap
This class implements the k-map privacy model as proposed by Latanya Sweeney.
|
class |
LDiversity
An abstract base class for l-diversity criteria
Published in:
Machanavajjhala A, Kifer D, Gehrke J.
|
class |
OrderedDistanceTCloseness
The t-closeness criterion for ordered attributes.
|
class |
PopulationUniqueness
This criterion ensures that the population uniqueness falls below a given threshold.
|
class |
ProfitabilityJournalist
Privacy model for the game theoretic approach proposed in:
A Game Theoretic Framework for Analyzing Re-Identification Risk.
|
class |
ProfitabilityJournalistNoAttack
Privacy model for the "no-attack" variant of the game theoretic approach proposed in:
A Game Theoretic Framework for Analyzing Re-Identification Risk.
|
class |
ProfitabilityProsecutor
Privacy model for the game theoretic approach proposed in:
A Game Theoretic Framework for Analyzing Re-Identification Risk.
|
class |
ProfitabilityProsecutorNoAttack
Privacy model for the "no-attack" variant of the game theoretic approach proposed in:
A Game Theoretic Framework for Analyzing Re-Identification Risk.
|
class |
RecursiveCLDiversity
The recursive-(c,l)-diversity criterion.
|
class |
RiskBasedCriterion
Abstract class for criteria that ensure that a certain risk measure is lower than or equal to a given threshold
|
class |
SampleBasedCriterion
An abstract base class for sample-based privacy criteria.
|
class |
SampleUniqueness
This criterion ensures that the sample uniqueness falls below a given threshold.
|
class |
TCloseness
An abstract base class for t-closeness criteria as proposed in:
Li N, Li T, Venkatasubramanian S.
|
Modifier and Type | Method and Description |
---|---|
PrivacyCriterion |
ProfitabilityProsecutorNoAttack.clone() |
PrivacyCriterion |
ProfitabilityJournalistNoAttack.clone() |
abstract PrivacyCriterion |
PrivacyCriterion.clone()
Clone
|
PrivacyCriterion |
ProfitabilityProsecutorNoAttack.clone(DataSubset subset) |
PrivacyCriterion |
ProfitabilityProsecutor.clone(DataSubset subset) |
PrivacyCriterion |
ProfitabilityJournalistNoAttack.clone(DataSubset subset) |
PrivacyCriterion |
ProfitabilityJournalist.clone(DataSubset subset) |
PrivacyCriterion |
PrivacyCriterion.clone(DataSubset subset)
Clone for local recoding
|
PrivacyCriterion |
KMap.clone(DataSubset subset) |
PrivacyCriterion |
Inclusion.clone(DataSubset subset) |
Modifier and Type | Method and Description |
---|---|
<T extends PrivacyCriterion> |
ModelConfiguration.getCriteria(java.lang.Class<T> clazz)
Delegates to an instance of ARXConfiguration.
|
<T extends PrivacyCriterion> |
ModelConfiguration.getCriterion(java.lang.Class<T> clazz)
Delegates to an instance of ARXConfiguration.
|
Modifier and Type | Method and Description |
---|---|
PrivacyCriterion |
ModelTClosenessCriterion.getCriterion(Model model) |
PrivacyCriterion |
ModelRiskBasedCriterion.getCriterion(Model model) |
PrivacyCriterion |
ModelProfitabilityCriterion.getCriterion(Model model) |
PrivacyCriterion |
ModelLDiversityCriterion.getCriterion(Model model) |
PrivacyCriterion |
ModelKMapCriterion.getCriterion(Model model) |
PrivacyCriterion |
ModelKAnonymityCriterion.getCriterion(Model model) |
PrivacyCriterion |
ModelDPresenceCriterion.getCriterion(Model model) |
PrivacyCriterion |
ModelDifferentialPrivacyCriterion.getCriterion(Model model) |
PrivacyCriterion |
ModelDDisclosurePrivacyCriterion.getCriterion(Model model) |
abstract PrivacyCriterion |
ModelCriterion.getCriterion(Model model)
Implement this to return the criterion.
|
PrivacyCriterion |
ModelBLikenessCriterion.getCriterion(Model model) |
Modifier and Type | Method and Description |
---|---|
java.util.Set<PrivacyCriterion> |
ModelConfiguration.getCriteria()
Delegates to an instance of ARXConfiguration.
|
Modifier and Type | Method and Description |
---|---|
ARXConfiguration |
ModelConfiguration.addCriterion(PrivacyCriterion c)
Delegates to an instance of ARXConfiguration.
|
Modifier and Type | Method and Description |
---|---|
boolean |
ModelConfiguration.containsCriterion(java.lang.Class<? extends PrivacyCriterion> clazz)
Delegates to an instance of ARXConfiguration.
|