public abstract class MetricDefault extends Metric<org.deidentifier.arx.metric.InformationLossDefault>
Metric.AggregateFunction
Constructor and Description |
---|
MetricDefault(boolean monotonicWithGeneralization,
boolean monotonicWithSuppression,
boolean independent) |
Modifier and Type | Method and Description |
---|---|
InformationLoss<?> |
createMaxInformationLoss()
Returns an instance of the maximal value.
|
InformationLoss<?> |
createMinInformationLoss()
Returns an instance of the minimal value.
|
createAECSMetric, createAECSMetric, createAmbiguityMetric, createClassificationMetric, createClassificationMetric, createDiscernabilityMetric, createDiscernabilityMetric, createEntropyBasedInformationLossMetric, createEntropyBasedInformationLossMetric, createEntropyMetric, createEntropyMetric, createEntropyMetric, createEntropyMetric, createEntropyMetric, createEntropyMetric, createHeightMetric, createHeightMetric, createInstanceOfHighestScore, createInstanceOfLowestScore, createKLDivergenceMetric, createLossMetric, createLossMetric, createLossMetric, createLossMetric, createMetric, createNormalizedEntropyMetric, createNormalizedEntropyMetric, createPrecisionMetric, createPrecisionMetric, createPrecisionMetric, createPrecisionMetric, createPrecisionMetric, createPrecisionMetric, createPrecisionMetric, createPrecisionMetric, createPrecomputedEntropyMetric, createPrecomputedEntropyMetric, createPrecomputedEntropyMetric, createPrecomputedEntropyMetric, createPrecomputedEntropyMetric, createPrecomputedEntropyMetric, createPrecomputedLossMetric, createPrecomputedLossMetric, createPrecomputedLossMetric, createPrecomputedLossMetric, createPrecomputedNormalizedEntropyMetric, createPrecomputedNormalizedEntropyMetric, createPublisherPayoutMetric, createPublisherPayoutMetric, createStaticMetric, createStaticMetric, getAggregateFunction, getConfiguration, getDescription, getGeneralizationFactor, getGeneralizationSuppressionFactor, getInformationLoss, getInformationLoss, getLowerBound, getLowerBound, getName, getScore, getSuppressionFactor, initialize, isAbleToHandleClusteredMicroaggregation, isAbleToHandleMicroaggregation, isGSFactorSupported, isIndependent, isMonotonic, isMonotonicWithGeneralization, isMonotonicWithSuppression, isMultiDimensional, isPrecomputed, isScoreFunctionSupported, isWeighted, list, render, toString
public MetricDefault(boolean monotonicWithGeneralization, boolean monotonicWithSuppression, boolean independent)
monotonicWithGeneralization
- monotonicWithSuppression
- independent
- public InformationLoss<?> createMaxInformationLoss()
Metric
createMaxInformationLoss
in class Metric<org.deidentifier.arx.metric.InformationLossDefault>
public InformationLoss<?> createMinInformationLoss()
Metric
createMinInformationLoss
in class Metric<org.deidentifier.arx.metric.InformationLossDefault>