12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468 |
- REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ...
- comment
- Test and demonstration file for the Taylor expansion package,
- by Rainer M. Schoepf. Works with version 2.1e (03-May-95);
- %%% showtime;
- on errcont;
- % disable interruption on errors
- comment Simple Taylor expansion;
- xx := taylor (e**x, x, 0, 4);
- 1 2 1 3 1 4 5
- xx := 1 + x + ---*x + ---*x + ----*x + O(x )
- 2 6 24
- yy := taylor (e**y, y, 0, 4);
- 1 2 1 3 1 4 5
- yy := 1 + y + ---*y + ---*y + ----*y + O(y )
- 2 6 24
- comment Basic operations, i.e. addition, subtraction, multiplication,
- and division are possible: this is not done automatically if
- the switch TAYLORAUTOCOMBINE is OFF. In this case it is
- necessary to use taylorcombine;
- taylorcombine (xx**2);
- 2 4 3 2 4 5
- 1 + 2*x + 2*x + ---*x + ---*x + O(x )
- 3 3
- taylorcombine (ws - xx);
- 3 2 7 3 5 4 5
- x + ---*x + ---*x + ---*x + O(x )
- 2 6 8
- taylorcombine (xx**3);
- 9 2 9 3 27 4 5
- 1 + 3*x + ---*x + ---*x + ----*x + O(x )
- 2 2 8
- comment The result is again a Taylor kernel;
- if taylorseriesp ws then write "OK";
- OK
- comment It is not possible to combine Taylor kernels that were
- expanded with respect to different variables;
- taylorcombine (xx**yy);
- 1 2 1 3 1 4 5
- (1 + x + ---*x + ---*x + ----*x + O(x ))
- 2 6 24
- 1 2 1 3 1 4 5
- **(1 + y + ---*y + ---*y + ----*y + O(y ))
- 2 6 24
- comment But we can take the exponential or the logarithm
- of a Taylor kernel;
- taylorcombine (e**xx);
- 2 5*e 3 5*e 4 5
- e + e*x + e*x + -----*x + -----*x + O(x )
- 6 8
- taylorcombine log ws;
- 1 2 1 3 1 4 5
- 1 + x + ---*x + ---*x + ----*x + O(x )
- 2 6 24
- comment A more complicated example;
- hugo := taylor(log(1/(1-x)),x,0,5);
- 1 2 1 3 1 4 1 5 6
- hugo := x + ---*x + ---*x + ---*x + ---*x + O(x )
- 2 3 4 5
- taylorcombine(exp(hugo/(1+hugo)));
- 1 4 6
- 1 + x + ----*x + O(x )
- 12
- comment We may try to expand about another point;
- taylor (xx, x, 1, 2);
- 65 8 5 2 3
- ---- + ---*(x - 1) + ---*(x - 1) + O((x - 1) )
- 24 3 4
- comment Arc tangent is one of the functions this package knows of;
- xxa := taylorcombine atan ws;
- 65 1536 2933040 2 3
- xxa := atan(----) + ------*(x - 1) - ----------*(x - 1) + O((x - 1) )
- 24 4801 23049601
- comment The trigonometric functions;
- taylor (tan x / x, x, 0, 2);
- 1 2 3
- 1 + ---*x + O(x )
- 3
- taylorcombine sin ws;
- cos(1) 2 3
- sin(1) + --------*x + O(x )
- 3
- taylor (cot x / x, x, 0, 4);
- -2 1 1 2 2 4 5
- x - --- - ----*x - -----*x + O(x )
- 3 45 945
- comment The poles of these functions are correctly handled;
- taylor(tan x,x,pi/2,0);
- pi -1 pi
- - (x - ----) + O(x - ----)
- 2 2
- taylor(tan x,x,pi/2,3);
- pi -1 1 pi 1 pi 3 pi 4
- - (x - ----) + ---*(x - ----) + ----*(x - ----) + O((x - ----) )
- 2 3 2 45 2 2
- comment Expansion with respect to more than one kernel is possible;
- xy := taylor (e**(x+y), x, 0, 2, y, 0, 2);
- 1 2 3 3
- xy := 1 + y + ---*y + x + y*x + (4 terms) + O(x ,y )
- 2
- taylorcombine (ws**2);
- 2 3 3
- 1 + 2*y + 2*y + 2*x + 4*y*x + (4 terms) + O(x ,y )
- comment We take the inverse and convert back to REDUCE's standard
- representation;
- taylorcombine (1/ws);
- 2 3 3
- 1 - 2*x + 2*x - 2*y + 4*y*x + (4 terms) + O(x ,y )
- taylortostandard ws;
- 2 2 2 2 2 2
- 4*x *y - 4*x *y + 2*x - 4*x*y + 4*x*y - 2*x + 2*y - 2*y + 1
- comment Some examples of Taylor kernel divsion;
- xx1 := taylor (sin (x), x, 0, 4);
- 1 3 5
- xx1 := x - ---*x + O(x )
- 6
- taylorcombine (xx/xx1);
- -1 2 1 2 3
- x + 1 + ---*x + ---*x + O(x )
- 3 3
- taylorcombine (1/xx1);
- -1 1 3
- x + ---*x + O(x )
- 6
- tt1 := taylor (exp (x), x, 0, 3);
- 1 2 1 3 4
- tt1 := 1 + x + ---*x + ---*x + O(x )
- 2 6
- tt2 := taylor (sin (x), x, 0, 3);
- 1 3 4
- tt2 := x - ---*x + O(x )
- 6
- tt3 := taylor (1 + tt2, x, 0, 3);
- 1 3 4
- tt3 := 1 + x - ---*x + O(x )
- 6
- taylorcombine(tt1/tt2);
- -1 2 2
- x + 1 + ---*x + O(x )
- 3
- taylorcombine(tt1/tt3);
- 1 2 1 3 4
- 1 + ---*x - ---*x + O(x )
- 2 6
- taylorcombine(tt2/tt1);
- 2 1 3 4
- x - x + ---*x + O(x )
- 3
- taylorcombine(tt3/tt1);
- 1 2 1 3 4
- 1 - ---*x + ---*x + O(x )
- 2 6
- comment Here's what I call homogeneous expansion;
- xx := taylor (e**(x*y), {x,y}, 0, 2);
- 3
- xx := 1 + y*x + O({x,y} )
- xx1 := taylor (sin (x+y), {x,y}, 0, 2);
- 3
- xx1 := y + x + O({x,y} )
- xx2 := taylor (cos (x+y), {x,y}, 0, 2);
- 1 2 1 2 3
- xx2 := 1 - ---*y - y*x - ---*x + O({x,y} )
- 2 2
- temp := taylorcombine (xx/xx2);
- 1 2 1 2 3
- temp := 1 + ---*y + 2*y*x + ---*x + O({x,y} )
- 2 2
- taylorcombine (ws*xx2);
- 3
- 1 + y*x + O({x,y} )
- comment The following shows a principal difficulty:
- since xx1 is symmetric in x and y but has no constant term
- it is impossible to compute 1/xx1;
- taylorcombine (1/xx1);
- ***** Not a unit in argument to invtaylor
- comment Substitution in Taylor expressions is possible;
- sub (x=z, xy);
- 1 2 3 3
- 1 + y + ---*y + z + y*z + (4 terms) + O(z ,y )
- 2
- comment Expression dependency in substitution is detected;
- sub (x=y, xy);
- ***** Invalid substitution in Taylor kernel: dependent variables y y
- comment It is possible to replace a Taylor variable by a constant;
- sub (x=4, xy);
- 13 2 3
- 13 + 13*y + ----*y + O(y )
- 2
- sub (x=4, xx1);
- 3
- 4 + y + O(y )
- sub (y=0, ws);
- 4
- comment This package has three switches:
- TAYLORKEEPORIGINAL, TAYLORAUTOEXPAND, and TAYLORAUTOCOMBINE;
- on taylorkeeporiginal;
- temp := taylor (e**(x+y), x, 0, 5);
- y y y
- y y e 2 e 3 e 4 6
- temp := e + e *x + ----*x + ----*x + ----*x + (1 term) + O(x )
- 2 6 24
- taylorcombine (log (temp));
- 6
- y + x + O(x )
- taylororiginal ws;
- x + y
- taylorcombine (temp * e**x);
- y y y
- x y y e 2 e 3 e 4 6
- e *(e + e *x + ----*x + ----*x + ----*x + (1 term) + O(x ))
- 2 6 24
- on taylorautoexpand;
- taylorcombine ws;
- y y
- y y y 2 4*e 3 2*e 4 6
- e + 2*e *x + 2*e *x + ------*x + ------*x + (1 term) + O(x )
- 3 3
- taylororiginal ws;
- 2*x + y
- e
- taylorcombine (xx1 / x);
- -1 2
- y*x + 1 + O({x,y} )
- on taylorautocombine;
- xx / xx2;
- 1 2 1 2 3
- 1 + ---*y + 2*y*x + ---*x + O({x,y} )
- 2 2
- ws * xx2;
- 3
- 1 + y*x + O({x,y} )
- comment Another example that shows truncation if Taylor kernels
- of different expansion order are combined;
- comment First we increase the number of terms to be printed;
- taylorprintterms := all;
- taylorprintterms := all
- p := taylor (x**2 + 2, x, 0, 10);
- 2 11
- p := 2 + x + O(x )
- p - x**2;
- 2 11 2
- (2 + x + O(x )) - x
- p - taylor (x**2, x, 0, 5);
- 6
- 2 + O(x )
- taylor (p - x**2, x, 0, 6);
- 7
- 2 + O(x )
- off taylorautocombine;
- taylorcombine(p-x**2);
- 11
- 2 + O(x )
- taylorcombine(p - taylor(x**2,x,0,5));
- 6
- 2 + O(x )
- comment Switch back to finite number of terms;
- taylorprintterms := 6;
- taylorprintterms := 6
- comment Some more examples;
- taylor(1/(1+y^4+x^2*y^2+x^4),{x,y},0,6);
- 4 2 2 4 7
- 1 - y - y *x - x + O({x,y} )
- taylor ((1 + x)**n, x, 0, 3);
- 2
- n*(n - 1) 2 n*(n - 3*n + 2) 3 4
- 1 + n*x + -----------*x + ------------------*x + O(x )
- 2 6
- taylor (e**(-a*t) * (1 + sin(t)), t, 0, 4);
- 3 2
- a*(a - 2) 2 - a + 3*a - 1 3
- 1 + ( - a + 1)*t + -----------*t + ------------------*t
- 2 6
- 3 2
- a*(a - 4*a + 4) 4 5
- + -------------------*t + O(t )
- 24
- operator f;
- taylor (1 + f(t), t, 0, 3);
- sub(t=0,df(f(t),t,2)) 2
- f(0) + 1 + sub(t=0,df(f(t),t))*t + -----------------------*t
- 2
- sub(t=0,df(f(t),t,3)) 3 4
- + -----------------------*t + O(t )
- 6
- taylor(f(sqrt(x^2+y^2)),x,x0,4,y,y0,4);
- 2 2 2 2
- f(sqrt(x0 + y0 )) + sub(y=y0,df(f(sqrt(x0 + y )),y))*(y - y0)
- 2 2
- sub(y=y0,df(f(sqrt(x0 + y )),y,2)) 2
- + -------------------------------------*(y - y0)
- 2
- 2 2
- sub(y=y0,df(f(sqrt(x0 + y )),y,3)) 3
- + -------------------------------------*(y - y0)
- 6
- 2 2
- sub(y=y0,df(f(sqrt(x0 + y )),y,4)) 4
- + -------------------------------------*(y - y0)
- 24
- 2 2
- + sub(x=x0,df(f(sqrt(x + y0 )),x))*(x - x0) + (19 terms)
- 5 5
- + O((x - x0) ,(y - y0) )
- clear f;
- taylor (sqrt(1 + a*x + sin(x)), x, 0, 3);
- 2 3 2
- a + 1 - a - 2*a - 1 2 3*a + 9*a + 9*a - 1 3 4
- 1 + -------*x + -----------------*x + -----------------------*x + O(x )
- 2 8 48
- taylorcombine (ws**2);
- 1 3 4
- 1 + (a + 1)*x - ---*x + O(x )
- 6
- taylor (sqrt(1 + x), x, 0, 5);
- 1 1 2 1 3 5 4 7 5 6
- 1 + ---*x - ---*x + ----*x - -----*x + -----*x + O(x )
- 2 8 16 128 256
- taylor ((cos(x) - sec(x))^3, x, 0, 5);
- 6
- 0 + O(x )
- taylor ((cos(x) - sec(x))^-3, x, 0, 5);
- -6 1 -4 11 -2 347 6767 2 15377 4 6
- - x + ---*x + -----*x - ------- - --------*x - ---------*x + O(x )
- 2 120 15120 604800 7983360
- taylor (sqrt(1 - k^2*sin(x)^2), x, 0, 6);
- 2 2 2 2 4 2
- k 2 k *( - 3*k + 4) 4 k *( - 45*k + 60*k - 16) 6 7
- 1 - ----*x + ------------------*x + ----------------------------*x + O(x )
- 2 24 720
- taylor (sin(x + y), x, 0, 3, y, 0, 3);
- 1 3 1 2 1 2 1 2 3 4 4
- x - ---*x + y - ---*y*x - ---*y *x + ----*y *x + (2 terms) + O(x ,y )
- 6 2 2 12
- taylor (e^x - 1 - x,x,0,6);
- 1 2 1 3 1 4 1 5 1 6 7
- ---*x + ---*x + ----*x + -----*x + -----*x + O(x )
- 2 6 24 120 720
- taylorcombine sqrt ws;
- 1 1 2 1 3 1 4
- ---------*x + -----------*x + ------------*x + -------------*x
- sqrt(2) 6*sqrt(2) 36*sqrt(2) 270*sqrt(2)
- 1 5 6
- + --------------*x + O(x )
- 2592*sqrt(2)
- taylor(sin(x)/x,x,1,2);
- - 2*cos(1) + sin(1) 2
- sin(1) + (cos(1) - sin(1))*(x - 1) + ----------------------*(x - 1)
- 2
- 3
- + O((x - 1) )
- taylor((sqrt(4+h)-2)/h,h,0,5);
- 1 1 1 2 5 3 7 4 21 5 6
- --- - ----*h + -----*h - -------*h + --------*h - ---------*h + O(h )
- 4 64 512 16384 131072 2097152
- taylor((sqrt(x)-2)/(4-x),x,4,2);
- 1 1 1 2 3
- - --- + ----*(x - 4) - -----*(x - 4) + O((x - 4) )
- 4 64 512
- taylor((sqrt(y+4)-2)/(-y),y,0,2);
- 1 1 1 2 3
- - --- + ----*y - -----*y + O(y )
- 4 64 512
- taylor(x*tanh(x)/(sqrt(1-x^2)-1),x,0,3);
- 7 2 4
- - 2 + ---*x + O(x )
- 6
- taylor((e^(5*x)-2*x)^(1/x),x,0,2);
- 3
- 3 3 73*e 2 3
- e + 8*e *x + -------*x + O(x )
- 3
- taylor(sin x/cos x,x,pi/2,3);
- pi -1 1 pi 1 pi 3 pi 4
- - (x - ----) + ---*(x - ----) + ----*(x - ----) + O((x - ----) )
- 2 3 2 45 2 2
- taylor(log x*sin(x^2)/(x*sinh x),x,0,2);
- 1 2 3
- log(x)*(1 - ---*x + O(x ))
- 6
- taylor(1/x-1/sin x,x,0,2);
- 1 3
- - ---*x + O(x )
- 6
- taylor(tan x/log cos x,x,pi/2,2);
- pi -1 pi
- - (x - ----) + O(x - ----)
- 2 2
- -------------------------------
- log(pi - 2*x) - log(2)
- taylor(log(x^2/(x^2-a)),x,0,3);
- 2
- - x
- taylor(log(--------),x,0,3)
- 2
- a - x
- comment Three more complicated examples contributed by Stan Kameny;
- zz2 := (z*(z-2*pi*i)*(z-pi*i/2)^2)/(sinh z-i);
- 3 2 2 3
- z*(2*i*pi - 12*i*pi*z - 9*pi *z + 4*z )
- zz2 := -------------------------------------------
- 4*(sinh(z) - i)
- dz2 := df(zz2,z);
- 3 3 2 2
- dz2 := ( - 2*cosh(z)*i*pi *z + 12*cosh(z)*i*pi*z + 9*cosh(z)*pi *z
- 4 3 2
- - 4*cosh(z)*z + 2*sinh(z)*i*pi - 36*sinh(z)*i*pi*z
- 2 3 2 3 3
- - 18*sinh(z)*pi *z + 16*sinh(z)*z + 18*i*pi *z - 16*i*z + 2*pi
- 2 2
- - 36*pi*z )/(4*(sinh(z) - 2*sinh(z)*i - 1))
- z0 := pi*i/2;
- i*pi
- z0 := ------
- 2
- taylor(dz2,z,z0,6);
- 2
- i*(pi - 16) i*pi pi i*pi 2
- - 2*pi + --------------*(z - ------) + ----*(z - ------)
- 4 2 2 2
- 2
- i*( - 3*pi + 80) i*pi 3 pi i*pi 4
- + -------------------*(z - ------) - ----*(z - ------)
- 120 2 24 2
- 2
- i*(5*pi - 168) i*pi 5 i*pi 7
- + -----------------*(z - ------) + (1 term) + O((z - ------) )
- 3360 2 2
- zz3:=(z*(z-2*pi)*(z-pi/2)^2)/(sin z-1);
- 3 2 2 3
- z*( - 2*pi + 9*pi *z - 12*pi*z + 4*z )
- zz3 := ------------------------------------------
- 4*(sin(z) - 1)
- dz3 := df(zz3,z);
- 3 2 2 3 4
- dz3 := (2*cos(z)*pi *z - 9*cos(z)*pi *z + 12*cos(z)*pi*z - 4*cos(z)*z
- 3 2 2 3
- - 2*sin(z)*pi + 18*sin(z)*pi *z - 36*sin(z)*pi*z + 16*sin(z)*z
- 3 2 2 3 2
- + 2*pi - 18*pi *z + 36*pi*z - 16*z )/(4*(sin(z) - 2*sin(z) + 1))
- z1 := pi/2;
- pi
- z1 := ----
- 2
- taylor(dz3,z,z1,6);
- 2 2
- pi - 16 pi pi pi 2 3*pi - 80 pi 3
- 2*pi + ----------*(z - ----) + ----*(z - ----) + ------------*(z - ----)
- 4 2 2 2 120 2
- 2
- pi pi 4 5*pi - 168 pi 5 pi 7
- + ----*(z - ----) + -------------*(z - ----) + (1 term) + O((z - ----) )
- 24 2 3360 2 2
- taylor((sin tan x-tan sin x)/(asin atan x-atan asin x),x,0,6);
- 5 2 1313 4 2773 6 7
- 1 + ---*x + ------*x - -------*x + O(x )
- 3 1890 11907
- comment If the expansion point is not constant, it has to be taken
- care of in differentation, as the following examples show;
- taylor(sin(x+a),x,a,8);
- sin(2*a) 2 cos(2*a) 3
- sin(2*a) + cos(2*a)*(x - a) - ----------*(x - a) - ----------*(x - a)
- 2 6
- sin(2*a) 4 cos(2*a) 5 9
- + ----------*(x - a) + ----------*(x - a) + (3 terms) + O((x - a) )
- 24 120
- df(ws,a);
- cos(2*a) 2 sin(2*a) 3
- cos(2*a) - sin(2*a)*(x - a) - ----------*(x - a) + ----------*(x - a)
- 2 6
- cos(2*a) 4 sin(2*a) 5 8
- + ----------*(x - a) - ----------*(x - a) + (2 terms) + O((x - a) )
- 24 120
- taylor(cos(x+a),x,a,7);
- cos(2*a) 2 sin(2*a) 3
- cos(2*a) - sin(2*a)*(x - a) - ----------*(x - a) + ----------*(x - a)
- 2 6
- cos(2*a) 4 sin(2*a) 5 8
- + ----------*(x - a) - ----------*(x - a) + (2 terms) + O((x - a) )
- 24 120
- comment A problem are non-analytical terms: rational powers and
- logarithmic terms can be handled, but other types of essential
- singularities cannot;
- taylor(sqrt(x),x,0,2);
- 1/2 3
- x + O(x )
- taylor(asinh(1/x),x,0,5);
- 1 2 3 4 5 6 7
- - log(x) + (log(2) + ---*x - ----*x + ----*x + O(x ))
- 4 32 96
- taylor(e**(1/x),x,0,2);
- 1/x
- taylor(e ,x,0,2)
- comment Another example for non-integer powers;
- sub (y = sqrt (x), yy);
- 1/2 1 1 3/2 1 2 5/2
- 1 + x + ---*x + ---*x + ----*x + O(x )
- 2 6 24
- comment Expansion about infinity is possible in principle...;
- taylor (e**(1/x), x, infinity, 5);
- 1 1 1 1 1 1 1 1 1 1
- 1 + --- + ---*---- + ---*---- + ----*---- + -----*---- + O(----)
- x 2 2 6 3 24 4 120 5 6
- x x x x x
- xi := taylor (sin (1/x), x, infinity, 5);
- 1 1 1 1 1 1
- xi := --- - ---*---- + -----*---- + O(----)
- x 6 3 120 5 6
- x x x
- y1 := taylor(x/(x-1), x, infinity, 3);
- 1 1 1 1
- y1 := 1 + --- + ---- + ---- + O(----)
- x 2 3 4
- x x x
- z := df(y1, x);
- 1 1 1 1
- z := - ---- - 2*---- - 3*---- + O(----)
- 2 3 4 5
- x x x x
- comment ...but far from being perfect;
- taylor (1 / sin (x), x, infinity, 5);
- 1
- taylor(--------,x,infinity,5)
- sin(x)
- clear z;
- comment The template of a Taylor kernel can be extracted;
- taylortemplate yy;
- {{y,0,4}}
- taylortemplate xxa;
- {{x,1,2}}
- taylortemplate xi;
- {{x,infinity,5}}
- taylortemplate xy;
- {{x,0,2},{y,0,2}}
- taylortemplate xx1;
- {{{x,y},0,2}}
- comment Here is a slightly less trivial example;
- exp := (sin (x) * sin (y) / (x * y))**2;
- 2 2
- sin(x) *sin(y)
- exp := -----------------
- 2 2
- x *y
- taylor (exp, x, 0, 1, y, 0, 1);
- 2 2
- 1 + O(x ,y )
- taylor (exp, x, 0, 2, y, 0, 2);
- 1 2 1 2 1 2 2 3 3
- 1 - ---*x - ---*y + ---*y *x + O(x ,y )
- 3 3 9
- tt := taylor (exp, {x,y}, 0, 2);
- 1 2 1 2 3
- tt := 1 - ---*y - ---*x + O({x,y} )
- 3 3
- comment An example that uses factorization;
- on factor;
- ff := y**5 - 1;
- 4 3 2
- ff := (y + y + y + y + 1)*(y - 1)
- zz := sub (y = taylor(e**x, x, 0, 3), ff);
- 1 2 1 3 4 4 1 2 1 3 4 3
- zz := ((1 + x + ---*x + ---*x + O(x )) + (1 + x + ---*x + ---*x + O(x ))
- 2 6 2 6
- 1 2 1 3 4 2 1 2 1 3 4
- + (1 + x + ---*x + ---*x + O(x )) + (1 + x + ---*x + ---*x + O(x ))
- 2 6 2 6
- 1 2 1 3 4
- + 1)*((1 + x + ---*x + ---*x + O(x )) - 1)
- 2 6
- on exp;
- zz;
- 1 2 1 3 4 5
- (1 + x + ---*x + ---*x + O(x )) - 1
- 2 6
- comment A simple example of Taylor kernel differentiation;
- hugo := taylor(e^x,x,0,5);
- 1 2 1 3 1 4 1 5 6
- hugo := 1 + x + ---*x + ---*x + ----*x + -----*x + O(x )
- 2 6 24 120
- df(hugo^2,x);
- 2 8 3 4 4 5
- 2 + 4*x + 4*x + ---*x + ---*x + O(x )
- 3 3
- comment The following shows the (limited) capabilities to integrate
- Taylor kernels. Only simple cases are supported, otherwise
- a warning is printed and the Taylor kernels are converted to
- standard representation;
- zz := taylor (sin x, x, 0, 5);
- 1 3 1 5 6
- zz := x - ---*x + -----*x + O(x )
- 6 120
- ww := taylor (cos y, y, 0, 5);
- 1 2 1 4 6
- ww := 1 - ---*y + ----*y + O(y )
- 2 24
- int (zz, x);
- 1 2 1 4 1 6 7
- ---*x - ----*x + -----*x + O(x )
- 2 24 720
- int (ww, x);
- x 2 x 4 6
- x - ---*y + ----*y + O(y )
- 2 24
- int (zz + ww, x);
- 1 2 1 4 1 6 7 x 2 x 4 6
- (---*x - ----*x + -----*x + O(x )) + (x - ---*y + ----*y + O(y ))
- 2 24 720 2 24
- comment And here we present Taylor series reversion.
- We start with the example given by Knuth for the algorithm;
- taylor (t - t**2, t, 0, 5);
- 2 6
- t - t + O(t )
- taylorrevert (ws, t, x);
- 2 3 4 5 6
- x + x + 2*x + 5*x + 14*x + O(x )
- tan!-series := taylor (tan x, x, 0, 5);
- 1 3 2 5 6
- tan-series := x + ---*x + ----*x + O(x )
- 3 15
- taylorrevert (tan!-series, x, y);
- 1 3 1 5 6
- y - ---*y + ---*y + O(y )
- 3 5
- atan!-series:=taylor (atan y, y, 0, 5);
- 1 3 1 5 6
- atan-series := y - ---*y + ---*y + O(y )
- 3 5
- tmp := taylor (e**x, x, 0, 5);
- 1 2 1 3 1 4 1 5 6
- tmp := 1 + x + ---*x + ---*x + ----*x + -----*x + O(x )
- 2 6 24 120
- taylorrevert (tmp, x, y);
- 1 2 1 3 1 4 1 5 6
- y - 1 - ---*(y - 1) + ---*(y - 1) - ---*(y - 1) + ---*(y - 1) + O((y - 1) )
- 2 3 4 5
- taylor (log y, y, 1, 5);
- 1 2 1 3 1 4 1 5 6
- y - 1 - ---*(y - 1) + ---*(y - 1) - ---*(y - 1) + ---*(y - 1) + O((y - 1) )
- 2 3 4 5
- comment The following example calculates the perturbation expansion
- of the root x = 20 of the following polynomial in terms of
- EPS, in ROUNDED mode;
- poly := for r := 1 : 20 product (x - r);
- 20 19 18 17 16 15
- poly := x - 210*x + 20615*x - 1256850*x + 53327946*x - 1672280820*x
- 14 13 12
- + 40171771630*x - 756111184500*x + 11310276995381*x
- 11 10 9
- - 135585182899530*x + 1307535010540395*x - 10142299865511450*x
- 8 7 6
- + 63030812099294896*x - 311333643161390640*x + 1206647803780373360*x
- 5 4
- - 3599979517947607200*x + 8037811822645051776*x
- 3 2
- - 12870931245150988800*x + 13803759753640704000*x
- - 8752948036761600000*x + 2432902008176640000
- on rounded;
- tpoly := taylor (poly, x, 20, 4);
- 2
- tpoly := 1.21649393692e+17*(x - 20) + 4.31564847287e+17*(x - 20)
- 3 4
- + 6.68609351672e+17*(x - 20) + 6.10115975015e+17*(x - 20)
- 5
- + O((x - 20) )
- taylorrevert (tpoly, x, eps);
- 2 3
- 20 + 8.22034512178e-18*eps - 2.39726594662e-34*eps + 1.09290580232e-50*eps
- 4 5
- - 5.97114159465e-67*eps + O(eps )
- comment Some more examples using rounded mode;
- taylor(sin x/x,x,0,4);
- 2 4 5
- 1 - 0.166666666667*x + 0.00833333333333*x + O(x )
- taylor(sin x,x,pi/2,4);
- 2
- 1 + 6.12303176911e-17*(x - 1.57079632679) - 0.5*(x - 1.57079632679)
- 3 4
- - 1.02050529485e-17*(x - 1.57079632679) + 0.0416666666667*(x - 1.57079632679)
- 5
- + O((x - 1.57079632679) )
- taylor(tan x,x,pi/2,4);
- -1
- - (x - 1.57079632679) + 0.333333333333*(x - 1.57079632679)
- 3 5
- + 0.0222222222222*(x - 1.57079632679) + O((x - 1.57079632679) )
- off rounded;
- comment An example that involves computing limits of type 0/0 if
- expansion is done via differentiation;
- taylor(sqrt((e^x - 1)/x),x,0,15);
- 1 5 2 1 3 79 4 3 5 16
- 1 + ---*x + ----*x + -----*x + -------*x + -------*x + (10 terms) + O(x )
- 4 96 128 92160 40960
- comment An example that involves intermediate non-analytical terms
- which cancel entirely;
- taylor(x^(5/2)/(log(x+1)*tan(x^(3/2))),x,0,5);
- 1 1 2 7 3 139 4 67 5 6
- 1 + ---*x - ----*x - ----*x - -----*x + ------*x + O(x )
- 2 12 24 720 1440
- comment Other examples involving non-analytical terms;
- taylor(log(e^x-1),x,0,5);
- 1 1 2 1 4 5
- log(x) + (---*x + ----*x - ------*x + O(x ))
- 2 24 2880
- taylor(e^(1/x)*(e^x-1),x,0,5);
- 1/x 1 2 1 3 1 4 1 5 6
- e *(x + ---*x + ---*x + ----*x + -----*x + O(x ))
- 2 6 24 120
- taylor(log(x)*x^10,x,0,5);
- 10 11
- log(x)*(x + O(x ))
- taylor(log(x)*x^10,x,0,11);
- 10 12
- log(x)*(x + O(x ))
- taylor(log(x-a)/((a-b)*(a-c)) + log(2(x-b))/((b-c)*(b-a))
- + log(x-c)/((c-a)*(c-b)),x,infinity,2);
- log(2) 1 1 1
- - ---------------------- - ---*---- + O(----)
- 2 2 2 3
- a*b - a*c - b + b*c x x
- ss := (sqrt(x^(2/5) +1) - x^(1/3)-1)/x^(1/3);
- 2/5 1/3
- sqrt(x + 1) - x - 1
- ss := ---------------------------
- 1/3
- x
- taylor(exp ss,x,0,2);
- 1 1 1/15 1 2/15 1 1/5 1 4/15 1 1/3
- --- + -----*x + -----*x + ------*x + -------*x + --------*x
- e 2*e 8*e 48*e 384*e 3840*e
- 31/15
- + (25 terms) + O(x )
- taylor(exp sub(x=x^15,ss),x,0,2);
- 1 1 1 2 3
- --- + -----*x + -----*x + O(x )
- e 2*e 8*e
- taylor(dilog(x),x,0,4);
- 1 2 1 3 1 4 5
- log(x)*(x + ---*x + ---*x + ---*x + O(x ))
- 2 3 4
- 2
- pi 1 2 1 3 1 4 5
- + (----- - x - ---*x - ---*x - ----*x + O(x ))
- 6 4 9 16
- taylor(ei(x),x,0,4);
- 1 2 1 3 1 4 5
- log(x) - psi(1) + (x + ---*x + ----*x + ----*x + O(x ))
- 4 18 96
- comment In the following we demonstrate the possibiblity to compute the
- expansion of a function which is given by a simple first order
- differential equation: the function myexp(x) is exp(-x^2);
- operator myexp,myerf;
- let {df(myexp(~x),~x) => -2*x*myexp(x), myexp(0) => 1,
- df(myerf(~x),~x) => 2/sqrt(pi)*myexp(x), myerf(0) => 0};
- taylor(myexp(x),x,0,5);
- 2 1 4 6
- 1 - x + ---*x + O(x )
- 2
- taylor(myerf(x),x,0,5);
- 2*sqrt(pi) 2*sqrt(pi) 3 sqrt(pi) 5 6
- ------------*x - ------------*x + ----------*x + O(x )
- pi 3*pi 5*pi
- clear {df(myexp(~x),~x) => -2*x*myexp(x), myexp(0) => 1,
- df(myerf(~x),~x) => 2/sqrt(pi)*myexp(x), myerf(0) => 0};
- clear myexp,erf;
- %%% showtime;
- comment There are two special operators, implicit_taylor and
- inverse_taylor, to compute the Taylor expansion of implicit
- or inverse functions;
- implicit_taylor(x^2 + y^2 - 1,x,y,0,1,5);
- 1 2 1 4 6
- 1 - ---*x - ---*x + O(x )
- 2 8
- implicit_taylor(x^2 + y^2 - 1,x,y,0,1,20);
- 1 2 1 4 1 6 5 8 7 10 21
- 1 - ---*x - ---*x - ----*x - -----*x - -----*x + (5 terms) + O(x )
- 2 8 16 128 256
- implicit_taylor(x+y^3-y,x,y,0,0,8);
- 3 5 7 9
- x + x + 3*x + 12*x + O(x )
- implicit_taylor(x+y^3-y,x,y,0,1,5);
- 1 3 2 1 3 105 4 3 5 6
- 1 - ---*x - ---*x - ---*x - -----*x - ---*x + O(x )
- 2 8 2 128 2
- implicit_taylor(x+y^3-y,x,y,0,-1,5);
- 1 3 2 1 3 105 4 3 5 6
- - 1 - ---*x + ---*x - ---*x + -----*x - ---*x + O(x )
- 2 8 2 128 2
- implicit_taylor(y*e^y-x,x,y,0,0,5);
- 2 3 3 8 4 125 5 6
- x - x + ---*x - ---*x + -----*x + O(x )
- 2 3 24
- comment This is the function exp(-1/x^2), which has an essential
- singularity at the point 0;
- implicit_taylor(x^2*log y+1,x,y,0,0,3);
- ***** Computation of Taylor series of implicit function failed
- Input expression non-zero at given point
- inverse_taylor(exp(x)-1,x,y,0,8);
- 1 2 1 3 1 4 1 5 1 6 9
- y - ---*y + ---*y - ---*y + ---*y - ---*y + (2 terms) + O(y )
- 2 3 4 5 6
- inverse_taylor(exp(x),x,y,0,5);
- 1 2 1 3 1 4 1 5 6
- y - 1 - ---*(y - 1) + ---*(y - 1) - ---*(y - 1) + ---*(y - 1) + O((y - 1) )
- 2 3 4 5
- inverse_taylor(sqrt(x),x,y,0,5);
- 2 6
- y + O(y )
- inverse_taylor(log(1+x),x,y,0,5);
- 1 2 1 3 1 4 1 5 6
- y + ---*y + ---*y + ----*y + -----*y + O(y )
- 2 6 24 120
- inverse_taylor((e^x-e^(-x))/2,x,y,0,5);
- 1 3 3 5 6
- y - ---*y + ----*y + O(y )
- 6 40
- comment In the next two cases the inverse functions have a branch
- point, therefore the computation fails;
- inverse_taylor((e^x+e^(-x))/2,x,y,0,5);
- ***** Computation of Taylor series of inverse function failed
- inverse_taylor(exp(x^2-1),x,y,0,5);
- ***** Computation of Taylor series of inverse function failed
- inverse_taylor(exp(sqrt(x))-1,x,y,0,5);
- 2 3 11 4 5 5 6
- y - y + ----*y - ---*y + O(y )
- 12 6
- inverse_taylor(x*exp(x),x,y,0,5);
- 2 3 3 8 4 125 5 6
- y - y + ---*y - ---*y + -----*y + O(y )
- 2 3 24
- %%% showtime;
- comment An application is the problem posed by Prof. Stanley:
- we prove that the finite difference expression below
- corresponds to the given derivative expression;
- operator diff,a,f,gg;
- % We use gg to avoid conflict with high energy
- % physics operator.
- let diff(~f,~arg) => df(f,arg);
- derivative_expression :=
- diff(a(x,y)*diff(gg(x,y),x)*diff(gg(x,y),y)*diff(f(x,y),y),x) +
- diff(a(x,y)*diff(gg(x,y),x)*diff(gg(x,y),y)*diff(f(x,y),x),y) ;
- derivative_expression := 2*a(x,y)*df(f(x,y),x,y)*df(gg(x,y),x)*df(gg(x,y),y)
- + a(x,y)*df(f(x,y),x)*df(gg(x,y),x,y)*df(gg(x,y),y)
- + a(x,y)*df(f(x,y),x)*df(gg(x,y),x)*df(gg(x,y),y,2)
- + a(x,y)*df(f(x,y),y)*df(gg(x,y),x,y)*df(gg(x,y),x)
- + a(x,y)*df(f(x,y),y)*df(gg(x,y),x,2)*df(gg(x,y),y)
- + df(a(x,y),x)*df(f(x,y),y)*df(gg(x,y),x)*df(gg(x,y),y)
- + df(a(x,y),y)*df(f(x,y),x)*df(gg(x,y),x)*df(gg(x,y),y)
- finite_difference_expression :=
- +a(x+dx,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x+dx,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x+dx,y)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- -gg(x,y)*a(x+dx,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x+dx,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- -a(x,y)*gg(x,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x+dx,y)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- -gg(x+dx,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y+dy)*gg(x+dx,y)*a(x+dx,y+dy)*f(x+dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y+dy)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- -a(x+dx,y)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y+dy)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y+dy)*a(x+dx,y)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y+dy)*gg(x,y+dy)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y)*gg(x,y+dy)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y+dy)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y+dy)*gg(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +a(x,y)*gg(x,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +f(x,y)*gg(x+dx,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y+dy)*gg(x+dx,y)*a(x+dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y+dy)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
- +a(x+dx,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x+dx,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x+dx,y)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- -gg(x,y)*a(x+dx,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x+dx,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- -a(x,y)*gg(x,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x+dx,y)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- -gg(x+dx,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y-dy)*gg(x+dx,y)*a(x+dx,y-dy)*f(x+dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y-dy)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- -a(x+dx,y)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y-dy)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y-dy)*a(x+dx,y)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y-dy)*gg(x,y-dy)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y)*gg(x,y-dy)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y-dy)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y-dy)*gg(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +a(x,y)*gg(x,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +f(x,y)*gg(x+dx,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y-dy)*gg(x+dx,y)*a(x+dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y-dy)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
- +f(x,y)*a(x+dx,y)*gg(x+dx,y)^2/(16*dx^2*dy^2)
- +f(x,y)*a(x,y+dy)*gg(x+dx,y)^2/(32*dx^2*dy^2)
- +f(x,y)*a(x,y-dy)*gg(x+dx,y)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x+dx,y)^2/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y+dy)*a(x+dx,y)*gg(x+dx,y)/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y-dy)*a(x+dx,y)*gg(x+dx,y)/(16*dx^2*dy^2)
- -f(x,y)*a(x,y+dy)*gg(x,y+dy)*gg(x+dx,y)/(16*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x,y+dy)*gg(x+dx,y)/(16*dx^2*dy^2)
- -f(x,y)*a(x,y-dy)*gg(x,y-dy)*gg(x+dx,y)/(16*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x,y-dy)*gg(x+dx,y)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y+dy)^2*a(x+dx,y)/(32*dx^2*dy^2)
- +f(x,y)*gg(x,y-dy)^2*a(x+dx,y)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x+dx,y)/(16*dx^2*dy^2)
- +a(x-dx,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x-dx,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x-dx,y)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- -gg(x,y)*a(x-dx,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x-dx,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- -a(x,y)*gg(x,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x-dx,y)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- -gg(x-dx,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y+dy)*gg(x-dx,y)*a(x-dx,y+dy)*f(x-dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y+dy)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- -a(x-dx,y)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y+dy)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y+dy)*a(x-dx,y)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y+dy)*gg(x,y+dy)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y)*gg(x,y+dy)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y+dy)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y+dy)*gg(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +a(x,y)*gg(x,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +f(x,y)*gg(x-dx,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y+dy)*gg(x-dx,y)*a(x-dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y+dy)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
- +a(x-dx,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x-dx,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x-dx,y)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- -gg(x,y)*a(x-dx,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x-dx,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- -a(x,y)*gg(x,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x-dx,y)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- -gg(x-dx,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y-dy)*gg(x-dx,y)*a(x-dx,y-dy)*f(x-dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y-dy)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- -a(x-dx,y)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y-dy)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y-dy)*a(x-dx,y)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y-dy)*gg(x,y-dy)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y)*gg(x,y-dy)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y-dy)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y-dy)*gg(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +a(x,y)*gg(x,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +f(x,y)*gg(x-dx,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y-dy)*gg(x-dx,y)*a(x-dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y-dy)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
- +f(x,y)*a(x-dx,y)*gg(x-dx,y)^2/(16*dx^2*dy^2)
- +f(x,y)*a(x,y+dy)*gg(x-dx,y)^2/(32*dx^2*dy^2)
- +f(x,y)*a(x,y-dy)*gg(x-dx,y)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x-dx,y)^2/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y+dy)*a(x-dx,y)*gg(x-dx,y)/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y-dy)*a(x-dx,y)*gg(x-dx,y)/(16*dx^2*dy^2)
- -f(x,y)*a(x,y+dy)*gg(x,y+dy)*gg(x-dx,y)/(16*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x,y+dy)*gg(x-dx,y)/(16*dx^2*dy^2)
- -f(x,y)*a(x,y-dy)*gg(x,y-dy)*gg(x-dx,y)/(16*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x,y-dy)*gg(x-dx,y)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y+dy)^2*a(x-dx,y)/(32*dx^2*dy^2)
- +f(x,y)*gg(x,y-dy)^2*a(x-dx,y)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x-dx,y)/(16*dx^2*dy^2)
- +f(x,y)*a(x,y+dy)*gg(x,y+dy)^2/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y+dy)^2/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*a(x,y-dy)*gg(x,y-dy)^2/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y-dy)^2/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x,y-dy)/(16*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x,y)^2/(8*dx^2*dy^2)$
- comment We define abbreviations for the partial derivatives;
- operator ax,ay,fx,fy,gx,gy;
- operator axx,axy,ayy,fxx,fxy,fyy,gxx,gxy,gyy;
- operator axxx,axxy,axyy,ayyy,fxxx,fxxy,fxyy,fyyy,gxxx,gxxy,gxyy,gyyy;
- operator axxxy,axxyy,axyyy,fxxxy,fxxyy,fxyyy,
- gxxxx,gxxxy,gxxyy,gxyyy,gyyyy;
- operator axxxyy,axxyyy,fxxyyy,fxxxyy,gxxxxy,gxxxyy,gxxyyy,gxyyyy;
- operator gxxxxyy,gxxxyyy,gxxyyyy;
- operator_diff_rules := {
- df(a(~x,~y),~x) => ax(x,y),
- df(a(~x,~y),~y) => ay(x,y),
- df(f(~x,~y),~x) => fx(x,y),
- df(f(~x,~y),~y) => fy(x,y),
- df(gg(~x,~y),~x) => gx(x,y),
- df(gg(~x,~y),~y) => gy(x,y),
- df(ax(~x,~y),~x) => axx(x,y),
- df(ax(~x,~y),~y) => axy(x,y),
- df(ay(~x,~y),~x) => axy(x,y),
- df(ay(~x,~y),~y) => ayy(x,y),
- df(fx(~x,~y),~x) => fxx(x,y),
- df(fx(~x,~y),~y) => fxy(x,y),
- df(fy(~x,~y),~x) => fxy(x,y),
- df(fy(~x,~y),~y) => fyy(x,y),
- df(gx(~x,~y),~x) => gxx(x,y),
- df(gx(~x,~y),~y) => gxy(x,y),
- df(gy(~x,~y),~x) => gxy(x,y),
- df(gy(~x,~y),~y) => gyy(x,y),
- df(axx(~x,~y),~x) => axxx(x,y),
- df(axy(~x,~y),~x) => axxy(x,y),
- df(ayy(~x,~y),~x) => axyy(x,y),
- df(ayy(~x,~y),~y) => ayyy(x,y),
- df(fxx(~x,~y),~x) => fxxx(x,y),
- df(fxy(~x,~y),~x) => fxxy(x,y),
- df(fxy(~x,~y),~y) => fxyy(x,y),
- df(fyy(~x,~y),~x) => fxyy(x,y),
- df(fyy(~x,~y),~y) => fyyy(x,y),
- df(gxx(~x,~y),~x) => gxxx(x,y),
- df(gxx(~x,~y),~y) => gxxy(x,y),
- df(gxy(~x,~y),~x) => gxxy(x,y),
- df(gxy(~x,~y),~y) => gxyy(x,y),
- df(gyy(~x,~y),~x) => gxyy(x,y),
- df(gyy(~x,~y),~y) => gyyy(x,y),
- df(axyy(~x,~y),~x) => axxyy(x,y),
- df(axxy(~x,~y),~x) => axxxy(x,y),
- df(ayyy(~x,~y),~x) => axyyy(x,y),
- df(fxxy(~x,~y),~x) => fxxxy(x,y),
- df(fxyy(~x,~y),~x) => fxxyy(x,y),
- df(fyyy(~x,~y),~x) => fxyyy(x,y),
- df(gxxx(~x,~y),~x) => gxxxx(x,y),
- df(gxxy(~x,~y),~x) => gxxxy(x,y),
- df(gxyy(~x,~y),~x) => gxxyy(x,y),
- df(gyyy(~x,~y),~x) => gxyyy(x,y),
- df(gyyy(~x,~y),~y) => gyyyy(x,y),
- df(axxyy(~x,~y),~x) => axxxyy(x,y),
- df(axyyy(~x,~y),~x) => axxyyy(x,y),
- df(fxxyy(~x,~y),~x) => fxxxyy(x,y),
- df(fxyyy(~x,~y),~x) => fxxyyy(x,y),
- df(gxxxy(~x,~y),~x) => gxxxxy(x,y),
- df(gxxyy(~x,~y),~x) => gxxxyy(x,y),
- df(gxyyy(~x,~y),~x) => gxxyyy(x,y),
- df(gyyyy(~x,~y),~x) => gxyyyy(x,y),
- df(gxxxyy(~x,~y),~x) => gxxxxyy(x,y),
- df(gxxyyy(~x,~y),~x) => gxxxyyy(x,y),
- df(gxyyyy(~x,~y),~x) => gxxyyyy(x,y)
- };
- operator_diff_rules := {df(a(~x,~y),~x) => ax(x,y),
- df(a(~x,~y),~y) => ay(x,y),
- df(f(~x,~y),~x) => fx(x,y),
- df(f(~x,~y),~y) => fy(x,y),
- df(gg(~x,~y),~x) => gx(x,y),
- df(gg(~x,~y),~y) => gy(x,y),
- df(ax(~x,~y),~x) => axx(x,y),
- df(ax(~x,~y),~y) => axy(x,y),
- df(ay(~x,~y),~x) => axy(x,y),
- df(ay(~x,~y),~y) => ayy(x,y),
- df(fx(~x,~y),~x) => fxx(x,y),
- df(fx(~x,~y),~y) => fxy(x,y),
- df(fy(~x,~y),~x) => fxy(x,y),
- df(fy(~x,~y),~y) => fyy(x,y),
- df(gx(~x,~y),~x) => gxx(x,y),
- df(gx(~x,~y),~y) => gxy(x,y),
- df(gy(~x,~y),~x) => gxy(x,y),
- df(gy(~x,~y),~y) => gyy(x,y),
- df(axx(~x,~y),~x) => axxx(x,y),
- df(axy(~x,~y),~x) => axxy(x,y),
- df(ayy(~x,~y),~x) => axyy(x,y),
- df(ayy(~x,~y),~y) => ayyy(x,y),
- df(fxx(~x,~y),~x) => fxxx(x,y),
- df(fxy(~x,~y),~x) => fxxy(x,y),
- df(fxy(~x,~y),~y) => fxyy(x,y),
- df(fyy(~x,~y),~x) => fxyy(x,y),
- df(fyy(~x,~y),~y) => fyyy(x,y),
- df(gxx(~x,~y),~x) => gxxx(x,y),
- df(gxx(~x,~y),~y) => gxxy(x,y),
- df(gxy(~x,~y),~x) => gxxy(x,y),
- df(gxy(~x,~y),~y) => gxyy(x,y),
- df(gyy(~x,~y),~x) => gxyy(x,y),
- df(gyy(~x,~y),~y) => gyyy(x,y),
- df(axyy(~x,~y),~x) => axxyy(x,y),
- df(axxy(~x,~y),~x) => axxxy(x,y),
- df(ayyy(~x,~y),~x) => axyyy(x,y),
- df(fxxy(~x,~y),~x) => fxxxy(x,y),
- df(fxyy(~x,~y),~x) => fxxyy(x,y),
- df(fyyy(~x,~y),~x) => fxyyy(x,y),
- df(gxxx(~x,~y),~x) => gxxxx(x,y),
- df(gxxy(~x,~y),~x) => gxxxy(x,y),
- df(gxyy(~x,~y),~x) => gxxyy(x,y),
- df(gyyy(~x,~y),~x) => gxyyy(x,y),
- df(gyyy(~x,~y),~y) => gyyyy(x,y),
- df(axxyy(~x,~y),~x) => axxxyy(x,y),
- df(axyyy(~x,~y),~x) => axxyyy(x,y),
- df(fxxyy(~x,~y),~x) => fxxxyy(x,y),
- df(fxyyy(~x,~y),~x) => fxxyyy(x,y),
- df(gxxxy(~x,~y),~x) => gxxxxy(x,y),
- df(gxxyy(~x,~y),~x) => gxxxyy(x,y),
- df(gxyyy(~x,~y),~x) => gxxyyy(x,y),
- df(gyyyy(~x,~y),~x) => gxyyyy(x,y),
- df(gxxxyy(~x,~y),~x) => gxxxxyy(x,y),
- df(gxxyyy(~x,~y),~x) => gxxxyyy(x,y),
- df(gxyyyy(~x,~y),~x) => gxxyyyy(x,y)}
- let operator_diff_rules;
- texp := taylor (finite_difference_expression, dx, 0, 1, dy, 0, 1);
- texp := a(x,y)*fx(x,y)*gx(x,y)*gyy(x,y) + a(x,y)*fx(x,y)*gxy(x,y)*gy(x,y)
- + 2*a(x,y)*fxy(x,y)*gx(x,y)*gy(x,y) + a(x,y)*fy(x,y)*gx(x,y)*gxy(x,y)
- + a(x,y)*fy(x,y)*gxx(x,y)*gy(x,y) + ax(x,y)*fy(x,y)*gx(x,y)*gy(x,y)
- 2 2
- + ay(x,y)*fx(x,y)*gx(x,y)*gy(x,y) + O(dx ,dy )
- comment You may also try to expand further but this needs a lot
- of CPU time. Therefore the following line is commented out;
- %texp := taylor (finite_difference_expression, dx, 0, 2, dy, 0, 2);
- factor dx,dy;
- result := taylortostandard texp;
- result := a(x,y)*fx(x,y)*gx(x,y)*gyy(x,y) + a(x,y)*fx(x,y)*gxy(x,y)*gy(x,y)
- + 2*a(x,y)*fxy(x,y)*gx(x,y)*gy(x,y) + a(x,y)*fy(x,y)*gx(x,y)*gxy(x,y)
- + a(x,y)*fy(x,y)*gxx(x,y)*gy(x,y) + ax(x,y)*fy(x,y)*gx(x,y)*gy(x,y)
- + ay(x,y)*fx(x,y)*gx(x,y)*gy(x,y)
- derivative_expression - result;
- 0
- clear diff(~f,~arg);
- clearrules operator_diff_rules;
- clear diff,a,f,gg;
- clear ax,ay,fx,fy,gx,gy;
- clear axx,axy,ayy,fxx,fxy,fyy,gxx,gxy,gyy;
- clear axxx,axxy,axyy,ayyy,fxxx,fxxy,fxyy,fyyy,gxxx,gxxy,gxyy,gyyy;
- clear axxxy,axxyy,axyyy,fxxxy,fxxyy,fxyyy,gxxxx,gxxxy,gxxyy,gxyyy,gyyyy;
- clear axxxyy,axxyyy,fxxyyy,fxxxyy,gxxxxy,gxxxyy,gxxyyy,gxyyyy;
- clear gxxxxyy,gxxxyyy,gxxyyyy;
- taylorprintterms := 5;
- taylorprintterms := 5
- off taylorautoexpand,taylorkeeporiginal;
- %%% showtime;
- comment An example provided by Alan Barnes: elliptic functions;
- % Jacobi's elliptic functions
- % sn(x,k), cn(x,k), dn(x,k).
- % The modulus and complementary modulus are denoted by K and K!'
- % usually written mathematically as k and k' respectively
- %
- % epsilon(x,k) is the incomplete elliptic integral of the second kind
- % usually written mathematically as E(x,k)
- %
- % KK(k) is the complete elliptic integral of the first kind
- % usually written mathematically as K(k)
- % K(k) = arcsn(1,k)
- % KK!'(k) is the complementary complete integral
- % usually written mathematically as K'(k)
- % NB. K'(k) = K(k')
- % EE(k) is the complete elliptic integral of the second kind
- % usually written mathematically as E(k)
- % EE!'(k) is the complementary complete integral
- % usually written mathematically as E'(k)
- % NB. E'(k) = E(k')
- operator sn, cn, dn, epsilon;
- elliptic_rules := {
- % Differentiation rules for basic functions
- df(sn(~x,~k),~x) => cn(x,k)*dn(x,k),
- df(cn(~x,~k),~x) => -sn(x,k)*dn(x,k),
- df(dn(~x,~k),~x) => -k^2*sn(x,k)*cn(x,k),
- df(epsilon(~x,~k),~x)=> dn(x,k)^2,
- % k-derivatives
- % DF Lawden Elliptic Functions & Applications Springer (1989)
- df(sn(~x,~k),~k) => (k*sn(x,k)*cn(x,k)^2
- -epsilon(x,k)*cn(x,k)*dn(x,k)/k)/(1-k^2)
- + x*cn(x,k)*dn(x,k)/k,
- df(cn(~x,~k),~k) => (-k*sn(x,k)^2*cn(x,k)
- +epsilon(x,k)*sn(x,k)*dn(x,k)/k)/(1-k^2)
- - x*sn(x,k)*dn(x,k)/k,
- df(dn(~x,~k),~k) => k*(-sn(x,k)^2*dn(x,k)
- +epsilon(x,k)*sn(x,k)*cn(x,k))/(1-k^2)
- - k*x*sn(x,k)*cn(x,k),
- df(epsilon(~x,~k),~k) => k*(sn(x,k)*cn(x,k)*dn(x,k)
- -epsilon(x,k)*cn(x,k)^2)/(1-k^2)
- -k*x*sn(x,k)^2,
- % parity properties
- sn(-~x,~k) => -sn(x,k),
- cn(-~x,~k) => cn(x,k),
- dn(-~x,~k) => dn(x,k),
- epsilon(-~x,~k) => -epsilon(x,k),
- sn(~x,-~k) => sn(x,k),
- cn(~x,-~k) => cn(x,k),
- dn(~x,-~k) => dn(x,k),
- epsilon(~x,-~k) => epsilon(x,k),
- % behaviour at zero
- sn(0,~k) => 0,
- cn(0,~k) => 1,
- dn(0,~k) => 1,
- epsilon(0,~k) => 0,
- % degenerate cases of modulus
- sn(~x,0) => sin(x),
- cn(~x,0) => cos(x),
- dn(~x,0) => 1,
- epsilon(~x,0) => x,
- sn(~x,1) => tanh(x),
- cn(~x,1) => 1/cosh(x),
- dn(~x,1) => 1/cosh(x),
- epsilon(~x,1) => tanh(x)
- };
- elliptic_rules := {df(sn(~x,~k),~x) => cn(x,k)*dn(x,k),
- df(cn(~x,~k),~x) => - sn(x,k)*dn(x,k),
- 2
- df(dn(~x,~k),~x) => - k *sn(x,k)*cn(x,k),
- 2
- df(epsilon(~x,~k),~x) => dn(x,k) ,
- 2 dn(x,k)
- k*sn(x,k)*cn(x,k) - epsilon(x,k)*cn(x,k)*---------
- k
- df(sn(~x,~k),~k) => -----------------------------------------------------
- 2
- 1 - k
- dn(x,k)
- + x*cn(x,k)*---------,
- k
- 2 dn(x,k)
- - k*sn(x,k) *cn(x,k) + epsilon(x,k)*sn(x,k)*---------
- k
- df(cn(~x,~k),~k) => --------------------------------------------------------
- 2
- 1 - k
- dn(x,k)
- - x*sn(x,k)*---------,
- k
- 2
- - sn(x,k) *dn(x,k) + epsilon(x,k)*sn(x,k)*cn(x,k)
- df(dn(~x,~k),~k) => k*----------------------------------------------------
- 2
- 1 - k
- - k*x*sn(x,k)*cn(x,k),
- df(epsilon(~x,~k),~k)
- 2
- sn(x,k)*cn(x,k)*dn(x,k) - epsilon(x,k)*cn(x,k) 2
- => k*------------------------------------------------- - k*x*sn(x,k) ,
- 2
- 1 - k
- sn( - ~x,~k) => - sn(x,k),
- cn( - ~x,~k) => cn(x,k),
- dn( - ~x,~k) => dn(x,k),
- epsilon( - ~x,~k) => - epsilon(x,k),
- sn(~x, - ~k) => sn(x,k),
- cn(~x, - ~k) => cn(x,k),
- dn(~x, - ~k) => dn(x,k),
- epsilon(~x, - ~k) => epsilon(x,k),
- sn(0,~k) => 0,
- cn(0,~k) => 1,
- dn(0,~k) => 1,
- epsilon(0,~k) => 0,
- sn(~x,0) => sin(x),
- cn(~x,0) => cos(x),
- dn(~x,0) => 1,
- epsilon(~x,0) => x,
- sn(~x,1) => tanh(x),
- 1
- cn(~x,1) => ---------,
- cosh(x)
- 1
- dn(~x,1) => ---------,
- cosh(x)
- epsilon(~x,1) => tanh(x)}
- let elliptic_rules;
- hugo := taylor(sn(x,k),k,0,6);
- 2 2
- cos(x)*(cos(x) *x + cos(x)*sin(x) + sin(x) *x - 2*x) 2
- hugo := sin(x) + ------------------------------------------------------*k + (
- 4
- 5 4 2 4
- cos(x) *x - 2*cos(x) *sin(x)*x + 5*cos(x) *sin(x)
- 3 2 3 2 3 2
- - 10*cos(x) *sin(x) *x + 6*cos(x) *x - 4*cos(x) *sin(x) *x
- 2 3 2 2 2
- + cos(x) *sin(x) + 8*cos(x) *sin(x)*x + 4*cos(x) *sin(x)
- 4 2
- - 11*cos(x)*sin(x) *x + 30*cos(x)*sin(x) *x - 16*cos(x)*x
- 5 2 3 2 2 4
- - 2*sin(x) *x + 8*sin(x) *x - 8*sin(x)*x )/64*k + (
- 7 3 7 6 2
- - 6*cos(x) *x + 17*cos(x) *x - 99*cos(x) *sin(x)*x
- 6 5 2 3 5 2
- + 21*cos(x) *sin(x) - 18*cos(x) *sin(x) *x - 71*cos(x) *sin(x) *x
- 5 3 5 4 3 2
- + 36*cos(x) *x - 18*cos(x) *x - 135*cos(x) *sin(x) *x
- 4 3 4 2 4
- - 133*cos(x) *sin(x) + 324*cos(x) *sin(x)*x + 172*cos(x) *sin(x)
- 3 4 3 3 4
- - 18*cos(x) *sin(x) *x - 13*cos(x) *sin(x) *x
- 3 2 3 3 2 3 3
- + 72*cos(x) *sin(x) *x - 156*cos(x) *sin(x) *x - 72*cos(x) *x
- 3 2 5 2 2 5
- + 160*cos(x) *x + 27*cos(x) *sin(x) *x - 118*cos(x) *sin(x)
- 2 3 2 2 2
- + 176*cos(x) *sin(x) - 108*cos(x) *sin(x)*x + 32*cos(x) *sin(x)
- 6 3 6 4 3
- - 6*cos(x)*sin(x) *x + 75*cos(x)*sin(x) *x + 36*cos(x)*sin(x) *x
- 4 2 3 2
- - 498*cos(x)*sin(x) *x - 72*cos(x)*sin(x) *x + 888*cos(x)*sin(x) *x
- 3 7 2 5 2
- + 48*cos(x)*x - 384*cos(x)*x + 63*sin(x) *x - 324*sin(x) *x
- 3 2 2 6 7
- + 540*sin(x) *x - 288*sin(x)*x )/2304*k + O(k )
- otto := taylor(cn(x,k),k,0,6);
- 2 2
- sin(x)*( - cos(x) *x - cos(x)*sin(x) - sin(x) *x + 2*x) 2
- otto := cos(x) + ---------------------------------------------------------*k +
- 4
- 5 2 4 3 2 2
- ( - 2*cos(x) *x - 5*cos(x) *sin(x)*x - 4*cos(x) *sin(x) *x
- 3 2 3 2 2 3
- - 7*cos(x) *sin(x) + 8*cos(x) *x + 2*cos(x) *sin(x) *x
- 2 4 2 4
- + 2*cos(x) *sin(x)*x - 2*cos(x)*sin(x) *x - 3*cos(x)*sin(x)
- 2 2 2 2 5
- + 8*cos(x)*sin(x) *x - 4*cos(x)*sin(x) - 8*cos(x)*x + 7*sin(x) *x
- 3 4 7 2
- - 22*sin(x) *x + 16*sin(x)*x)/64*k + ( - 9*cos(x) *x
- 6 3 6 5 2 2
- + 6*cos(x) *sin(x)*x - 71*cos(x) *sin(x)*x + 135*cos(x) *sin(x) *x
- 5 2 5 2 4 3 3
- - 66*cos(x) *sin(x) - 36*cos(x) *x + 18*cos(x) *sin(x) *x
- 4 3 4 3 4
- - cos(x) *sin(x) *x - 36*cos(x) *sin(x)*x + 18*cos(x) *sin(x)*x
- 3 4 2 3 4
- + 297*cos(x) *sin(x) *x + 61*cos(x) *sin(x)
- 3 2 2 3 2 3 2
- - 720*cos(x) *sin(x) *x - 208*cos(x) *sin(x) + 252*cos(x) *x
- 2 5 3 2 5
- + 18*cos(x) *sin(x) *x + 31*cos(x) *sin(x) *x
- 2 3 3 2 3
- - 72*cos(x) *sin(x) *x - 24*cos(x) *sin(x) *x
- 2 3 2 6 2
- + 72*cos(x) *sin(x)*x + 56*cos(x) *sin(x)*x + 153*cos(x)*sin(x) *x
- 6 4 2 4
- + 91*cos(x)*sin(x) - 684*cos(x)*sin(x) *x - 212*cos(x)*sin(x)
- 2 2 2 2
- + 900*cos(x)*sin(x) *x - 32*cos(x)*sin(x) - 288*cos(x)*x
- 7 3 7 5 3 5
- + 6*sin(x) *x - 39*sin(x) *x - 36*sin(x) *x + 318*sin(x) *x
- 3 3 3 3
- + 72*sin(x) *x - 672*sin(x) *x - 48*sin(x)*x + 384*sin(x)*x)/2304
- 6 7
- *k + O(k )
- taylorcombine(hugo^2 + otto^2);
- 2 2 7
- cos(x) + sin(x) + O(k )
- clearrules elliptic_rules;
- clear sn, cn, dn, epsilon;
- %%% showtime;
- comment That's all, folks;
- end;
- (TIME: taylor 14199 15009)
|