1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060 |
- REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ...
- % Examples of use of Groebner code.
- % In the Examples 1 - 3 the polynomial ring for the ideal operations
- % (variable sequence, term order mode) is defined globally in advance.
- % Example 1, Linz 85.
- torder ({q1,q2,q3,q4,q5,q6},lex)$
- groebner {q1,
- q2**2 + q3**2 + q4**2,
- q4*q3*q2,
- q3**2*q2**2 + q4**2*q2**2 + q4**2*q3**2,
- q6**2 + 1/3*q5**2,
- q6**3 - q5**2*q6,
- 2*q2**2*q6 - q3**2*q6 - q4**2*q6 + q3**2*q5 - q4**2*q5,
- 2*q2**2*q6**2 - q3**2*q6**2 - q4**2*q6**2 - 2*q3**2*q5*q6
- + 2*q4**2*q5*q6 - 2/3*q2**2*q5**2 + 1/3*q3**2*q5**2
- + 1/3*q4**2*q5**2,
- - q3**2*q2**2*q6 - q4**2*q2**2*q6 + 2*q4**2*q3**2*q6 -
- q3**2*q2**2*q5 + q4**2*q2**2*q5,
- - q3**2*q2**2*q6**2 - q4**2*q2**2*q6**2 + 2*q4**2*q3**2*q6**2
- + 2*q3**2*q2**2*q5*q6 - 2*q4**2*q2**2*q5*q6 + 1/3*q3**2*q2**2
- *q5**2 + 1/3*q4**2*q2**2*q5**2 - 2/3*q4**2*q3**2*q5**2,
- - 3*q3**2*q2**4*q5*q6**2 + 3*q4**2*q2**4*q5*q6**2
- + 3*q3**4*q2**2*q5*q6**2 - 3*q4**4*q2**2*q5*q6**2
- - 3*q4**2*q3**4*q5*q6**2 + 3*q4**4*q3**2*q5*q6**2
- + 1/3*q3**2*q2**4*q5**3 - 1/3*q4**2*q2**4*q5**3
- - 1/3*q3**4*q2**2*q5**3 + 1/3*q4**4*q2**2*q5**3 + 1/3*q4**2
- *q3**4*q5**3 - 1/3*q4**4*q3**2*q5**3};
- {q1,
- 2 2 2
- q2 + q3 + q4 ,
- q2*q3*q4,
- 4
- q2*q4 *q6,
- 3 3
- q2*q4 *q5 + 3*q2*q4 *q6,
- 3 2
- q2*q4 *q6 ,
- 4 2 2 4
- q3 + q3 *q4 + q4 ,
- 3 3
- q3 *q4 + q3*q4 ,
- 2 2
- q3 *q4 *q6,
- 2 2 2 2
- q3 *q5 - 3*q3 *q6 - q4 *q5 - 3*q4 *q6,
- 2 2 2 2
- q3 *q6 + q4 *q6 ,
- 4
- q3*q4 *q6,
- 3
- q3*q4 *q5,
- 3 2
- q3*q4 *q6 ,
- 5
- q4 ,
- 4 4
- q4 *q5 + q4 *q6,
- 4 2
- q4 *q6 ,
- 2 2 2
- q4 *q5*q6 - q4 *q6 ,
- 2 2
- q5 + 3*q6 ,
- 3
- q6 }
- % Example 2. (Little) Trinks problem with 7 polynomials in 6 variables.
- trinkspolys := {45*p + 35*s - 165*b - 36,
- 35*p + 40*z + 25*t - 27*s,
- 15*w + 25*p*s + 30*z - 18*t - 165*b**2,
- - 9*w + 15*p*t + 20*z*s,
- w*p + 2*z*t - 11*b**3,
- 99*w - 11*s*b + 3*b**2,
- b**2 + 33/50*b + 2673/10000}$
- trinksvars := {w,p,z,t,s,b}$
- torder(trinksvars,lex)$
- groebner trinkspolys;
- {60000*w + 9500*b + 3969,
- 1800*p - 3100*b - 1377,
- 18000*z + 24500*b + 10287,
- 750*t - 1850*b + 81,
- 200*s - 500*b - 9,
- 2
- 10000*b + 6600*b + 2673}
- groesolve ws;
- 3*(4*sqrt(11)*i - 11)
- {{b=-----------------------,
- 100
- 62*sqrt(11)*i + 59
- p=--------------------,
- 300
- 3*(5*sqrt(11)*i - 13)
- s=-----------------------,
- 50
- 148*sqrt(11)*i - 461
- t=----------------------,
- 500
- - 190*sqrt(11)*i - 139
- w=-------------------------,
- 10000
- - 490*sqrt(11)*i - 367
- z=-------------------------},
- 3000
- 3*( - 4*sqrt(11)*i - 11)
- {b=--------------------------,
- 100
- - 62*sqrt(11)*i + 59
- p=-----------------------,
- 300
- 3*( - 5*sqrt(11)*i - 13)
- s=--------------------------,
- 50
- - 148*sqrt(11)*i - 461
- t=-------------------------,
- 500
- 190*sqrt(11)*i - 139
- w=----------------------,
- 10000
- 490*sqrt(11)*i - 367
- z=----------------------}}
- 3000
-
- % Example 3. Hairer, Runge-Kutta 1, 6 polynomials 8 variables.
-
- torder({c2,c3,b3,b2,b1,a21,a32,a31},lex);
- {{w,p,z,t,s,b},lex}
- groebnerf {c2 - a21,
-
- c3 - a31 - a32,
-
- b1 + b2 + b3 - 1,
-
- b2*c2 + b3*c3 - 1/2,
-
- b2*c2**2 + b3*c3**2 - 1/3,
-
- b3*a32*c2 - 1/6};
- {{c2 - a21,
- c3 - a32 - a31,
- b3 + b2 + b1 - 1,
- 2 2 2 2 2 2
- 96*b2*b1*a31 - 96*b2*a31 + 96*b2*a31 - 32*b2 - 72*b1 *a32 *a31 - 48*b1 *a32
- 2 2 2 2 3 2
- - 144*b1 *a32*a31 - 144*b1 *a32*a31 - 72*b1 *a31 + 198*b1*a32 *a31
- 2 2 3
- + 60*b1*a32 + 396*b1*a32*a31 + 72*b1*a32*a31 - 144*b1*a32 + 198*b1*a31
- 2 2
- - 108*b1*a31 - 24*b1*a31 - 81*a21*a32*a31 + 54*a21*a32 - 126*a32 *a31
- 2 2 3 2
- - 12*a32 - 252*a32*a31 + 126*a32*a31 + 36*a32 - 126*a31 + 162*a31
- - 30*a31 - 12,
- 2 2
- 8*b2*a21 - 8*b2*a31 + 6*b1*a32 + 12*b1*a32*a31 + 4*b1*a32 + 6*b1*a31
- 2 2
- - 4*b1*a31 - 9*a21*a32 - 6*a32 - 12*a32*a31 + 8*a32 - 6*a31 + 10*a31 - 2,
- 2 2
- 8*b2*a32 + 6*b1*a32 + 12*b1*a32*a31 + 12*b1*a32 + 6*b1*a31 + 4*b1*a31
- 2 2
- - 9*a21*a32 - 6*a32 - 12*a32*a31 - 6*a31 + 2*a31 + 2,
- 2 2 2
- 12*b1*a21*a32 - 6*b1*a32 - 12*b1*a32*a31 - 6*b1*a31 - 3*a21*a32 + 6*a32
- 2
- + 12*a32*a31 - 6*a32 + 6*a31 - 6*a31 + 2,
- 2 2
- 4*b1*a21*a31 + 2*b1*a32 + 4*b1*a32*a31 + 2*b1*a31 - 3*a21*a32 - 4*a21*a31
- 2 2
- + 2*a21 - 2*a32 - 4*a32*a31 + 4*a32 - 2*a31 + 4*a31 - 2,
- 3 2 2 3 2
- 6*b1*a32 + 18*b1*a32 *a31 + 18*b1*a32*a31 + 6*b1*a31 - 9*a21*a32
- 3 2 2 2
- - 9*a21*a32*a31 + 6*a21*a32 - 6*a32 - 18*a32 *a31 + 12*a32 - 18*a32*a31
- 3 2
- + 18*a32*a31 - 6*a32 - 6*a31 + 6*a31 - 2*a31,
- 2 2 2
- 3*a21 *a32 - 3*a21*a32 - a21*a31 + a32 + 2*a32*a31 + a31 }}
-
-
-
- % The examples 4 and 5 use automatic variable extraction.
- % Example 4.
-
- torder gradlex$
-
- g4 :=
- groebner({b + e + f - 1,
-
- c + d + 2*e - 3,
-
- b + d + 2*f - 1,
-
- a - b - c - d - e - f,
-
- d*e*a**2 - 1569/31250*b*c**3,
-
- c*f - 587/15625*b*d});
- 5
- g4 := {144534461790680056924571742971580442350868*f
- 4
- - 644899801559202566371326081182412388593750*f
- 2
- - 5642454222593591361522253644740080176968509*e*f
- 3
- + 1026970650200404602876625225711718032483739*f
- + 60671378319336814425425106786936647125250*e*f
- 2
- + 12135463840178290842421221291430776956948795*f
- + 82342665293813692270756265387326300721851*e
- - 6546572608747272255841866021042619274525791*f
- - 455593441982762135422235490670177670637,
- 3 4
- 8282838608877853969*e*f - 2667985333760708531*f
- 2 3
- - 315490964385538173*e*f - 8319462093247392142*f - 25594942638053*e*f
- 2
- + 318993777538462620*f + 33851175608089*e + 34163367871142*f
- - 8568425233089,
- 2 2
- 587*e - 46875*e*f + 15038*f - 587*e + 47462*f,
- a + 2*e - 4,
- b + e + f - 1,
- c + 3*e - f - 3,
- d - e + f}
-
- hilbertpolynomial g4;
- 8
- glexconvert(g4,gvarslast,newvars={e},maxdeg=8);
- 8 7
- {8724935291855297898986*e - 82886885272625330040367*e
- 6 5
- + 304980377204235125220384*e - 524915947547338451201596*e
- 4 3
- + 362375013966993813907616*e + 52719473339686639067952*e
- 2
- - 154986762992209058701440*e + 27347344067139574366944*e + 430203494102932512
- }
- % Example 5.
-
- torder({u0,u2,u3,u1},lex)$
- groesolve({u0**2 - u0 + 2*u1**2 + 2*u2**2 + 2*u3**2,
-
- 2*u0*u1 + 2*u1*u2 + 2*u2*u3 - u1,
-
- 2*u0*u2 + u1**2 + 2*u1*u3 - u2,
-
- u0 + 2*u1 + 2*u2 + 2*u3 - 1},
- {u0,u2,u3,u1});
- 1 1
- {{u3=---,u0=---,u2=0,u1=0},
- 3 3
- {u3=0,u0=1,u2=0,u1=0},
- {u3
- 5 4 3 2
- - 35588322*u1 + 7102080*u1 + 3462372*u1 - 522672*u1 - 98665*u1 + 11905
- =-----------------------------------------------------------------------------
- 10987
- ,
- 5 4 3 2
- u0=(85796172*u1 - 47481552*u1 - 10265256*u1 + 4828462*u1 + 414200*u1
- - 24707)/164805,
- 5 4 3 2
- u2=(490926744*u1 - 82790424*u1 - 46802952*u1 + 5425849*u1 + 1108070*u1
- - 83819)/164805,
- 6 5 4 3 2
- u1=root_of(24948*u1_ - 8424*u1_ - 1908*u1_ + 736*u1_ + 24*u1_ - 18*u1_
- + 1,u1_,tag_1)}}
-
-
- % Example 6. (Big) Trinks problem with 6 polynomials in 6 variables.
-
- torder(trinksvars,lex)$
-
- btbas :=
- groebner {45*p + 35*s - 165*b - 36,
-
- 35*p + 40*z + 25*t - 27*s,
-
- 15*w + 25*p*s + 30*z - 18*t - 165*b**2,
-
- -9*w + 15*p*t + 20*z*s,
-
- w*p + 2*z*t - 11*b**3,
-
- 99*w - 11*b*s + 3*b**2};
- btbas := {17766149161458472422166115589155691471353640232570952361584640*w
- 9
- + 3032932981764169411024286535087872715152793150994240000000000000*b
- + 11886822444254795859791802829918904596379497649520730600000000000
- 8
- *b +
- 7
- 18842475008351431516615767365088235858572104823839818660000000000*b +
- 6
- 18478618789454571665641479626067848900525899492180377333740000000*b
- 5
- + 11752365113063961011548983119538614396423298749092231098450400000*b
- 4
- + 5110161259755495688253057699488605142801193206234091633443430000*b
- 3
- + 1496961750963944475883560598484727796781670457510019079125319720*b
- 2
- + 288690575257721822668492218552623049380964882774348400629792405*b
- + 36675221781192845731725910375461662443650512572339688148737880*b
- + 1576363174251807401047861085627012261518448811764870474808048,
- 1079293561558602199646591522041208256884733644128685355966266880*p +
- 9
- 3268477702530974927415861070452491173139572636038856000000000000000*b
- +
- 12885633343818230635528913313274512975854362843839764665000000000000
- 8
- *b +
- 20548731096300848092222002490748474767709483225818633322500000000000
- 7
- *b +
- 20182049540868333737979937480097593847242554499522522583343500000000
- 6
- *b +
- 12840592651209104850152262711039251760751322701157046861979660000000
- 5
- *b +
- 4
- 5569707184558884260455460870514004047533638259197462099687709750000*b
- + 1626104523905067336734029117969017435050069455164231436772691393000
- 3
- *b +
- 2
- 317837165064133808425156860561547977935248864650364953213370433325*b
- + 38814916107963233682867824475195786374043607759221055124383464600*b
- + 1271557117681971715777755868970298734422034654142333039426477936,
- 79947671226563125899747520151200611621091381046569285627130880*z -
- 9
- 207000360174268878618253807286221414267374039050881600000000000000*b
- - 816930976846005632807581869594187232031930825060787069000000000000
- 8
- *b -
- 7
- 1304191848597021137419209873493260430019068809677834324500000000000*b
- - 1281648951757969533154633755921969360988365079018184794999100000000
- 6
- *b -
- 5
- 816111850476984294981540451378918253659030380648143145999676000000*b
- - 354123157925898223808181474698490366723104830470028121053590350000
- 4
- *b -
- 3
- 103524414072393919562685172085266423030522292688870620316927889800*b
- 2
- - 20314259597530323830287024948271996904872237353588201428371308545*b
- - 2537917907646239051588678539186026277776904294491429226344955896*b
- - 101754994043218022355542895254001231074817584410141704072917808,
- 53964678077930109982329576102060412844236682206434267798313344*t -
- 9
- 232158787821822686686268803096828213303267879649894080000000000000*b
- - 914339994087255788035842922803409884324637299732580010200000000000
- 8
- *b -
- 7
- 1456553024942306848445635398194494646048613632462079804220000000000*b
- - 1429773468085320579659912540829309032262384742022357855878580000000
- 6
- *b -
- 5
- 908944691139155009098308941935669674404431611232759364790656800000*b
- - 394123305458525780887811122985868682566594060374758630590008810000
- 4
- *b -
- 3
- 114919063563435384108358931167592408356874179358918284670595993240*b
- 2
- - 22376181506466478409426169614162075694852682500804198791108921475*b
- - 2945714266609139709176973289117451707834537151497408879223183208*b
- - 127343046946408668687682889109197718306724189305639804298381200,
- 23984301367968937769924256045360183486327414313970785688139264*s -
- 9
- 93385077215170712211881744870071176375416361029681600000000000000*b -
- 8
- 368160952680520875300826094664986085024410366966850419000000000000*b
- - 587106602751452802634914356878527850505985235023389523500000000000
- 7
- *b -
- 6
- 576629986881952392513712499431359824206930128557786359524100000000*b
- - 366874075748831567147207506029692907450037791461629910342276000000
- 5
- *b -
- 4
- 159134490987396693155870310586114401358103950262784631419648850000*b
- 3
- - 46460129254430495335257974799114783858573413004692326764934039800*b
- 2
- - 9081061858975251669290196016044227941007110418581855806096298095*b
- - 1222066452390803097568723620648006189979646603457892421797898376*b
- - 60999770483681527871286545331521866855137759127008037834271184,
- 10 9
- 43808000000000000000*b + 189995300000000000000*b
- 8 7
- + 343169730200000000000*b + 377900184178000000000*b
- 6 5
- + 277427432368460000000*b + 141636786601439800000*b
- 4 3
- + 50921375336016834000*b + 12792266529459977340*b
- 2
- + 2215667232541084905*b + 237653554658069880*b + 8984801833047216}
-
- % The above system has dimension zero. Therefore its Hilbert polynomial
- % is a constant which is the number of zero points (including complex
- % zeros and multipliticities);
- hilbertpolynomial ws;
- 10
-
- % Example of Groebner with numerical postprocessing.
- on rounded;
- groesolve(trinkspolys,trinksvars);
- {{b= - 0.397994974843*i - 0.33,
- p= - 0.685435790007*i + 0.196666666667,
- s= - 0.994987437107*i - 0.78,
- t= - 0.981720937945*i - 0.922,
- w=0.0630158710168*i - 0.0139,
- z=0.541715382425*i - 0.122333333333},
- {b=0.397994974843*i - 0.33,
- p=0.685435790007*i + 0.196666666667,
- s=0.994987437107*i - 0.78,
- t=0.981720937945*i - 0.922,
- w= - 0.0630158710168*i - 0.0139,
- z= - 0.541715382425*i - 0.122333333333}}
- off rounded;
- % Additional groebner operators.
- % Reduce one polynomial wrt the basis of big Trinks. The result 0
- % is a proof for the ideal membership of the polynomial.
- torder(trinksvars,lex)$
- preduce(45*p + 35*s - 165*b - 36,btbas);
- 0
-
- % The following examples show how to work with the distributive
- % form of polynomials.
- torder({u0,u1,u2,u3},gradlex)$
- gsplit(2*u0*u2 + u1**2 + 2*u1*u3 - u2,{u0,u1,u2,u3});
- 2
- {2*u0*u2,u1 + 2*u1*u3 - u2}
- torder(trinksvars,lex)$
- gsort trinkspolys;
- 3
- {w*p + 2*z*t - 11*b ,
- 2
- 99*w - 11*s*b + 3*b ,
- - 9*w + 15*p*t + 20*z*s,
- 2
- 15*w + 25*p*s + 30*z - 18*t - 165*b ,
- 35*p + 40*z + 25*t - 27*s,
- 45*p + 35*s - 165*b - 36,
- 2 33 2673
- b + ----*b + -------}
- 50 10000
-
- gspoly(first trinkspolys, second trinkspolys);
- 360*z + 225*t - 488*s + 1155*b + 252
- gvars trinkspolys;
- {w,p,z,t,s,b}
- % Tagged basis and reduction trace. A tagged basis is a basis where
- % each polynomial is equated to a linear combination of the input
- % set. A tagged reduction shows how the result is computed by using
- % the basis polynomials.
- % First example for tagged polynomials: show how a polynomial is
- % represented as linear combination of the basis polynomials.
- % First I set up an environment for the computation.
- torder(trinksvars,lex)$
- % Then I compute an ordinary Groebner basis.
- bas := groebner trinkspolys$
- % Next I assign a tag to each basis polynomial.
- taggedbas := for i:= 1:length bas collect
- mkid(p,i) = part(bas,i);
- taggedbas := {p1=9500*b + 60000*w + 3969,
- p2= - 3100*b + 1800*p - 1377,
- p3=24500*b + 18000*z + 10287,
- p4= - 1850*b + 750*t + 81,
- p5= - 500*b + 200*s - 9,
- 2
- p6=10000*b + 6600*b + 2673}
- % And finally I reduce a (tagged) polynomial wrt the tagged basis.
- preducet(new=w*p + 2*z*t - 11*b**3,taggedbas);
- 3 2
- 857375000000*p*w + 1714750000000*t*z + 2376000000000000*w + 471517200000000*w
- 2
- + 31190862780000*w + 687758524299=992750000*b *p1 - 6270000000*b*p1*w
- 2
- - 414760500*b*p1 + 857375000000*new + 39600000000*p1*w + 5239080000*p1*w
- + 173282571*p1
- % Second example for tagged polynomials: representing a Groebner basis
- % as a combination of the input polynomials, here in a simple geometric
- % problem.
- torder({x,y},lex)$
- groebnert {circle=x**2 + y**2 - r**2,line = a*x + b*y};
- { - a*x - b*y= - line,
- 2 2 2 2 2 2
- (a + b )*y - a *r =a *circle - a*line*x + b*line*y}
- % In the third example I enter two polynomials that have no common zero.
- % Consequently the basis is {1}. The tagged computation gives me a proof
- % for the inconsistency of the system which is independent of the
- % Groebner formalism.
- groebnert {circle1=x**2 + y**2 - 10,circle2=x**2 + y**2 - 2};
- - circle1 + circle2
- {1=----------------------}
- 8
- % Solve a special elimination task by using a blockwise elimination
- % order defined by a matrix. The equation set goes back to A.M.H.
- % Levelt (Nijmegen). The question is whether there is a member in the
- % ideal which depends only on two variables. Here we select x4 and y1.
- % The existence of such a polynomial proves that the system has exactly
- % one degree of freedom.
- % The first two rows of the term order matrix define the groupwise
- % elimination. The remaining lines define a secondary local
- % lexicographical behavior which is needed to construct an admissible
- % ordering.
- f1 := y1^2 + z1^2 -1;
- 2 2
- f1 := y1 + z1 - 1
- f2 := x2^2 + y2^2 + z2^2 -1;
- 2 2 2
- f2 := x2 + y2 + z2 - 1
- f3 := x3^2 + y3^2 + z3^2 -1;
- 2 2 2
- f3 := x3 + y3 + z3 - 1
- f4 := x4^2 + z4^2 -1;
- 2 2
- f4 := x4 + z4 - 1
- f5 := y1*y2 + z1*z2;
- f5 := y1*y2 + z1*z2
- f6 := x2*x3 + y2*y3 + z2*z3;
- f6 := x2*x3 + y2*y3 + z2*z3
- f7 := x3*x4 + z3*z4;
- f7 := x3*x4 + z3*z4
- f8 := x2 + x3 + x4 + 1;
- f8 := x2 + x3 + x4 + 1
- f9 := y1 + y2 + y3 - 1;
- f9 := y1 + y2 + y3 - 1
- f10:= z1 + z2 + z3 + z4;
- f10 := z1 + z2 + z3 + z4
- eqns := {f1,f2,f3,f4,f5,f6,f7,f8,f9,f10}$
- vars := {x2,x3,y2,y3,z1,z2,z3,z4,x4,y1}$
- torder(vars,matrix,
- mat(
- (1,1,1,1,1,1,1,1,0,0),
- (0,0,0,0,0,0,0,0,1,1),
- (1,0,0,0,0,0,0,0,0,0),
- (0,1,0,0,0,0,0,0,0,0),
- (0,0,1,0,0,0,0,0,0,0),
- (0,0,0,1,0,0,0,0,0,0),
- (0,0,0,0,1,0,0,0,0,0),
- (0,0,0,0,0,1,0,0,0,0),
- (0,0,0,0,0,0,1,0,0,0),
- (0,0,0,0,0,0,0,0,1,0)));
- {{x,y},lex}
- first reverse groebner(eqns,vars);
- 2 2 2 2
- x4 *y1 - 2*x4 + 2*x4*y1 - 2*x4 - 2*y1 + 2*y1
- % For a faster execution we convert the matrix into a
- % proper machine code routine. This step can be taken only
- % if there is access to a compiler.
- on comp;
- torder_compile(levelt,mat(
- (1,1,1,1,1,1,1,1,0,0),
- (0,0,0,0,0,0,0,0,1,1),
- (1,0,0,0,0,0,0,0,0,0),
- (0,1,0,0,0,0,0,0,0,0),
- (0,0,1,0,0,0,0,0,0,0),
- (0,0,0,1,0,0,0,0,0,0),
- (0,0,0,0,1,0,0,0,0,0),
- (0,0,0,0,0,1,0,0,0,0),
- (0,0,0,0,0,0,1,0,0,0),
- (0,0,0,0,0,0,0,0,1,0)));
- +++ levelt compiled, 304 + 16 bytes
- levelt
- torder(vars,levelt)$
- first reverse groebner(eqns,vars);
- 2 2 2 2
- x4 *y1 - 2*x4 + 2*x4*y1 - 2*x4 - 2*y1 + 2*y1
- % For a homogeneous polynomial set we compute a graded Groebner
- % basis with grade limits. We use the graded term order with lex
- % as following order. As the grade vector has no zeros, this ordering
- % is functionally equivalent to a weighted ordering.
- torder({x,y,z},graded,{1,1,2},lex);
- {{x2,x3,y2,y3,z1,z2,z3,z4,x4,y1},levelt}
- dd_groebner(0,10,{x^10*y + y*z^5, x*y^12 + y*z^6});
- 12 6 10 5
- {x*y + y*z ,x *y + y*z }
-
- dd_groebner(0,50,{x^10*y + y*z^5, x*y^12 + y*z^6});
- 7 18 34 5
- {x *y*z - y *z ,
- 8 12 23 5
- x *y*z + y *z ,
- 9 6 12 5
- x *y*z - y *z ,
- 12 6
- x*y + y*z ,
- 10 5
- x *y + y*z }
-
- dd_groebner(0,infinity,{x^10*y + y*z^5, x*y^12 + y*z^6});
- 111 5 60
- {y *z + y*z ,
- 54 100 5
- x*y*z - y *z ,
- 2 48 89 5
- x *y*z + y *z ,
- 3 42 78 5
- x *y*z - y *z ,
- 4 36 67 5
- x *y*z + y *z ,
- 5 30 56 5
- x *y*z - y *z ,
- 6 24 45 5
- x *y*z + y *z ,
- 7 18 34 5
- x *y*z - y *z ,
- 8 12 23 5
- x *y*z + y *z ,
- 9 6 12 5
- x *y*z - y *z ,
- 12 6
- x*y + y*z ,
- 10 5
- x *y + y*z }
-
- end;
- (TIME: groebner 12249 13339)
|