123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 |
- REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ...
- off echo;
- -------------------------------------------------------
- This file is supposed to provide an automatic test of
- the program APPLYSYM. On the other hand the application
- of APPLYSYM is an interactive process, therefore the
- interested user should inspect the example described
- in APPLYSYM.TEX which demonstrates the application
- of symmetries to integrate a 2nd order ODE.
- Here the program QUASILINPDE for integrating first
- order quasilinear PDE is demonstrated.
- The following equation comes up in the elimination
- of resonant terms in normal forms of singularities
- of vector fields (C.Herssens, P.Bonckaert, Limburgs
- Universitair Centrum/Belgium, private communication).
- -------------------------------------------------------
- The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*y + 2*df(w,z)*z - 2*w - x*y.
- The equivalent characteristic system:
- 0=2*df(w,z)*z - 2*w - x*y
- 0=2*df(y,z)*z - y
- 0=2*df(x,z)*z - x
- for the functions: y(z) x(z) w(z) .
- The general solution of the PDE is given through
- sqrt(z)*y sqrt(z)*x - log(z)*x*y + 2*w
- 0 = ff(-----------,-----------,---------------------)
- z z z
- with arbitrary function ff(..).
- -------------------------------------------------------
- Comment:
- The result means that w is defined implicitly through
-
- - log(z)*x*y + 2*w sqrt(z)*x sqrt(z)*y
- 0 = ff(---------------------,-----------,-----------)
- z z z
-
- with an arbitrary function ff of 3 arguments. As the PDE
- was linear, the arguments of ff are such that we can
- solve for w:
-
- sqrt(z)*x sqrt(z)*y
- w = log(z)*x*y/2 + z*f(-----------,-----------)
- z z
- with an arbitrary function f of 2 arguments.
- -------------------------------------------------------
- The following PDEs are taken from E. Kamke,
- Loesungsmethoden und Loesungen von Differential-
- gleichungen, Partielle Differentialgleichungen
- erster Ordnung, B.G. Teubner, Stuttgart (1979).
- ------------------- equation 1.4 ----------------------
- The quasilinear PDE: 0 = df(z,x)*x - y.
- The equivalent characteristic system:
- 0=df(z,x)*x - y
- 0=df(y,x)*x
- for the functions: y(x) z(x) .
- The general solution of the PDE is given through
- 0 = ff(y,log(x)*y - z)
- with arbitrary function ff(..).
- ------------------- equation 2.5 ----------------------
- 2 2
- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y .
- The equivalent characteristic system:
- 2
- 0=df(z,y)*y
- 2 2
- 0=df(x,y)*y - x
- for the functions: x(y) z(y) .
- The general solution of the PDE is given through
- - x + y
- 0 = ff(----------,z)
- x*y
- with arbitrary function ff(..).
- ------------------- equation 2.6 ----------------------
- 2 2
- The quasilinear PDE: 0 = df(z,x)*x - df(z,x)*y + 2*df(z,y)*x*y.
- The equivalent characteristic system:
- 0=2*df(z,y)*x*y
- 2 2
- 0=2*df(x,y)*x*y - x + y
- for the functions: x(y) z(y) .
- The general solution of the PDE is given through
- 2 2
- - x - y
- 0 = ff(------------,z)
- y
- with arbitrary function ff(..).
- ------------------- equation 2.7 ----------------------
- The quasilinear PDE: 0 = df(z,x)*a0*x - df(z,x)*a1 + df(z,y)*a0*y - df(z,y)*a2.
- The equivalent characteristic system:
- 0=df(z,x)*(a0*x - a1)
- 0=df(y,x)*a0*x - df(y,x)*a1 - a0*y + a2
- for the functions: y(x) z(x) .
- The general solution of the PDE is given through
- a1*y - a2*x
- 0 = ff(---------------,z)
- 2
- a0*a1*x - a1
- with arbitrary function ff(..).
- ------------------- equation 2.14 ---------------------
- 2 2
- The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*b - x + y .
- The equivalent characteristic system:
- 2 2
- 0=df(z,y)*b - x + y
- 0=df(x,y)*b - a
- for the functions: x(y) z(y) .
- The general solution of the PDE is given through
- 2 3 2 3 2 2 2 3
- 0 = ff(a*y - b*x,a *y - 3*a*b*x*y - 3*b *z + 3*b *x *y - b *y )
- with arbitrary function ff(..).
- ------------------- equation 2.16 ---------------------
- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - a*x.
- The equivalent characteristic system:
- 0=df(z,y)*y - a*x
- 0=df(x,y)*y - x
- for the functions: x(y) z(y) .
- The general solution of the PDE is given through
- x
- 0 = ff(---,a*x - z)
- y
- with arbitrary function ff(..).
- ------------------- equation 2.20 ---------------------
- The quasilinear PDE: 0 = df(z,x) + df(z,y) - a*z.
- The equivalent characteristic system:
- 0=df(z,x) - a*z
- 0=df(y,x) - 1
- for the functions: y(x) z(x) .
- The general solution of the PDE is given through
- z
- 0 = ff(------,x - y)
- a*x
- e
- with arbitrary function ff(..).
- ------------------- equation 2.21 ---------------------
- The quasilinear PDE: 0 = df(z,x) - df(z,y)*y + z.
- The equivalent characteristic system:
- 0=df(z,x) + z
- 0=df(y,x) + y
- for the functions: y(x) z(x) .
- The general solution of the PDE is given through
- x x
- 0 = ff(e *z,e *y)
- with arbitrary function ff(..).
- ------------------- equation 2.22 ---------------------
- The quasilinear PDE: 0 = 2*df(z,x) - df(z,y)*y + z.
- The equivalent characteristic system:
- 0=2*df(z,x) + z
- 0=2*df(y,x) + y
- for the functions: y(x) z(x) .
- The general solution of the PDE is given through
- x/2 x/2
- 0 = ff(e *z,e *y)
- with arbitrary function ff(..).
- ------------------- equation 2.23 ---------------------
- The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*y - b*z.
- The equivalent characteristic system:
- 0=df(z,x)*a - b*z
- 0=df(y,x)*a - y
- for the functions: y(x) z(x) .
- The general solution of the PDE is given through
- z y
- 0 = ff(----------,------)
- (b*x)/a x/a
- e e
- with arbitrary function ff(..).
- ------------------- equation 2.24 ---------------------
- The quasilinear PDE: 0 = df(z,x)*x - df(z,y)*x - df(z,y)*y.
- The equivalent characteristic system:
- 0=df(z,x)*x
- 0=df(y,x)*x + x + y
- for the functions: y(x) z(x) .
- The general solution of the PDE is given through
- 2
- 0 = ff(x + 2*x*y,z)
- with arbitrary function ff(..).
- ------------------- equation 2.25 ---------------------
- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - az.
- The equivalent characteristic system:
- 0=df(y,z)*az - y
- 0=df(x,z)*az - x
- for the functions: y(z) x(z) .
- The general solution of the PDE is given through
- y x
- 0 = ff(-------,-------)
- z/az z/az
- e e
- with arbitrary function ff(..).
- ------------------- equation 2.26 ---------------------
- 2 2
- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y + x + y - z - 1.
- The equivalent characteristic system:
- 2 2
- 0=df(z,y)*y + x + y - z - 1
- 0=df(x,y)*y - x
- for the functions: x(y) z(y) .
- The general solution of the PDE is given through
- 2 2
- x x + y + z + 1
- 0 = ff(---,-----------------)
- y y
- with arbitrary function ff(..).
- ------------------- equation 2.39 ---------------------
- 2 2 2
- The quasilinear PDE: 0 = df(z,x)*a*x + df(z,y)*b*y - c*z .
- The equivalent characteristic system:
- 2 2
- 0=df(z,y)*b*y - c*z
- 2 2
- 0=df(x,y)*b*y - a*x
- for the functions: x(y) z(y) .
- The general solution of the PDE is given through
- b*y - c*z - a*x + b*y
- 0 = ff(-----------,--------------)
- b*y*z b*x*y
- with arbitrary function ff(..).
- ------------------- equation 2.40 ---------------------
- 2 3 4 2
- The quasilinear PDE: 0 = df(z,x)*x*y + 2*df(z,y)*y - 2*x + 4*x *y*z
- 2 2
- - 2*y *z .
- The equivalent characteristic system:
- 3 4 2 2 2
- 0=2*(df(z,y)*y - x + 2*x *y*z - y *z )
- 2
- 0=y *(2*df(x,y)*y - x)
- for the functions: x(y) z(y) .
- The general solution of the PDE is given through
- 4 2 2
- x log(y)*x - log(y)*x *y*z - y *z
- 0 = ff(---------,----------------------------------)
- sqrt(y) 4 2
- x - x *y*z
- with arbitrary function ff(..).
- ------------------- equation 3.12 ---------------------
- The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*a*x + df(w,y)*b*y + df(w,z)*c*x
- + df(w,z)*d*y + df(w,z)*f*z.
- The equivalent characteristic system:
- 0=df(w,x)*x
- 0=df(z,x)*x - c*x - d*y - f*z
- 0=df(y,x)*x - a*x - b*y
- for the functions: z(x) y(x) w(x) .
- The general solution of the PDE is given through
- a*x + b*y - y
- 0 = ff(---------------,
- b b
- x *b - x
- 2
- - a*d*x + b*c*x + b*f*z - b*z - c*f*x - d*f*y + d*y - f *z + f*z
- -------------------------------------------------------------------,w)
- f f f 2 f
- x *b*f - x *b - x *f + x *f
- with arbitrary function ff(..).
- ------------------------ end --------------------------
- (TIME: applysym 7999 8769)
|