123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797 |
- module driver; % Driving routines for integration program.
- % Author: Mary Ann Moore and Arthur C. Norman.
- % Modifications by: John P. Fitch, David Hartley, Francis J. Wright.
- fluid '(!*algint
- !*backtrace
- !*exp
- % !*failhard
- !*gcd
- !*intflag!*
- !*keepsqrts
- !*limitedfactors
- !*mcd
- !*noncomp
- !*nolnr
- !*partialintdf
- !*precise
- !*purerisch
- !*rationalize
- !*structure
- !*trdint
- !*trint
- !*uncached
- basic!-listofnewsqrts
- basic!-listofallsqrts
- gaussiani
- intvar
- kord!*
- listofnewsqrts
- listofallsqrts
- loglist
- powlis!*
- sqrt!-intvar
- sqrt!-places!-alist
- subfg!*
- varlist
- varstack!*
- xlogs
- zlist);
- exports integratesq,simpint,simpint1;
- imports algebraiccase,algfnpl,findzvars,getvariables,interr,printsq,
- transcendentalcase,varsinlist,kernp,simpcar,prepsq,mksq,simp,
- opmtch,formlnr;
- switch algint,nolnr,trdint,trint;
- switch hyperbolic;
- % Form is int(expr,var,x1,x2,...);
- % meaning is integrate expr wrt var, given that the result may
- % contain logs of x1,x2,...
- % x1, etc are intended for use when the system has to be helped
- % in the case that expr is algebraic.
- % Extended arguments x1, x2, etc., are not currently supported.
- symbolic procedure simpint u;
- % Simplifies an integral. First two components of U are the integrand
- % and integration variable respectively. Optional succeeding
- % components are log forms for the final integral.
- if atom u or null cdr u or cddr u and (null cdddr u or cddddr u)
- then rerror(int,1,"Improper number of arguments to INT")
- else if cddr u then simpdint u
- % then if getd 'simpdint then simpdint u
- % else rerror(int,2,"Improper number of arguments to INT")
- else begin scalar ans,dmod,expression,variable,loglist,oldvarstack,
- !*intflag!*,!*purerisch,cflag,intvar,listofnewsqrts,
- listofallsqrts,sqrtfn,sqrt!-intvar,sqrt!-places!-alist,
- basic!-listofallsqrts,basic!-listofnewsqrts,coefft,
- varchange,w;
- !*intflag!* := t; % Shows we are in integrator.
- variable := !*a2k cadr u;
- if not(idp variable or pairp variable and numlistp cdr variable)
- % then typerr(variable,"integration variable");
- then <<varchange := variable . intern gensym();
- if !*trint
- then printc {"Integration kernel", variable,
- "replaced by simple variable", cdr varchange};
- variable := cdr varchange>>;
- intvar := variable; % Used in SIMPSQRT and algebraic integrator.
- w := cddr u;
- if w then rerror(int,3,"Too many arguments to INT");
- listofnewsqrts:= list mvar gaussiani; % Initialize for SIMPSQRT.
- listofallsqrts:= list (argof mvar gaussiani . gaussiani);
- sqrtfn := get('sqrt,'simpfn);
- put('sqrt,'simpfn,'proper!-simpsqrt);
- % We need explicit settings of several switches during integral
- % evaluation. In addition, the current code cannot handle domains
- % like floating point, so we suppress it while the integral is
- % calculated. UNCACHED is turned on since integrator does its own
- % caching.
- % Any changes made to these settings must also be made in wstrass.
- if dmode!* then
- << % added by Alan Barnes
- if (cflag:=get(dmode!*, 'cmpxfn)) then onoff('complex, nil);
- if (dmod := get(dmode!*,'dname)) then
- onoff(dmod,nil)>> where !*msg := nil;
- begin scalar dmode!*,!*exp,!*gcd,!*keepsqrts,!*limitedfactors,!*mcd,
- !*rationalize,!*structure,!*uncached,kord!*,
- ans1,denexp,badbit,nexp,oneterm,!*precise;
- !*keepsqrts := !*limitedfactors := t; % !*sqrt := t;
- !*exp := !*gcd := !*mcd := !*structure := !*uncached := t;
- dmode!* := nil;
- if !*algint
- then <<
- % The algint code now needs precise off.
- % !*precise := t;
- % Start a clean slate (in terms of SQRTSAVE) for this
- % integral.
- sqrt!-intvar:=!*q2f simpsqrti variable;
- if (red sqrt!-intvar) or (lc sqrt!-intvar neq 1)
- or (ldeg sqrt!-intvar neq 1)
- then interr "Sqrt(x) not properly formed"
- else sqrt!-intvar:=mvar sqrt!-intvar;
- basic!-listofallsqrts:=listofallsqrts;
- basic!-listofnewsqrts:=listofnewsqrts;
- sqrtsave(basic!-listofallsqrts,basic!-listofnewsqrts,
- list(variable . variable))>>;
- coefft := (1 ./ 1); % Collect simple coefficients.
- expression := int!-simp car u;
- if varchange
- then <<depend1(car varchange,cdr varchange,t);
- expression := int!-subsq(expression,{varchange})>>;
- denexp := 1 ./ denr expression; % Get into two bits
- nexp := numr expression;
- while not atom nexp and null cdr nexp and
- not depends(mvar nexp,variable) do
- <<coefft := multsq(coefft,(((caar nexp) . 1) . nil) ./ 1);
- nexp := lc nexp>>;
- ans1 := nil;
- while nexp do begin % Collect by zvariables
- scalar x,zv,tmp;
- if atom nexp then << x:=!*f2q nexp; nexp:=nil >>
- else << x:=!*t2q car nexp; nexp:=cdr nexp >>;
- x := multsq(x,denexp);
- zv := findzvars(getvariables x,list variable,variable,nil);
- begin scalar oldzlist;
- while oldzlist neq zv do <<
- oldzlist := zv;
- foreach zz in oldzlist do
- zv:=findzvars(distexp(pseudodiff(zz,variable)),
- zv,variable,t)>>;
- % The following line was added to make, for example,
- % int(df(sin(x)/x),x) return the expected result.
- zv := sort(zv, function ordp)
- end;
- tmp := ans1;
- while tmp do
- <<if zv=caar tmp
- then <<rplacd(car tmp,addsq(cdar tmp,x));
- tmp := nil; zv := nil>>
- else tmp := cdr tmp>>;
- if zv then ans1 := (zv . x) . ans1
- end;
- if length ans1 = 1 then oneterm := t; % Efficiency
- nexp := ans1;
- ans := nil ./ 1;
- badbit:=nil ./ 1; % SQ zero
- while nexp do % Run down the terms
- <<u := cdar nexp;
- if !*trdint
- then <<princ "Integrate"; printsq u;
- princ "with Zvars "; print caar nexp>>;
- ans1 := errorset!*(list('integratesq,mkquote u,
- mkquote variable,mkquote loglist,
- mkquote caar nexp),
- !*backtrace);
- nexp := cdr nexp;
- if errorp ans1 then badbit := addsq(badbit,u)
- else <<ans := addsq(caar ans1, ans);
- badbit:=addsq(cdar ans1,badbit)>>>>;
- if !*trdint
- then <<prin2 "Partial answer="; printsq ans;
- prin2 "To do="; printsq badbit>>;
- % We have run down the terms. If there are any bad bits, redo
- % them. However, since a non-zero badbit implies that
- % integratesq aborted, the internal variable order may be
- % confused. So we reset kord!* and reorder expressions in this
- % case.
- if badbit neq '(nil . 1)
- then <<setkorder nil;
- badbit := reordsq badbit;
- ans := reordsq ans;
- coefft := reordsq coefft;
- if !*trdint then <<princ "Retrying..."; printsq badbit>>;
- if oneterm and ans = '(nil . 1) then ans1 := nil
- else ans1 := errorset!*(list('integratesq,mkquote badbit,
- mkquote variable,mkquote loglist,nil),
- !*backtrace);
- if null ans1 or errorp ans1
- then ans := addsq(ans,simpint1(badbit . variable . w))
- else <<ans := addsq(ans,caar ans1);
- %% FJW: It is possible for ans here to be just a
- %% spurious constant term, in which case we discard it.
- if not smemq(variable, ans) then ans := nil ./ 1;
- %% This may not be the best place for this fix, but I
- %% don't see how it can ever do any harm. [I don't
- %% think we need a full depend test here.]
- if cdar ans1 neq '(nil . 1)
- then ans := addsq(ans,
- simpint1(cdar ans1 . variable . w))
- >>>>;
- end;
- ans := multsq(coefft,ans); %Put back coefficient, preserving order.
- % if errorp ans
- % then return <<put('sqrt,'simpfn,sqrtfn);
- % if !*failhard then error1();
- % simpint1(expression . variable . w)>>
- % else ans := car ans;
- % expression := sqrtchk numr ans ./ sqrtchk denr ans;
- if !*trdint then << printc "Resimp and all that"; printsq ans >>;
- % We now need to check that all simplifications have been done
- % but we have to make sure INT is not resimplified, and that SIMP
- % does not complain at getting the same argument again.
- put('int,'simpfn,'simpiden);
- put('sqrt,'simpfn,sqrtfn);
- << if dmod then onoff(dmod,t);
- % added by Alan Barnes
- if cflag then onoff('complex,t)>> where !*msg := nil;
- oldvarstack := varstack!*;
- varstack!* := nil;
- % ans := errorset!*(list('resimp,mkquote ans),t);
- ans := errorset!*(list('int!-resub,mkquote ans,mkquote
- varchange),t);
- put('int,'simpfn,'simpint);
- varstack!* := oldvarstack;
- return if errorp ans then error1() else car ans
- end;
- symbolic procedure int!-resub(x,v);
- % {sq,alist} -> sq
- % Undo any variable change and resimplify.
- if v then <<x := int!-subsq(x,{revpr v}); depend1(car v,cdr v,nil);
- resimp x>>
- else resimp x;
- symbolic procedure int!-subsq(x,v);
- % {sq,alist} -> sq
- % A version of subsq with the int and df operators unprotected.
- % Intended for straightforward change of variable names only.
- begin scalar subfuncs,subfg!*;
- subfuncs := {remprop('df,'subfunc),remprop('int,'subfunc)};
- x := subsq(x,v);
- put('df,'subfunc,car subfuncs);
- put('int,'subfunc,cadr subfuncs);
- return x
- end;
- symbolic procedure numlistp u;
- % True if u is a list of numbers.
- null u or numberp car u and numlistp cdr u;
- % symbolic procedure sqrtchk u;
- % % U is a standard form. Result is another standard form with square
- % % roots replaced by half powers.
- % if domainp u then u
- % else if not eqcar(mvar u,'sqrt)
- % then addf(multpf(lpow u,sqrtchk lc u),sqrtchk red u)
- % % else if mvar u = '(sqrt -1)
- % % then addf(multpf(mksp('i,ldeg u),sqrtchk lc u),sqrtchk red u)
- % else addf(multpf(mksp(list('expt,cadr mvar u,'(quotient 1 2)),
- % ldeg u),
- % sqrtchk lc u),
- % sqrtchk red u);
- symbolic procedure int!-simp u;
- % Converts U to canonical form, including the resimplification of
- % *sq forms.
- subs2 resimp simp!* u;
- put('int,'simpfn,'simpint);
- symbolic procedure integratesq(integrand,var,xlogs,zv);
- begin scalar varlist,x,zlist,!*noncomp;
- if !*trint then <<
- printc "Start of Integration; integrand is ";
- printsq integrand >>;
- !*noncomp := noncomfp numr integrand
- or noncomfp denr integrand;
- varlist:=getvariables integrand;
- varlist:=varsinlist(xlogs,varlist); %in case more exist in xlogs
- if zv then zlist := zv
- else <<zlist := findzvars(varlist,list var,var,nil);
- % Important kernels.
- % The next section causes problems with nested exponentials or logs.
- begin scalar oldzlist;
- while oldzlist neq zlist do
- <<oldzlist := zlist;
- foreach zz in oldzlist do
- zlist := findzvars(distexp(pseudodiff(zz,var)),
- zlist,var,t)>>
- end>>;
- if !*trint then <<
- printc "Determination of the differential field descriptor";
- printc "gives the functions:";
- print zlist >>;
- %% Look for rational powers in the descriptor
- %% If there is make a suitable transformation and do the sub integral
- %% and return the revised integral
- x := look_for_substitute(integrand, var, zlist);
- if x then return x;
- %% End of rational patch
- if !*purerisch and not allowedfns zlist
- then return (nil ./ 1) . integrand;
- % If it is not suitable for Risch.
- varlist := setdiff(varlist,zlist);
- % varlist := purge(zlist,varlist);
- % Now zlist is list of things that depend on x, and varlist is list
- % of constant kernels in integrand.
- if !*algint and cdr zlist and algfnpl(zlist,var)
- then return algebraiccase(integrand,zlist,varlist)
- else return transcendentalcase(integrand,var,xlogs,zlist,varlist)
- end;
- symbolic procedure distexp(l);
- if null l then nil
- else if atom car l then car l . distexp cdr l
- else if (caar l = 'expt) and (cadar l = 'e) then
- begin scalar ll;
- ll:=caddr car l;
- if eqcar(ll,'plus) then <<
- ll:=foreach x in cdr ll collect list('expt,'e,x);
- return ('times . ll) . distexp cdr l >>
- else return car l . distexp cdr l
- end
- else distexp car l . distexp cdr l;
- symbolic procedure pseudodiff(a,var);
- if atom a then % **** Treat diffs correctly??
- if depends(a,var) then list prepsq simpdf(list(a,var)) else nil
- else if car a
- memq '(atan equal log plus quotient sqrt times minus)
- then begin scalar aa,bb;
- foreach zz in cdr a do <<
- bb:=pseudodiff(zz,var);
- aa:= union(bb,aa) >>;
- return aa
- end
- else if car a eq 'expt
- then if depends(cadr a,var) then
- if depends(caddr a,var) then
- prepsq simp list('log,cadr a) . %% a(x)^b(x)
- cadr a .
- caddr a .
- union(pseudodiff(cadr a,var),pseudodiff(caddr a,var))
- else cadr a . pseudodiff(cadr a,var) %% a(x)^b
- else caddr a . pseudodiff(caddr a,var) %% a^b(x)
- else list prepsq simpdf(list(a,var));
- symbolic procedure look_for_substitute(integrand, var, zz);
- % Search for rational power transformations
- begin
- scalar res;
- if atom zz then return nil
- else if (res := look_for_rational(integrand, var, zz)) then return res
- else if (res := look_for_quad(integrand, var, zz)) then return res
- else if (res := look_for_substitute(integrand, var, car zz))
- then return res
- else return look_for_substitute(integrand, var, cdr zz)
- end;
- symbolic procedure look_for_rational(integrand, var, zz);
- % Look for a form x^(n/m) in the field descriptor, and transform
- % the integral if it is found. Note that the sqrt form may be used
- % as well as exponentials. Return nil if no transformation
- if (car zz = 'sqrt and cadr zz = var) then
- look_for_rational1(integrand, var, 2)
- else if (car zz = 'expt) and (cadr zz = var) and
- (listp caddr zz) and (caaddr zz = 'quotient) and
- (numberp cadr caddr zz) and (numberp caddr caddr zz) then
- look_for_rational1(integrand, var, caddr caddr zz)
- else nil;
- symbolic procedure look_for_rational1(integrand, var, m);
- % Actually do the transformation and integral
- begin
- scalar newvar, res, ss, mn2m!-1;
- newvar := gensym();
- mn2m!-1 := !*f2q(((newvar .** (m-1)) .* m) .+ nil);
- %% print ("Integrand was " . integrand);
- % x => y^m, and dx => m y^(m-1)
- integrand := multsq(subsq(integrand,
- list(var . list('expt,newvar,m))),
- mn2m!-1);
- if !*trint then <<
- prin2 "Integrand is transformed to ";
- printsq integrand
- >>;
- begin scalar intvar;
- intvar := newvar; % To circumvent an algint bug.
- res := integratesq(integrand, newvar, nil, nil);
- end;
- ss := list(newvar . list('expt,var, list('quotient, 1, m)));
- res := subsq(car res, ss) .
- subsq(quotsq(cdr res, mn2m!-1), ss);
- if !*trint then <<
- printc "Transforming back...";
- printsq car res;
- prin2 " plus a bad part of ";
- printsq cdr res
- >>;
- return res
- end;
- symbolic procedure look_for_quad(integrand, var, zz);
- % Look for a form sqrt(a+bx+cx^2) in the field descriptor
- % and transform to the appropriate asin, acosh or asinh.
- % Return nil if no transformation found
- if !*algint then nil % as Algint does it better??
- else begin
- if (car zz = 'sqrt and listp cadr zz and caadr zz = 'plus) or
- (car zz = 'expt and listp cadr zz and caadr zz = 'plus and
- listp caddr zz and car caddr zz = 'quotient
- and fixp caddr caddr zz)
- then <<
- zz := simp cadr zz;
- if (cdr zz = 1) then <<
- zz := cdr coeff1(prepsq zz, var, nil);
- if length zz = 2 then return begin % Linear
- scalar a, b;
- scalar nvar, res, ss;
- a := car zz; b := cadr zz;
- if (depends(a,var) or depends(b,var)) then return nil;
- nvar := gensym();
- if !*trint then <<
- prin2 "Linear shift suggested ";
- prin2 a; prin2 " "; prin2 b; terpri();
- >>;
- integrand := subsq(integrand, % Make the substitution
- list(var . list('quotient,
- list('difference,
- list('expt,nvar,2),a),
- b)));
- integrand := multsq(integrand, % and the dx component
- simp list('quotient,list('times,nvar,2),
- b));
- % integrand := subsq(integrand,
- % list(var . list('difference, nvar, a)));
- % integrand := multsq(integrand, simp b);
- if !*trint then <<
- prin2 "Integrand is transformed by substitution to ";
- printsq integrand;
- prin2 "using substitution "; prin2 var; prin2 " -> ";
- printsq simp list('quotient,
- list('difference,list('expt,nvar,2),a),
- b);
- >>;
- res := integratesq(integrand, nvar, nil, nil);
- ss := list(nvar . list('sqrt,list('plus,list('times,var,b),
- a)));
- res := subsq(car res, ss) .
- subsq(multsq(cdr res, simp list('quotient,b,
- list('times,nvar,2))), ss);
- %% Should one reject if there is a bad bit??
- return res;
- end
- else if length zz = 3 then return begin % A quadratic
- scalar a, b, c;
- a := car zz; b := cadr zz; c:= caddr zz;
- if (depends(a,var) or depends(b,var) or depends(c,var)) then
- return nil;
- a := simp list('difference, a, % Re-centre
- list('times,b,b,
- list('quotient,1,list('times,4,c))));
- if null numr a then return nil; % Power occurred.
- b := simp list('quotient, b, list('times, 2, c));
- c := simp c;
- return
- if minusf numr c then <<
- if minusf numr a then begin
- scalar !*hyperbolic;
- !*hyperbolic := t;
- return
- look_for_invhyp(integrand,nil,var,a,b,c)
- end
- else look_for_asin(integrand,var,a,b,c)>>
- else <<
- if minusf numr a then look_for_invhyp(integrand,t,var,a,b,c)
- else look_for_invhyp(integrand,nil,var,a,b,c)
- >>
- end
- else if length zz = 5 then return begin % A quartic
- scalar a, b, c, d, e, nn, dd, mm;
- a := car zz; b := cadr zz; c:= caddr zz;
- d := cadddr zz; e := car cddddr zz;
- if not(b = 0) or not(d = 0) then return nil;
- if (depends(a,var) or depends(c,var)) or depends(e,var) then
- return nil;
- nn := numr integrand; dd := denr integrand;
- if denr(mm :=quotsq(nn ./ 1, !*kk2q var)) = 1 and
- even_power(numr mm, var) and even_power(dd, var) then <<
- % substitute x -> sqrt(y)
- return sqrt_substitute(numr mm, dd, var);
- >>;
- if denr(mm :=quotsq(dd ./ 1, !*kk2q var)) = 1 and
- even_power(nn, var) and even_power(numr mm, var) then <<
- % substitute x -> sqrt(y)
- return sqrt_substitute(nn, multf(dd,!*kk2f var), var);
- >>;
- return nil;
- end;
- >>>>;
- return nil;
- end;
- symbolic procedure look_for_asin(integrand, var, a, b, c);
- % Actually do the transformation and integral
- begin
- scalar newvar, res, ss, sqmn, onemth, m, n;
- m := prepsq a;
- n := prepsq c;
- b := prepsq b;
- newvar := gensym();
- sqmn := prepsq apply1(get('sqrt, 'simpfn),
- list list('quotient, list('minus,n), m));
- onemth := list('cos, newvar);
- ss := list('sin, newvar);
- powlis!* := list(ss, 2, '(nil . t),
- list('difference,1,list('expt,onemth,2)),
- nil) .
- powlis!*;
- integrand := subs2q
- multsq(subsq(integrand,
- list(var . list('difference,
- list('quotient,ss,sqmn), b))),
- quotsq(onemth := simp onemth, simp sqmn));
- if !*trint then <<
- prin2 "Integrand is transformed by substitution to ";
- printsq integrand;
- prin2 "using substitution "; prin2 var; prin2 " -> ";
- printsq simp list('difference, list('quotient, ss, sqmn), b);
- >>;
- res := integratesq(integrand, newvar, nil, nil);
- powlis!* := cdr powlis!*;
- ss:= list(newvar . list('asin,list('times,list('plus,var,b),sqmn)));
- res := subsq(car res, ss) . subsq(quotsq(cdr res, onemth), ss);
- if !*trint then <<
- printc "Transforming back...";
- printsq car res;
- prin2 " plus a bad part of ";
- printsq cdr res
- >>;
- if (car res = '(nil . 1)) then return nil;
- return res;
- end;
- symbolic procedure look_for_invhyp(integrand, do_acosh, var, a, b, c);
- % Actually do the transformation and integral; uses acosh/asinh form
- % depending on second argument
- begin
- scalar newvar, res, ss, sqmn, onemth, m, n, realdom;
- m := prepsq a;
- n := prepsq c;
- b := prepsq b;
- newvar := gensym();
- if do_acosh then <<
- sqmn := prepsq apply1(get('sqrt, 'simpfn),
- list list('quotient, n, list('minus, m)));
- onemth := list('sinh, newvar);
- ss := list('cosh, newvar)
- >>
- else <<
- sqmn:= prepsq apply1(get('sqrt,'simpfn),list list('quotient,n,m));
- onemth := list('cosh, newvar);
- ss := list('sinh, newvar)
- >>;
- powlis!* := list(ss, 2, '(nil . t),
- list((if do_acosh then 'plus else 'difference),
- list('expt, onemth, 2),1),
- nil) .
- powlis!*;
- % print ("sqmn" . sqmn); print("onemth" . onemth); print ("ss" . ss);
- % print cdddar powlis!*;
- integrand := subs2q
- multsq(subsq(integrand,
- list(var . list('difference,list('quotient,ss,sqmn),b))),
- quotsq(onemth := simp onemth, simp sqmn));
- if !*trint then <<
- prin2 "Integrand is transformed by substitution to ";
- printsq integrand;
- prin2 "using substitution "; prin2 var; prin2 " -> ";
- printsq simp list('difference, list('quotient, ss, sqmn), b);
- >>;
- realdom := not smember('(sqrt -1),integrand);
- % print integrand; print realdom;
- res := integratesq(integrand, newvar, nil, nil);
- powlis!* := cdr powlis!*;
- if !*hyperbolic then <<
- ss := list(if do_acosh then 'acosh else 'asinh,
- list('times,list('plus,var,b), sqmn));
- >>
- else <<
- ss := list('times,list('plus,var,b), sqmn);
- ss := if do_acosh then
- subst(ss,'ss,
- '(log (plus ss (sqrt (difference (times ss ss) 1)))))
- else
- subst(ss,'ss,'(log (plus ss (sqrt (plus (times ss ss) 1)))))
- >>;
- ss := list(newvar . ss);
- res := sqrt2top subsq(car res, ss) .
- sqrt2top subsq(quotsq(cdr res, onemth), ss);
- if !*trint then <<
- printc "Transforming back...";
- printsq car res;
- prin2 " plus a bad part of ";
- printsq cdr res
- >>;
- if (car res = '(nil . 1)) then return nil;
- if realdom and smember('(sqrt -1),res) then <<
- if !*trint then print "Wrong sheet"; return nil; % Wrong sheet?
- >>;
- return res
- end;
- symbolic procedure simpint1 u;
- % Varstack* rebound, since FORMLNR use can create recursive
- % evaluations. (E.g., with int(cos(x)/x**2,x)).
- begin scalar !*keepsqrts,v,varstack!*;
- u := 'int . prepsq car u . cdr u;
- if (v := formlnr u) neq u
- then if !*nolnr
- then <<v := simp subst('int!*,'int,v);
- return remakesf numr v ./ remakesf denr v>>
- else <<!*nolnr := nil . !*nolnr;
- v:=errorset!*(list('simp,mkquote v),!*backtrace);
- if pairp v then v := car v else v := simp u;
- !*nolnr := cdr !*nolnr;
- return v>>;
- return if (v := opmtch u) then simp v
- else symint u % FJW: symbolic integral
- end;
- mkop 'int!*;
- put('int!*,'simpfn,'simpint!*);
- symbolic procedure simpint!* u;
- begin scalar x;
- return if (x := opmtch('int . u)) then simp x
- else simpiden('int!* . u)
- end;
- symbolic procedure remakesf u;
- %remakes standard form U, substituting operator INT for INT!*;
- if domainp u then u
- else addf(multpf(if eqcar(mvar u,'int!*)
- then mksp('int . cdr mvar u,ldeg u)
- else lpow u,remakesf lc u),
- remakesf red u);
- symbolic procedure allowedfns u;
- if null u then t
- else if atom car u then (car u=intvar) or not depends(car u,intvar)
- else if (caar u = 'expt and not (cadar u = 'e)
- and not depends(cadar u, intvar)
- and depends(caddar u, intvar)) then nil
- else if flagp(caar u,'transcendental) then allowedfns cdr u
- else nil;
- symbolic procedure look_for_power(integrand, var);
- begin
- scalar nn, dd, mm;
- nn := numr integrand; dd := denr integrand;
- if denr(mm :=quotsq(nn ./ 1, !*kk2q var)) = 1 and
- even_power(numr mm, var) and even_power(dd, var) then <<
- % substitute x -> sqrt(y)
- return sqrt_substitute(numr mm, dd, var);
- >>;
- if denr(mm :=quotsq(dd ./ 1, !*kk2q var)) = 1 and
- even_power(nn, var) and even_power(numr mm, var) then <<
- % substitute x -> sqrt(y)
- return sqrt_substitute(nn, numr mm, var);
- >>;
- return nil;
- end;
- symbolic procedure even_power(xpr, var);
- if atom xpr then t
- else if mvar xpr = var then <<
- if evenp pdeg lpow xpr then even_power(lc xpr, var) and
- even_power(red xpr, var)
- else nil >>
- else if eqcar(mvar xpr, 'expt) and
- cadr mvar xpr = var and
- evenp caddr mvar xpr then t
- else if atom mvar xpr then
- even_power(lc xpr, var) and even_power(red xpr, var)
- else if even_power(red xpr, var) and even_power(lc xpr, var) then
- even_prep(mvar xpr, var);
- symbolic procedure even_prep(xpr,var);
- if xpr = var then nil
- else if atom xpr then t
- else if eqcar(xpr, 'expt) and cadr xpr = var and evenp caddr xpr then t
- else if even_prep(car xpr, var) then even_prep(cdr xpr, var);
- symbolic procedure sqrt_substitute(nn, dd, var);
- begin
- scalar newvar, integrand, res, ss, !*keepsqrts;
- newvar := gensym();
- integrand := subst(list('sqrt,newvar), var,
- list('quotient, prepsq (nn ./ dd), 2));
- integrand := prepsq simp integrand;
- integrand := simp integrand;
- begin scalar intvar;
- intvar := newvar; % To circumvent an algint bug/oddity
- res := integratesq(integrand, newvar, nil, nil);
- end;
- ss := list(newvar . list('expt, var, 2));
- res := subsq(car res, ss) . multsq((((var .^ 1) .* 2) .+ nil) ./ 1,
- subsq(cdr res, ss));
- if !*trint then <<
- printc "Transforming back...";
- printsq car res;
- prin2 " plus a bad part of ";
- printsq cdr res
- >>;
- return res
- end;
- % The following rules probably belong in other places.
- %-----------------------------------------------------------------------
- algebraic;
- operator ci,si; % ei.
- % FJW: ci,si also defined in specfn(sfint.red), so ...
- symbolic((algebraic operator ci,si) where !*msg=nil);
- intrules :=
- {e^(~n*acosh(~x)) => (sqrt(x^2-1)+x)^n when numberp n,
- e^(~n*asinh(~x)) => (sqrt(x^2+1)+x)^n when numberp n,
- e^(acosh(~x)) => (sqrt(x^2-1)+x),
- e^(asinh(~x)) => (sqrt(x^2+1)+x),
- cosh(log(~x)) => (x^2+1)/(2*x),
- sinh(log(~x)) => (x^2-1)/(2*x),
- % These next two are rather uncertain.
- int(log(~x)/(~b-x),x) => dilog(x/b),
- int(log(~x)/(~b*x-x^2),x) => dilog(x/b)/b + log(x)^2/(2b),
- %% FJW: Next 2 rules replaced by ~~ rules below
- %% int(e^(~x^2),x) => erf(i*x)*sqrt(pi)/(2i),
- %% int(1/e^(~x^2),x) => erf(x) * sqrt(pi)/2,
- %% FJW: Missing sqrt(b):
- %% int(e^(~b*~x^2),x) => erf(i*x)*sqrt(pi)/(2i*sqrt(b)),
- int(e^(~~b*~x^2),x) => erf(i*sqrt(b)*x)*sqrt(pi)/(2i*sqrt(b)),
- %% FJW: Rule missing:
- int(e^(~x^2/~b),x) => erf(i*x/sqrt(b))*sqrt(pi)*sqrt(b)/(2i),
- %% FJW: Missing sqrt(b):
- %% int(1/e^(~b*~x^2),x) => erf(x)*sqrt(pi)/(2sqrt(b)),
- int(1/e^(~~b*~x^2),x) => erf(sqrt(b)*x)*sqrt(pi)/(2sqrt(b)),
- %% FJW: Rule missing:
- int(1/e^(~x^2/~b),x) => erf(x/sqrt(b))*sqrt(pi)*sqrt(b)/2,
- df(ei(~x),x) => exp(x)/x,
- int(e^(~~b*~x)/x,x) => ei(b*x), % FJW
- int(e^(~x/~b)/x,x) => ei(x/b),
- int(1/(exp(~x*~~b)*x),x) => ei(-x*b), % FJW
- int(1/(exp(~x/~b)*x),x) => ei(-x/b),
- %% FJW: Next 2 rules replaced by ~~ rules above
- %% int(e^~x/x,x) => ei(x),
- %% int(1/(e^~x*x),x) => ei(-x),
- int(~a^~x/x,x) => ei(x*log(a)),
- int(1/((~a^~x)*x),x) => ei(-x*log(a)),
- df(si(~x),x) => sin(x)/x,
- int(sin(~~b*~x)/x,x) => si(b*x), % FJW
- int(sin(~x/~b)/x,x) => si(x/b), % FJW
- %% int(sin(~x)/x,x) => si(x), % FJW
- int(sin(~x)/x^2,x) => -sin(x)/x +ci(x),
- int(sin(~x)^2/x,x) =>(log(x)-ci(2x))/2,
- df(ci(~x),x) => cos(x)/x,
- int(cos(~~b*~x)/x,x) => ci(b*x), % FJW
- int(cos(~x/~b)/x,x) => ci(x/b), % FJW
- %% int(cos(~x)/x,x) => ci(x), % FJW
- int(cos(~x)/x^2,x) => -cos(x)/x -si(x),
- int(cos(~x)^2/x,x) =>(log(x)+ci(2x)/2),
- int(1/log(~~b*~x),x) => ei(log(b*x))/b, % FJW
- int(1/log(~x/~b),x) => ei(log(x/b))*b, % FJW
- %% int(1/log(~x),x) => ei(log(x)), % FJW
- %% int(1/log(~x+~b),x) => ei(log(x+b)), % FJW
- int(1/log(~~a*~x+~b),x) => ei(log(a*x+b))/b, % FJW
- int(1/log(~x/~a+~b),x) => ei(log(x/a+b))/b, % FJW
- int(~x/log(~x),x) => ei(2*log(x)),
- int(~x^~n/log(x),x) => ei((n+1)*log(x)) when fixp n,
- int(1/(~x^~n*log(x)),x) => ei((-n+1)*log(x)) when fixp n};
- let intrules;
- endmodule;
- end;
|