applysym.rlg 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299
  1. Wed Jun 16 05:11:54 MET DST 1999
  2. REDUCE 3.7, 15-Apr-1999 ...
  3. 1: 1:
  4. 2: 2: 2: 2: 2: 2: 2: 2: 2:
  5. 3: 3: off echo, dfprint$
  6. -------------------------------------------------------
  7. This file is supposed to provide an automatic test of
  8. the program APPLYSYM. On the other hand the application
  9. of APPLYSYM is an interactive process, therefore the
  10. interested user should inspect the example described
  11. in APPLYSYM.TEX which demonstrates the application
  12. of symmetries to integrate a 2nd order ODE.
  13. Here the program QUASILINPDE for integrating first
  14. order quasilinear PDE is demonstrated.
  15. The following equation comes up in the elimination
  16. of resonant terms in normal forms of singularities
  17. of vector fields (C.Herssens, P.Bonckaert, Limburgs
  18. Universitair Centrum/Belgium, private communication).
  19. -------------------------------------------------------
  20. The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*y + 2*df(w,z)*z - 2*w - x*y.
  21. The general solution of the PDE is given through
  22. x*y - log(z)*x*y + 2*w y
  23. 0 = ff(-----,---------------------,---------)
  24. z z sqrt(z)
  25. with arbitrary function ff(..).
  26. -------------------------------------------------------
  27. Comment:
  28. The result means that w is defined implicitly through
  29. x*y - log(z)*x*y + 2*w y
  30. 0 = ff(-----,---------------------,---------)
  31. z z sqrt(z)
  32. with an arbitrary function ff of 3 arguments. As the PDE
  33. was linear, the arguments of ff are such that we can
  34. solve for w:
  35. x*y y
  36. w = log(z)*x*y/2 + z*f(-----,---------)
  37. z sqrt(z)
  38. with an arbitrary function f of 2 arguments.
  39. -------------------------------------------------------
  40. The following PDEs are taken from E. Kamke,
  41. Loesungsmethoden und Loesungen von Differential-
  42. gleichungen, Partielle Differentialgleichungen
  43. erster Ordnung, B.G. Teubner, Stuttgart (1979).
  44. ------------------- equation 1.4 ----------------------
  45. The quasilinear PDE: 0 = df(z,x)*x - y.
  46. The general solution of the PDE is given through
  47. 0 = ff(log(x)*y - z,y)
  48. with arbitrary function ff(..).
  49. ------------------- equation 2.5 ----------------------
  50. 2 2
  51. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y .
  52. The general solution of the PDE is given through
  53. - x + y
  54. 0 = ff(----------,z)
  55. x*y
  56. with arbitrary function ff(..).
  57. ------------------- equation 2.6 ----------------------
  58. 2 2
  59. The quasilinear PDE: 0 = df(z,x)*x - df(z,x)*y + 2*df(z,y)*x*y.
  60. The general solution of the PDE is given through
  61. 2 2
  62. - x - y
  63. 0 = ff(z,------------)
  64. y
  65. with arbitrary function ff(..).
  66. ------------------- equation 2.7 ----------------------
  67. The quasilinear PDE: 0 = df(z,x)*a0*x - df(z,x)*a1 + df(z,y)*a0*y - df(z,y)*a2.
  68. The general solution of the PDE is given through
  69. a1*y - a2*x
  70. 0 = ff(---------------,z)
  71. 2
  72. a0*a1*x - a1
  73. with arbitrary function ff(..).
  74. ------------------- equation 2.14 ---------------------
  75. 2 2
  76. The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*b - x + y .
  77. The general solution of the PDE is given through
  78. a*y - b*x 2 3 2 3 2 2 2 3
  79. 0 = ff(-----------,a *y - 3*a*b*x*y - 3*b *z + 3*b *x *y - b *y )
  80. b
  81. with arbitrary function ff(..).
  82. ------------------- equation 2.16 ---------------------
  83. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - a*x.
  84. The general solution of the PDE is given through
  85. - a*x
  86. 0 = ff(--------,a*x - z)
  87. y
  88. with arbitrary function ff(..).
  89. ------------------- equation 2.20 ---------------------
  90. The quasilinear PDE: 0 = df(z,x) + df(z,y) - a*z.
  91. The general solution of the PDE is given through
  92. z
  93. 0 = ff(------,x - y)
  94. a*x
  95. e
  96. with arbitrary function ff(..).
  97. ------------------- equation 2.21 ---------------------
  98. The quasilinear PDE: 0 = df(z,x) - df(z,y)*y + z.
  99. The general solution of the PDE is given through
  100. x x
  101. 0 = ff(e *z,e *y)
  102. with arbitrary function ff(..).
  103. ------------------- equation 2.22 ---------------------
  104. The quasilinear PDE: 0 = 2*df(z,x) - df(z,y)*y + z.
  105. The general solution of the PDE is given through
  106. x/2 x/2
  107. 0 = ff(e *z,e *y)
  108. with arbitrary function ff(..).
  109. ------------------- equation 2.23 ---------------------
  110. The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*y - b*z.
  111. The general solution of the PDE is given through
  112. z y
  113. 0 = ff(----------,------)
  114. (b*x)/a x/a
  115. e e
  116. with arbitrary function ff(..).
  117. ------------------- equation 2.24 ---------------------
  118. The quasilinear PDE: 0 = df(z,x)*x - df(z,y)*x - df(z,y)*y.
  119. The general solution of the PDE is given through
  120. 2
  121. 0 = ff(x + 2*x*y,z)
  122. with arbitrary function ff(..).
  123. ------------------- equation 2.25 ---------------------
  124. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - az.
  125. The general solution of the PDE is given through
  126. y x
  127. 0 = ff(-------,-------)
  128. z/az z/az
  129. e e
  130. with arbitrary function ff(..).
  131. ------------------- equation 2.26 ---------------------
  132. 2 2
  133. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y + x + y - z - 1.
  134. The general solution of the PDE is given through
  135. 2 2
  136. x x + y + z + 1
  137. 0 = ff(---,-----------------)
  138. y y
  139. with arbitrary function ff(..).
  140. ------------------- equation 2.39 ---------------------
  141. 2 2 2
  142. The quasilinear PDE: 0 = df(z,x)*a*x + df(z,y)*b*y - c*z .
  143. The general solution of the PDE is given through
  144. b*y - c*z - a*x + b*y
  145. 0 = ff(-----------,--------------)
  146. b*y*z b*x*y
  147. with arbitrary function ff(..).
  148. ------------------- equation 2.40 ---------------------
  149. 2 3 4 2
  150. The quasilinear PDE: 0 = df(z,x)*x*y + 2*df(z,y)*y - 2*x + 4*x *y*z
  151. 2 2
  152. - 2*y *z .
  153. ------------------- equation 3.12 ---------------------
  154. The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*a*x + df(w,y)*b*y + df(w,z)*c*x
  155. + df(w,z)*d*y + df(w,z)*f*z.
  156. The general solution of the PDE is given through
  157. f 1 (f + 1)/b 2 f 1 (f + 1)/b
  158. 0 = ff(( - x *(----) *b*c*x - x *(----) *b*d*x*y
  159. b b
  160. x x
  161. f 1 (f + 1)/b 2 f 1 (f + 1)/b
  162. + x *(----) *c*x + x *(----) *d*x*y - a*d*x + b*c*x
  163. b b
  164. x x
  165. b b f 1 (f + 1)/b
  166. - c*x)/(x *b - x ),( - x *(----) *b*f*x*z
  167. b
  168. x
  169. f 1 (f + 1)/b f 1 (f + 1)/b 2
  170. + x *(----) *b*x*z + x *(----) *c*f*x
  171. b b
  172. x x
  173. f 1 (f + 1)/b 2 f 1 (f + 1)/b
  174. - x *(----) *c*x + x *(----) *d*f*x*y
  175. b b
  176. x x
  177. f 1 (f + 1)/b f 1 (f + 1)/b 2
  178. - x *(----) *d*x*y + x *(----) *f *x*z
  179. b b
  180. x x
  181. f 1 (f + 1)/b f f
  182. - x *(----) *f*x*z + a*d*x - b*c*x + c*x)/(x *b*f - x *b
  183. b
  184. x
  185. f 2 f
  186. - x *f + x *f),w)
  187. with arbitrary function ff(..).
  188. ------------------------ end --------------------------
  189. 4: 4: 4: 4: 4: 4: 4: 4: 4:
  190. Time for test: 14390 ms, plus GC time: 740 ms
  191. 5: 5:
  192. Quitting
  193. Wed Jun 16 05:12:15 MET DST 1999