APPLYSYM.LOG 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ...
  2. off echo;
  3. -------------------------------------------------------
  4. This file is supposed to provide an automatic test of
  5. the program APPLYSYM. On the other hand the application
  6. of APPLYSYM is an interactive process, therefore the
  7. interested user should inspect the example described
  8. in APPLYSYM.TEX which demonstrates the application
  9. of symmetries to integrate a 2nd order ODE.
  10. Here the program QUASILINPDE for integrating first
  11. order quasilinear PDE is demonstrated.
  12. The following equation comes up in the elimination
  13. of resonant terms in normal forms of singularities
  14. of vector fields (C.Herssens, P.Bonckaert, Limburgs
  15. Universitair Centrum/Belgium, private communication).
  16. -------------------------------------------------------
  17. The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*y + 2*df(w,z)*z - 2*w - x*y.
  18. The equivalent characteristic system:
  19. 0=2*df(w,z)*z - 2*w - x*y
  20. 0=2*df(y,z)*z - y
  21. 0=2*df(x,z)*z - x
  22. for the functions: y(z) x(z) w(z) .
  23. The general solution of the PDE is given through
  24. sqrt(z)*y sqrt(z)*x - log(z)*x*y + 2*w
  25. 0 = ff(-----------,-----------,---------------------)
  26. z z z
  27. with arbitrary function ff(..).
  28. -------------------------------------------------------
  29. Comment:
  30. The result means that w is defined implicitly through
  31. - log(z)*x*y + 2*w sqrt(z)*x sqrt(z)*y
  32. 0 = ff(---------------------,-----------,-----------)
  33. z z z
  34. with an arbitrary function ff of 3 arguments. As the PDE
  35. was linear, the arguments of ff are such that we can
  36. solve for w:
  37. sqrt(z)*x sqrt(z)*y
  38. w = log(z)*x*y/2 + z*f(-----------,-----------)
  39. z z
  40. with an arbitrary function f of 2 arguments.
  41. -------------------------------------------------------
  42. The following PDEs are taken from E. Kamke,
  43. Loesungsmethoden und Loesungen von Differential-
  44. gleichungen, Partielle Differentialgleichungen
  45. erster Ordnung, B.G. Teubner, Stuttgart (1979).
  46. ------------------- equation 1.4 ----------------------
  47. The quasilinear PDE: 0 = df(z,x)*x - y.
  48. The equivalent characteristic system:
  49. 0=df(z,x)*x - y
  50. 0=df(y,x)*x
  51. for the functions: y(x) z(x) .
  52. The general solution of the PDE is given through
  53. 0 = ff(y,log(x)*y - z)
  54. with arbitrary function ff(..).
  55. ------------------- equation 2.5 ----------------------
  56. 2 2
  57. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y .
  58. The equivalent characteristic system:
  59. 2
  60. 0=df(z,y)*y
  61. 2 2
  62. 0=df(x,y)*y - x
  63. for the functions: x(y) z(y) .
  64. The general solution of the PDE is given through
  65. - x + y
  66. 0 = ff(----------,z)
  67. x*y
  68. with arbitrary function ff(..).
  69. ------------------- equation 2.6 ----------------------
  70. 2 2
  71. The quasilinear PDE: 0 = df(z,x)*x - df(z,x)*y + 2*df(z,y)*x*y.
  72. The equivalent characteristic system:
  73. 0=2*df(z,y)*x*y
  74. 2 2
  75. 0=2*df(x,y)*x*y - x + y
  76. for the functions: x(y) z(y) .
  77. The general solution of the PDE is given through
  78. 2 2
  79. - x - y
  80. 0 = ff(------------,z)
  81. y
  82. with arbitrary function ff(..).
  83. ------------------- equation 2.7 ----------------------
  84. The quasilinear PDE: 0 = df(z,x)*a0*x - df(z,x)*a1 + df(z,y)*a0*y - df(z,y)*a2.
  85. The equivalent characteristic system:
  86. 0=df(z,x)*(a0*x - a1)
  87. 0=df(y,x)*a0*x - df(y,x)*a1 - a0*y + a2
  88. for the functions: y(x) z(x) .
  89. The general solution of the PDE is given through
  90. a1*y - a2*x
  91. 0 = ff(---------------,z)
  92. 2
  93. a0*a1*x - a1
  94. with arbitrary function ff(..).
  95. ------------------- equation 2.14 ---------------------
  96. 2 2
  97. The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*b - x + y .
  98. The equivalent characteristic system:
  99. 2 2
  100. 0=df(z,y)*b - x + y
  101. 0=df(x,y)*b - a
  102. for the functions: x(y) z(y) .
  103. The general solution of the PDE is given through
  104. 2 3 2 3 2 2 2 3
  105. 0 = ff(a*y - b*x,a *y - 3*a*b*x*y - 3*b *z + 3*b *x *y - b *y )
  106. with arbitrary function ff(..).
  107. ------------------- equation 2.16 ---------------------
  108. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - a*x.
  109. The equivalent characteristic system:
  110. 0=df(z,y)*y - a*x
  111. 0=df(x,y)*y - x
  112. for the functions: x(y) z(y) .
  113. The general solution of the PDE is given through
  114. x
  115. 0 = ff(---,a*x - z)
  116. y
  117. with arbitrary function ff(..).
  118. ------------------- equation 2.20 ---------------------
  119. The quasilinear PDE: 0 = df(z,x) + df(z,y) - a*z.
  120. The equivalent characteristic system:
  121. 0=df(z,x) - a*z
  122. 0=df(y,x) - 1
  123. for the functions: y(x) z(x) .
  124. The general solution of the PDE is given through
  125. z
  126. 0 = ff(------,x - y)
  127. a*x
  128. e
  129. with arbitrary function ff(..).
  130. ------------------- equation 2.21 ---------------------
  131. The quasilinear PDE: 0 = df(z,x) - df(z,y)*y + z.
  132. The equivalent characteristic system:
  133. 0=df(z,x) + z
  134. 0=df(y,x) + y
  135. for the functions: y(x) z(x) .
  136. The general solution of the PDE is given through
  137. x x
  138. 0 = ff(e *z,e *y)
  139. with arbitrary function ff(..).
  140. ------------------- equation 2.22 ---------------------
  141. The quasilinear PDE: 0 = 2*df(z,x) - df(z,y)*y + z.
  142. The equivalent characteristic system:
  143. 0=2*df(z,x) + z
  144. 0=2*df(y,x) + y
  145. for the functions: y(x) z(x) .
  146. The general solution of the PDE is given through
  147. x/2 x/2
  148. 0 = ff(e *z,e *y)
  149. with arbitrary function ff(..).
  150. ------------------- equation 2.23 ---------------------
  151. The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*y - b*z.
  152. The equivalent characteristic system:
  153. 0=df(z,x)*a - b*z
  154. 0=df(y,x)*a - y
  155. for the functions: y(x) z(x) .
  156. The general solution of the PDE is given through
  157. z y
  158. 0 = ff(----------,------)
  159. (b*x)/a x/a
  160. e e
  161. with arbitrary function ff(..).
  162. ------------------- equation 2.24 ---------------------
  163. The quasilinear PDE: 0 = df(z,x)*x - df(z,y)*x - df(z,y)*y.
  164. The equivalent characteristic system:
  165. 0=df(z,x)*x
  166. 0=df(y,x)*x + x + y
  167. for the functions: y(x) z(x) .
  168. The general solution of the PDE is given through
  169. 2
  170. 0 = ff(x + 2*x*y,z)
  171. with arbitrary function ff(..).
  172. ------------------- equation 2.25 ---------------------
  173. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - az.
  174. The equivalent characteristic system:
  175. 0=df(y,z)*az - y
  176. 0=df(x,z)*az - x
  177. for the functions: y(z) x(z) .
  178. The general solution of the PDE is given through
  179. y x
  180. 0 = ff(-------,-------)
  181. z/az z/az
  182. e e
  183. with arbitrary function ff(..).
  184. ------------------- equation 2.26 ---------------------
  185. 2 2
  186. The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y + x + y - z - 1.
  187. The equivalent characteristic system:
  188. 2 2
  189. 0=df(z,y)*y + x + y - z - 1
  190. 0=df(x,y)*y - x
  191. for the functions: x(y) z(y) .
  192. The general solution of the PDE is given through
  193. 2 2
  194. x x + y + z + 1
  195. 0 = ff(---,-----------------)
  196. y y
  197. with arbitrary function ff(..).
  198. ------------------- equation 2.39 ---------------------
  199. 2 2 2
  200. The quasilinear PDE: 0 = df(z,x)*a*x + df(z,y)*b*y - c*z .
  201. The equivalent characteristic system:
  202. 2 2
  203. 0=df(z,y)*b*y - c*z
  204. 2 2
  205. 0=df(x,y)*b*y - a*x
  206. for the functions: x(y) z(y) .
  207. The general solution of the PDE is given through
  208. b*y - c*z - a*x + b*y
  209. 0 = ff(-----------,--------------)
  210. b*y*z b*x*y
  211. with arbitrary function ff(..).
  212. ------------------- equation 2.40 ---------------------
  213. 2 3 4 2
  214. The quasilinear PDE: 0 = df(z,x)*x*y + 2*df(z,y)*y - 2*x + 4*x *y*z
  215. 2 2
  216. - 2*y *z .
  217. The equivalent characteristic system:
  218. 3 4 2 2 2
  219. 0=2*(df(z,y)*y - x + 2*x *y*z - y *z )
  220. 2
  221. 0=y *(2*df(x,y)*y - x)
  222. for the functions: x(y) z(y) .
  223. The general solution of the PDE is given through
  224. 4 2 2
  225. x log(y)*x - log(y)*x *y*z - y *z
  226. 0 = ff(---------,----------------------------------)
  227. sqrt(y) 4 2
  228. x - x *y*z
  229. with arbitrary function ff(..).
  230. ------------------- equation 3.12 ---------------------
  231. The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*a*x + df(w,y)*b*y + df(w,z)*c*x
  232. + df(w,z)*d*y + df(w,z)*f*z.
  233. The equivalent characteristic system:
  234. 0=df(w,x)*x
  235. 0=df(z,x)*x - c*x - d*y - f*z
  236. 0=df(y,x)*x - a*x - b*y
  237. for the functions: z(x) y(x) w(x) .
  238. The general solution of the PDE is given through
  239. a*x + b*y - y
  240. 0 = ff(---------------,
  241. b b
  242. x *b - x
  243. 2
  244. - a*d*x + b*c*x + b*f*z - b*z - c*f*x - d*f*y + d*y - f *z + f*z
  245. -------------------------------------------------------------------,w)
  246. f f f 2 f
  247. x *b*f - x *b - x *f + x *f
  248. with arbitrary function ff(..).
  249. ------------------------ end --------------------------
  250. (TIME: applysym 7999 8769)