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Preface 

With the increasing complexity of processes to be analysed, the modern control 
engineer often needs to develop a model of the system to be controlled. However, in 
many cases, there is limited time for detailed system analysis, and the engineer may 
not be an expert in that particular system domain. This book is aimed at graduate 
engineers (and postgraduate students) who wish to use a systematic approach to 
model development that is suited to computer-aided modelling environments. 

The goal of this book is to support the use of modelling as a useful knowledge-
enhancing exercise, and to propose corresponding modelling methodologies. The 
motivation for this is the widespread use of models in analysing and simulating 
systems for safe and cost-effective evaluation of new processes. The context is 
primarily that of control system design, due to the extensive use of models of the 
process, and its disturbances, in modern design methods. 

We use the term metamodelling to describe the approach taken; i.e. a mod-
elling methodology which transcends the accepted mathematical models for spe-
cific applications. This methodology abstracts general models from first principles, 
by employing an existing notation (bond graphs) as a metalanguage for describing 
physical systems. This book is, therefore, concerned with separating out the model 
development process from the functions for which the model is developed, in order 
to enhance understanding of the essentials of the real physical systems. 

This book is organised in two parts, so that the reader may first understand 
the motivation and the basic concepts, and then have the proposed methodology 
illustrated by a variety of examples covering a wide selection of applications. 

The first part describes general modelling principles, based on system decompo-
sition, first using classical dynamical analysis and then via the energy bond graph 
notation. Bond graphs are shown to provide a powerful core model representation 
from which a variety of mathematical models may be derived. Bond graphs pro-
vide a useful means of illustrating causality which is shown to be a crucial aspect 
of system modelling. 

The second part uses specific case studies to illustrate the application of this 
methodology to systematic generation of the most widely used mathematical mod-
els. Reference is made to a computer-aided modelling tool (MTT), which is a 
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research modelling toolbox which uses bond graphs to support the modelling of 
dynamic processes. 
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Introduction 

SUMMARY 

This chapter gives a general overview of the concepts of modelling dynamic systems. 
The chapter has four sections: 

• 1.1 What this book is about. This will tell you whether the book is going to 
be of interest to you, and its overall layout. 

• 1.2 Rationales for modelling. Highlights the variety of reasons why models 
are developed and used. 

• 1.3 A motivational example. This section takes a common industrial pro-
cess as an example showing how models can be used, while indicating some 
functional and structural requirements for a modelling tool. 

• 1.4 Computer-based modelling tools. A discussion of the need for computer-
based modelling tools with reference to a prototype tool box: MTT — Model 
Transformation Tools. 

1.1 WHAT THIS BOOK IS ABOUT 

The main aim of this book is to support the use of modelling as a useful knowledge-
enhancing exercise, and to propose corresponding modelling methodologies. As a 
result, the book is concerned with separating out the model development process 
from the functions for which the model is developed. We use the term metamod-
elling to emphasise that we are abstracting and describing the thought processes 
(and corresponding computer-based tools) which lie behind developing specific 
models of specific systems. Thus we are concerned to abstract the essentials of 
modelling and thus move attention away from the details of generating specific 
mathematical models or simulations towards an understanding of the essentials of 
modelling physical systems in general. 

The bond graph notation was introduced by (Paynter, 1961); its principles and 
application have been developed since that time and have been expounded in a 
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number of textbooks including (Karnopp and Rosenberg, 1975) (Thoma, 1975) 
(Wellstead, 1979) (Rosenberg and Karnopp, 1983) (Karnopp et al., 1990) (Thoma, 
1990) (Cellier, 1991). We have chosen bond graphs to describe systems and to act 
as the core model description for computer-based modelling. We hope to convince 
the reader that this is a good choice. 

The book is divided into two parts: 

• Part I: general modelling principles, 
• Part II: specific modelling applications 

Part II illustrates the wide range of physical domains that can be captured by the 
bond graph approach. 

• Part I: Principles 

Chapter 1: Introduction. This chapter. Discusses why models are 
needed and, using an example industrial process, develops a require-
ments specification for a modelling tool. 

— Chapter 2: Representation of Elementary Systems. The decomposition 
of a system into a structure linking elements representing its static and 
dynamic behaviour is reviewed, first via classical dynamical analysis 
and then via the energy bond graph notation. Bond graphs are shown 
to provide a powerful core model representation from which a variety of 
mathematical models may be derived. This chapter provides the basic 
ideas of bond graphs and, in so doing, motivates the more detailed work 
of the remainder of the book. 

Chapter 3: Causality. Causality is discussed with particular reference 
to computational causality. The application of bond graphs to causality 
analysis is detailed. Although causality may, at first, appear to be an 
abstract notion, this chapter argues that causality is a crucial aspect of 
system modelling. Links to related areas such as constraint program-
ming and qualitative modelling are drawn. 

Chapter 4: Derived models. The use of computers to aid modelling is 
a central theme of this book. This chapter discusses the twin issues 
of representation and transformation. In particular, model transfor-
mations from the core (bond graph) representation to various derived 
mathematical models (such as differential-algebraic equation, non-linear 
state-space, linearised state-space, frequency response etc.) are given 
and illustrated. 

Chapter 5: System approximation. The art of modelling is, to a large ex-
tent, the art of abstracting the simplest model for the required purpose. 
Chapter 5 shows how a bond-graph methodology for system approxi-
mation can aid the system modeller. 



Rationales for modelling 	 3 

Chapter 6: System inversion. System inverses are of intrinsic interest 
as well as relevant to the design of control systems. This chapter shows 
how to obtain the bond-graph of an inverse system from the bond-graph 
of the system itself. 

• Part II: Modelling Applications 

Chapter 8: Process engineering. A systematic approach to modelling 
process systems is developed and illustrated using a progression of ex- 
amples. The use of systematic approximation is emphasised. 

Chapter 7: An extrusion process. The process of insulating copper wire 
using a plasticating extruder, described in this introduction, is modelled 
using the hierarchical bond graph approach. 

Chapter 9: Pharmacokinetics. Models for inhaled drug uptake, with 
particular relevance to anaesthesia, are derived based on physical prin-
ciples encapsulated in bond graphs. 

Chapter 10: Mechanical systems and robotics. Bond graphs are used to 
model the dynamics of a two-dimensional mechanical link. This basic 
building block is used to systematically create dynamic models for a 
number of simple systems including a pendulum, a double pendulum and 
a two-link manipulator. This process is repeated for three-dimensional 
systems, resulting in models for robotic manipulators, including the 
PUMA and Stanford arm architectures. 

Chapter 11: Control Systems. Applications of modelling to control are 
given. In particular, the use of models in generating physical model-
based controllers is emphasised. 

1.2 RATIONALES FOR MODELLING 

Models are normally constructed in order to solve a problem or, at least to test a 
proposed solution to a problem. A systems analysis view of modelling has been 
proposed (Schmidt, 1985), in which modelling is shown to be a significant part of 
the systems analysis process: 

1. problem identification, 
2. specification of objectives, 
3. definition of the system, 
4. model formulation, 
5. model verification and validation, 
6. model implementation, 
7. model use, 
8. solution identification, 
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9. solution implementation, 

10. model revalidation. 

In his paper, Schmidt acknowledges that not all problems warrant all these 
steps, whereas others may require several iterations between steps. For some prob-
lems a simple mental model of the system is sufficient to resolve the problem, while 
other more difficult problems may best be solved by more detailed modelling, but 
the time or skills are not available for this. 

Schmidt's paper also categorises models into two types — those whose purpose is 
descriptive, and those which are prescriptive. Descriptive models have the function 
of aiding understanding, or are developed for communication of concepts. Common 
formats for such models are engineering documentation, including drawings, and 
scale models. 

Prescriptive models are used to recommend a course of action, since they per-
mit predictions of the real system behaviour to be made. Typical model formats 
to achieve this end are simulation models, and those used for experimentation and 
parameter optimisation. Simulation models alone have a variety of uses, not least 
of which are education and training. Mathematical models suited to specialised 
analysis tools may also be included in this category. An important function for 
mathematical models is control design, for which a large variety of tools are avail-
able — frequency domain analysis, stability and eigenvalue analysis all depend on 
different formulations of the system model. 

In general we can see that, in the non-academic world at least, modelling is 
only performed if the risk and cost of failure outweighs the cost of building models 
and running appropriate experiments. The way forward is to provide tools which 
support and accelerate the model building and experimenting processes. 

1.3 A MOTIVATIONAL EXAMPLE 

In this section we show, by example, how a modelling tool must offer a range of 
functions in order to meet a variety of application requirements. The example 
used in this discussion is an industrial process for extruding polymer sheathing 
onto wire for manufacturing electrical cables (Figure 1.1). This process is analysed 
in greater detail in Part II (Chapter 7) of this book, but it is useful to consider at 
this point, in order to understand the problems in modelling such a process. 

For the moment, it is sufficient to know that a plasticating extruder is a large 
metal barrel in which a screw rotates in order to meter out quantities of molten 
polymer through a die. The screw is typically driven by an electric (D.C.) motor 
which provides the mechanical energy necessary to overcome the shear friction 
against the polymer and generate sufficient hydraulic pressure to force the polymer 
through a filter at entrance to the die. The polymer is initially heated by electrical 
heater bands round the barrel, but when it is being extruded at normal production 
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Figure 1.1 A plastic-on-wire extruder 

rates, sufficient work heat is generated by the shear friction of the screw forcing the 
melt down the barrel and out of the die. Finally there are measurement systems on 
the extruder - measuring temperature and pressure - and also on the final product 
- measuring the outer diameter of the cable after it has been hauled through a 
cooling trough. This last measurement system is of greatest interest as it gives the 
main measure of product quality, although the measurement is subject to a long 
transport delay due to the cooling process. 

Figure 1.1 is, in fact, our first model of the process and is well suited to the 
purpose of describing the process at an overview level. It is graphical and encap-
sulates the description in a very concise and understandable manner, but it also 
has some major disadvantages. In the first place, the drawing does not explicitly 
show all the sub-systems - the mechanical translation of the polymer through the 
barrel, and the associated hydraulics are assumed. The model is not complete and 
had to be supplemented by the written description in the above paragraph. Most 
important to the engineer, however, is the fact that even the combination of the 
figure and the written description is insufficient for any analysis or prediction of 
the performance of the process. The engineer needs some form of mathematical 
model to achieve these ends. 

If our process engineer's purpose for modelling is just to achieve a relationship 
between the outer diameter of the coated cable and the screw speed or the haul-
off speed, then he must find the static transfer function of the process. This is 
achieved by deriving a mass balance equation for the polymer flow into and out of 
the die. Intuitively one is not surprised to find that this transfer function shows 
that the diameter depends on the internal dimensions of the barrel and the screw, 
and on the ratio (screw speed/haul-off speed). 
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This transfer function is very useful if the engineer wants to judge the rate at 
which he can produce a given diameter of cable, but it has limited use if he wishes 
to design an automatic control system for this parameter. The problem is that 
this mathematical model only gives the steady-state gain of the process, whereas 
the dynamic transfer function is a more useful model for control design. In prac-
tice, some of the variables are often ignored at this stage in order to simplify the 
modelling exercise, but at the expense of reducing its usefulness in achieving an 
overall understanding of the process. A typical simplification is based on the fact 
that the temperature of the barrel wall is closely controlled by a multi-zone auto-
matic control system. It is assumed that the melt temperature is approximately 
constant, or, at least, varies slowly with respect to the achievable changes in screw 
speed or line speed. An important feature lost by this assumption is the ability to 
predict the response of the diameter to large-scale changes in screw speed when the 
process ramps up to full speed and the generation of work heat changes rapidly. 

It is important to be able to model the process behaviour during ramp-up to 
production speed (and ramp-down), because the diameter variation caused by this 
disturbance can mean that significant amounts of cable have to be scrapped. For 
this analysis, a simulation proves an invaluable tool, and, since the entire process 
forms rather a large model it is desirable to neglect some of the faster dynamics 
in order to run the simulation faster. In this case we require a mixed model which 
includes the dynamics of the slower sub-systems, and static models of the fast 
sub-systems. 

The above discussion has shown that three different modelling requirements 
have resulted in three different mathematical models to provide each specific func-
tionality. Modellers are not unused to this sort of problem, but it may explain why 
the benefits of process modelling are not as widely exploited in industry as they 
might be. The problem in industry is that the processes are subject to continuous 
change as market demands, financial constraints, and technology all change. The 
process engineer often cannot afford the time to generate more than the static 
model let alone keep several models up to date. 

There is, therefore, a very strong incentive to provide one core model represen-
tation from which the variety of mathematical models described in the prece-ding 
paragraphs can automatically be generated. This is the aim of the book. 

1.4 COMPUTER-BASED MODELLING TOOLS 

In the context of software, it has been said that one good tool is worth many 
packages. UNIX is a good example of this philosophy: the user can put together 
applications from a range of ready made tools. 

A recent paper Gawthrop (1995) describes the application of this philosophy 
to dynamic system modelling embodied in MTT — a set of Model Transformation 
Tools each of which implements a single transformation between system represen- 
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tations. 
System representations have two attributes: a form: e.g. acausal bond graph, 

differential algebraic, linear state-space etc. a language: e.g. Fig, Matlab, LATEX, 
Reduce, postscript etc. 

Transformations are accomplished using appropriate software (e.g. Prolog, Re-
duce) encapsulated in UNIX Bourne shell scripts. The relationships between the 
tools are encoded in a Make File; thus the user can specify a final representation 
and all the necessary intermediate transformations are automatically generated. 

Many of the equations and graphs appearing in this book have been automati-
cally generated from the bond-graph representation using MTT. The theory behind 
MTT is given in Chapter 4. 





Part I 

Principles 
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Bond graph representation of 
elementary systems 

SUMMARY 

• The basic concepts of a generalised approach to modelling are discussed. 

• Energy bond graphs are introduced as a generalised modelling technique 
which unifies models across energy domains. 

• The concept of causality is introduced and shown to provide a systematic 
method of deriving mathematical models from bond graph models. 

2.1 INTRODUCTION 

Our aim in this chapter is to detail a generalised approach to modelling, which 
unifies physical systems of all energy domains. Thus, the emphasis in this chapter 
is on physical system modelling. A structured approach is to analyse the system in 
terms of its constituent parts, within a defined system boundary (a frame). This 
process requires the modeller to abstract the model to a structure of interacting 
sub-models in a hierarchical manner until at the lowest level each sub-model con-
sists of a structure of elementary component behaviours (expressed as constitutive 
relations). 

It is not our intention in this chapter to repeat the excellent text books already 
available in this area (for example those by Karnopp et al. (1990), Cellier (1991), 
Thoma (1990) and Wellstead (1979)) but rather to provide a short motivating 
introduction. A deeper discussion of some of the concepts is given in Chapter 3. 

In this chapter, Section 2.2 describes an appropriate set of structural and consti-
tutive relations for the primitive elements, while Section 2.3 describes how energy 
bond graphs provide a powerful notation for linking these elements and hence rep-
resenting models using these concepts. Having captured such a representation of 
the system, it is necessary to transform the representation to a derived mathe-
matical model suitable for analysis or simulation. Section 2.5 shows how various 
causal augmentations of bond graphs permit this to be systematically achieved, 
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whilst providing deeper insights into the model and system. Section 2.6 describes 
the use of multi-port components, and Section 2.7 applies pseudo bond graphs 
to solve modelling problems for non-energy systems. The chapter is reviewed in 
Section 2.8. 

2.2 STRUCTURE AND CONSTITUTIVE RELATIONS 

As discussed in Chapter 1, the core model representation should include both 
the static and dynamic characteristics of the process. It should not be a set of 
mathematical equations, but should instead have a close mapping to the physical 
process, permitting the model to be extended to track modifications to this process. 
A natural way to achieve this aim is to subdivide the model into a set of standard 
elements and interconnect them in a structure appropriate to the process. This 
separation of structure and component behaviour is essential in order to permit the 
model to be interpreted easily by both humans and computers, thus facilitating 
modification in step with that of the process. 

A popular method of modelling is to construct an electrical analogue of the 
actual process. A brief analysis of why this is the case may prove useful. Electrical 
schematics are quite concise, and unambiguously describe the structure (wiring) 
relating a set of idealised components - this energy domain is fortunate in having 
components that are close to ideal over a wide operating range. The schematic 
has the advantage of being easily understood by (trained) humans, and also, more 
recently, by CAD software. Unfortunately, the mapping between the electrical 
analogue and the process is not always one to one, so occasionally some confusion 
may arise. A more direct mapping also permits the modeller to evolve the model 
more easily to achieve a closer match to the real process. Another disadvantage of 
this circuit-based modelling approach is that it does not offer any direct insights 
into the workings of the real process, since it is purely an analogue. As discussed 
by Karnopp, mechanical systems in two or three dimensions are modelled using 
state-modulated transformers; these are not found in electrical systems. 

Modelling using electrical analogues also tends to obscure the fact that, for 
processes covering multiple energy domains, the unifying variable is in fact en-
ergy. Much has been written by previous researchers in this field including Paynter 
(1961), Rosenberg and Karnopp (1983) and Wellstead (1979), exploiting this uni-
fication, which we can only summarise here. However, modelling energy transfers 
does provide a very useful focus for this part of our discussion of system represen-
tations. In practice, this turns out not to be a significant limitation, as most of the 
processes we are interested in modelling - general physical systems, mechanics and 
industrial processes - involve energy transfers. In later sections we will describe 
how the same techniques can be applied to developing models of processes where 
energy is not the exchange variable. 
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2.2.1 Energy transfer models 

At this point it is necessary to give an overview of the basic concepts of system 
modelling based on energy as the variable manipulated by the system. For a more 
detailed exposition, we refer the reader to several excellent texts on this specific 
subject including those by MacFarlane (1964), Karnopp and Rosenberg (1975) and 
Wellstead (1979). 

Choosing energy as the exchange variable for a model leads naturally to the use 
of two co-variables in each energy domain, which are conventionally called effort 
(e) and flow (f), where 

energy E = .f e f dt 	 (2.1) 

At this point, it is worth commenting that an alternative pair of co-variables 
is in common use: the across and through variables. Across variables (transvari-
ables) are spatially-extensive and are often described as those requiring a 2-point 
measurement (MacFarlane, 1964). Through variables (pervariables) are spatially-
intensive and imply that the variable passes through the measurement instrument. 
This way of classifying variables results in voltage, pressure and velocity being 
grouped as across variables, while current, flow rate and force are the correspond-
ing through variables. A discussion of the relative merits of the two approaches is 
given by Wellstead (1979). 

In the effort-flow classification, voltage, pressure and force are effort variables, 
while current, flow rate and velocity are the corresponding flow variables. The 
consequence of this difference is that mechanical systems described using the effort-
flow notation are duals of those using across-through notation. Each approach 
shows some inconsistencies, but since the effort-flow classification is most widely 
used in the context of bond graphs, this convention is adopted henceforth in this 
book. 

Energy is exchanged through so-called ports on each element, where each port 
represents a single distinct energy interface. The energy model has four basic types 
of ideal elements: 

Energy sources. Energy sources provide the system inputs which are a convenient 
way of defining the boundary of the modelled system, and hence for deter-
mining its reaction to effort or flow stimuli. The concept of an energy source 
includes that of an energy sink which can be regarded as a source with neg-
ative flow of energy. 
Energy sources are ideal in the sense that either the effort or the flow variable 
is independent of the co-variable. 

Energy stores. These elements accumulate either the effort or flow variable and are 
described as effort-accumulating or flow-accumulating stores, respectively. 
This accumulation (integration) of either effort or flow gives the system a 
state, and thus endows the system with dynamics. 
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Energy stores are ideal in the sense that they store, but do not dissipate, 
energy. 

Energy dissipators. Energy dissipators are non-dynamic elements which dump en-
ergy out of the system into its environment, and which, for non-thermodynamic 
models, provide a convenient termination boundary to the model. This irre-
versible conversion of energy to the thermal domain results in non-dynamic 
elements. 
Energy dissipators are ideal in the sense that they dissipate, but do not store, 
energy. 

Energy transfer elements. These elements conserve energy, merely routing it through 
the model, between any other model elements. In some energy domains these 
elements are well-defined (e.g. parallel connections in electrical systems), 
while in others they are more abstract (common force points in mechanical 
systems). Included in this group of elements are couplers which neither store 
nor dissipate energy, but transform the effort and flow variables without 
energy loss. 

It is recognised that it is also important to have system outputs (via sensors), 
but for analysis purposes outputs are signals and do not exchange energy. A 
sensor output may also exhibit dynamics, which may be either inherent or due to 
its location or relationship to the measured variable. Outputs will be dealt with 
in detail in the discussion of causality (Chapter 3). 

The behaviour of a specific element is described by a physical law which is 
expressed as its constitutive relation , and the form of this relationship determines 
which of the above groupings is appropriate to a given element. Specific consti-
tutive relations will be discussed further in Section 2.2.3, after we have looked in 
more detail at the energy transfer elements. 

2.2.2 Model structure 

The energy transfer elements actually represent the model structure, and are called 
multi-ports, indicating that they have two or more ports for transferring energy. 
The constitutive relation which is common to these elements is that the sum of all 
the energy flows into the junction is zero, i.e. 

eifi + e2f2 + . . . + en.fn = 0 (2.2) 

where subscripts 1, 2, ... n indicate the ports through which energy is flowing into 
the element. Note that a sign convention must be chosen which is consistent; for 
example, (as here) all energy flows being measured into the element. 

There are four basic elements within this category, two of which maintain one 
of the variables constant through the element, and two of which perform a trans-
formation. 
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Junctions 

The first type is termed a junction element where either effort or flow is fixed and 
the co-variables must sum to zero. Electrical engineers will recognise this as a more 
general formulation of Kirchoff's Laws. There are two such laws for each energy 
domain, since either the effort or the flow may be fixed at a specific junction. Thus 
at an effort junction (also termed a parallel junction from its electrical domain 
equivalent) the following relations must hold 

el =e2= • •• =en 
	 (2.3) 

and fl +f 2 +. +fn=0 
	

(2.4) 

Conversely, for a flow (series) junction the flow is fixed for each path into or 
out of the junction while the efforts must sum to zero, i.e. 

f~ =f2=... = fn 	 (2.5) 

and e1 + e2 + ••• + en = 0 	 (2.6) 

The direction of energy flow is generally assumed to be from input sources and 
into stores and dissipators. With a complex junction structure it is sometimes not 
obvious which way energy may be flowing, so our structural conventions must be 
able to unambiguously represent the chosen sign of the energy flows. 

Transformers and gyrators 

If the energy transfer element also transforms one of the effort or flow variables 
then the co-variable must also be transformed such that the energy conservation 
relationship (Equation 2.2) is still valid. The most widely used elements of this 
type have just two ports, so these will be described here, although the description 
can be applied more generally to n ports. 

There are two elements of this type - the transformer and the gyrator. A 
two-port transformer has a relationship where the efforts on the two ports are 
constrained by the relationship 

e2 = kel (2.7) 

where the transformer ratio, k, is either a constant or may be dependent on some 
other system variable, resulting in a modulated transformer. For energy conserva-
tion to hold at any instant 

_ — e2f2 

= —k f2 
	 (2.8) 
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The direction of power flows is normally defined such that one port is an input 
and the other an output, resulting in the transformer ratio being positive for both 
effort and flow relations. 

Typical physical examples of transformer elements are a frictionless lever in 
the mechanical domain, or a two port transformer in the electrical domain. The 
reason that the latter example only transforms A.C. signals will be used to show 
how energy bond graphs can provide deeper insight into system behaviour. 

The gyrator constitutive relation occurs when the relation is constrained by 

f2 = get 
	

(2.9) 

where g is referred to as the mutual conductance. 

Substituting (2.9) back into the energy conservative relation (2.2) for a two-
port, gives the complementary form of the gyrator constitutive relation 

fi = —ge2 	 (2.10) 

As for the transformer ratio, the mutual conductance (g) may be either a con-
stant or dependent on some other system variable as long as both relations are 
simultaneously true. 

Physical instances of gyrators are less easily recognised than transformers, as 
they occur most often when transformation from one energy domain to another 
is modelled. A typical example is the fixed field DC motor where the back e.m.f. 
generated by the armature rotation is proportionally related to the shaft speed — 
by the motor gyrator constant, and the input current is related to the load torque 
by the same constant. If the field current is derived by placing the field winding in 
series with the armature winding, then the mutual conductance becomes a function 
of this current resulting in a modulated gyrator. 

2.2.3 Constitutive relationships of energy nodes 

Energy sources, stores and dissipators have been identified as the basic elements 
which may be used to emulate the range of system behaviours required for a com-
prehensive energy model. A fuller understanding of these elements can be gained 
by studying their constitutive relations (CR) . These constitutive properties of an 
element will generally be expressed as a an algebraic equation relating the effort 
and to the integrated flow or vice versa, although this behaviour could equally 
be described by a graph. In many real physical systems the relationship between 
the effort and flow variables may be non-linear, and thus it is important that any 
modelling technique adopted must be able to handle constitutive relations which 
are non-linear. 
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Energy sources 

The system inputs can be either effort sources or flow sources, where the type of 
source defines the variable controlled by the source, which, for an ideal source, 
is independent of the co-variable: The value of the co-variable is defined by the 
system which the source supplies. Thus using an electrical example once again, a 
battery is an effort source and if the system consists of a resistor across the battery 
terminals, then this resistor determines the current (flow) from the battery. Sources 
can also be modulated by another system variable, as is often the case with control 
systems, and in the electrical domain, an amplifier providing a low impedance 
voltage output may be modelled as a modulated effort source. 

The constitutive relation for an effort source is 

e = eo 
	 (2.11) 

and for a flow source 

f = fo 
	 (2.12) 

Where e0  and fo  are (possibly modulated) constants. 

Energy stores 

Energy stores are a little more complicated, but again there are two basic types - 
those that accumulate effort and those that accumulate flow 1. 

Dealing first with effort-accumulating stores, the general constitutive relation 
has the form 

f = sb( p) (2.13) 

where 15(p) is a (possibly nonlinear) function of the integrated effort or generalised 
momentum p given by 

p = f e dt 	 (2.14) 

In the linear case, Equation 2.13 can be rewritten as 

_ p_ 
f I  

where the proportional constant I is called the inertance. Equation 2.14 is shown 
in integral form as this best indicates the storage mechanism and is physically 
realisable. 

'There is the possibility of confusion here. Some authors use `effort store' to refer to a store 
with effort output, that is a flow-accumulating store, and `flow store' to refer to a store with flow 
output, that is an effort-accumulating store 

(2.15) 
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However, Equations 2.14 and 2.13 can be rewritten in derivative form as 
_ dp 

e  dt 

where 0-1  is the inverse of O. 

Example 

An example of an effort store from the mechanical domain occurs when 
the effort variable, force, is applied for a time to a mass, resulting in 
a change in the flow variable, velocity. i.e. 

velocity =  1  f force dt  
mass 

the energy imparted to the mass has been stored as kinetic energy and 
the accumulated energy is given by 

mass 
E = 	

2 
velocity  

In a similar way, the flow-accumulating store has a general constitutive relation 
of the form 

e = 0(q) 	 (2.18) 

where ¢(q) is a (possibly nonlinear) function of the integrated flow or generalised 
displacement q given by 

q = f fdt 	 (2.19) 

In the linear case, Equation 2.18 can be rewritten as 
__ e C  

where the proportional constant C is called the capacitance. 

(2.20) 

Example 

An easily visualised example of a flow store is a tank filled with incom-
pressible fluid by a flow source at the bottom of the tank. The flow 
variable in this case is the volume flow rate of fluid into the tank, and 
the effort variable is the resulting pressure at the bottom of the tank. 
Simple hydraulics indicate that this pressure is given by 

volume x density x g 
Pressure = 	  

area 
density x g  

f volume f lowrate dt 
area 

Hence the capacity, C, is area/(density.g) and in this case, the energy 
is stored as potential energy in the head of water in the tank. 

(2.16) 

(2.17) 
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Energy dissipators 

Energy dissipators are not divided into effort or flow types because their constitu-
tive relations can generally be expressed in either form, 

e = O(f); f =§6-1(e) 	 (2.21) 

or, in the linear case, 

i.e. e = Rf or f = e/R 	 (2.22) 

These Equations (2.22) are seen to be general forms of Ohm's law in the electri-
cal engineering domain, where R represents an electrical resistance, and the energy 
dissipated in the linear case may be expressed as 

E = f f 2 Rdt = f e2/Rdt 	 (2.23) 

Mechanical and hydraulic dissipators are not necessarily linear, however, and 
thus their constitutive relations may be more easily calculated when expressed in 
one particular form. Dissipators in these domains exert forces which always oppose 
the direction of motion imposed upon them and vary according to a variety of laws. 
The effort (pressure drop) generated by incompressible flow through an orifice is 
typically given by 

e= RfIfl 

thus giving two possible values of flow if this is expressed as a function of the effort 
variable. 

As a final comment on dissipators, it should be realised that when modelling 
thermodynamic systems one is often specifically interested in calculating the dis-
sipation of thermal energy into the environment, and so the environment itself 
contributes to the system variables. Thermodynamic systems will be dealt with in 
more detail in Section 2.3. 

Due to the conflicting variable names used in each energy domain, and since 
the point of using energy as the manipulated variable is to unify the approach to 
all these domains, the designations used in this section will be used throughout the 
remainder of the text. The correspondence of these variables to individual energy 
domains is shown in Table 2.1. 

To summarise this brief overview of modelling systems as energy manipulators, 
we have identified four basic element types which can be differentiated by the form 
of their constitutive relations . Elements which conserve energy and distribute 
it between other elements are seen to define the structure of the system. The 
remaining elements have "constitutive relations which either put energy into the 
system (sources), remove energy from the system (dissipators), or store either 
potential or kinetic energy (stores). These energy stores accumulate all the history 
of the system and thus can be used to derive state variables for dynamical models. 
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Domain Effort e Flow f Momentum p Displacement q 
Electric EMF e Current i Lines A Charge q 

(voltage) V 
Magnetic MMF M Flux 

rate 
( - - Flux 0 

Hydraulic Pressure P Volume 
flow rate 

V Pressure 
momentum 

p Volume V 

Mechanics 
(trans) 

Force F Velocity V Momentum p Displacement x 

Mechanics 
(rotation) 

Torque T Angular 
velocity 

w Angular 
momentum 

h Angle cx 

Thermo- 
dynamics 

Temperature T Entropy 
flow rate 

S Entropy S 

Table 2.1 Effort and flow variables for each energy domain 

2.3 ENERGY BOND GRAPH MODELS 

The bond graph notation is a graphical language designed specifically for the de-
scription of processes which manipulate energy. In consequence, the language 
includes elements which model all the requirements analysed in the preceding dis-
cussion on structure and constitutive relations . A graphical notation is necessary 
in order to provide a concise description of the entire process at a higher level of 
abstraction than the equations describing the energy transfers between elements. 
In addition, bond graphs also highlight the structure of the model, making the 
mapping between the model and the system somewhat more intuitive. 

If it were just the case that bond graphs provide `the acceptable face of energy 
equations' to improve their palatability to engineers, the notation would have less 
value than it actually provides. It is hoped that the following discussion will show 
how bond graphs not only represent the process in a form with which the user can 
easily interact, but also help to improve understanding of process fundamentals and 
yet permit unambiguous interpretation of the graph by software for transformation 
to a variety of derived models. 

The remainder of this section describes bond graph syntax, with special empha-
sis on the interpretation of computational causality. Finally, the use of multi-port 
elements is described with, hopefully, a fresh view on their application. 

2.3.1 Energy bonds 

Bond graphs have the effect of shifting the user's attention away from the element 
which manipulates energy and towards its interaction with the rest of the system in 
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which it exists. The energy bond carries all the information about this interaction, 
which notionally occurs through a `port' on the element. 

The bond is represented as a half arrow (Figure 2.1a) indicating the (supposed) 
direction of energy flow, between the ports to which it is attached. The bond may 
be annotated by symbols representing the effort (above the bond) and flow (below 
the bond) subscripted with the bond identification, which is typically the same as 
the identification of the attached energy node. 

e ~ 

f 

a) Energy Bond 	 b) Activated Bond (Signal) 

Figure 2.1 Representation of bonds and signals 

An energy transfer is implicit in every bond, so an equivalent symbol is required 
to indicate the transfer of zero energy signals (or information). The symbol for a 
signal is the full arrow (Figure 2.1b) borrowed from block diagram notation. The 
signal may convey either an effort or a flow, or alternatively the value of a state 
variable. By convention, a signal pointing towards an energy node implies that 
the constitutive relation of that element is modulated by the value conveyed by 
the signal. A shorthand notation has arisen where a signal directed at a junction 
implies a combination of a signal modulating the appropriate energy source on 
that junction, without having any effect on the source junction, i.e. a buffered 
signal. For this reason, signals are also called activated bonds, although these 
are distinguished from modulating signals in bond graphs given in this text by 
representing modulating signals as dashed arrows. 

2.3.2 Junction structure 

The need for the four structural elements provided by bond graphs has been out-
lined in Section 2.2, and these are illustrated in Figure 2.2. 

The (common) effort junction is conventionally called a `0' junction, and has at 
least two ports, but more typically three or more. The constitutive relation of the 
`0' junction ensures that the effort is identical at each port and that the algebraic 
sum of the flows on each port is zero. The (common) flow junction is called a `1' 
junction and conserves energy by defining the flows on each port to be identical 
while the efforts sum to zero. Since the `0' and `1' junctions are generalisations 
of parallel and series electrical junctions, a convention has arisen labelling these 
as `p' and `s' junctions respectively (Thoma, 1990). Since this is meaningless for 
mechanical systems and the `0' and `1' convention is most widely used, this book 
uses the latter henceforth. 

Transformers are designated by `TF' nodes in bond graphs and are again power 
conserving although the effort on the output port is scaled by the transformer ratio 
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L 	L 
a) Common Effort Junction 	b) Common Flow Junction 

TF 	 GY —, 

c) Transformer 	 d) Gyrator 

Figure 2.2 Junction structure elements 

- TF  - 
V 	 W 

Figure 2.3 Transformation between mechanical domains 

to the effort on the input port. In Section 2.2.2 we noted that the transformer ratio 
can be modulated by another system variable, which is indicated graphically by 
directing a signal toward the `TF' node from a node carrying the relevant system 
variable. An example of a modulated mechanical transformer is shown in Figure 2.3 
where a rigid bar pivoted at its end converts the translational force F to a torque 
T with a transformer ratio (l cos(a)) dependent on the angle of the bar. 

T = (l cos(a))F 

and (i cos(a))w = y 

Figure 2.3 is also an example of the use of a transformer to convert between 
energy domains - in this case, between the translational and rotational mechanical 
domains. 

Gyrators (designated `GY') are also energy conserving, but directly relate the 
input effort to the output flow - they most frequently occur when representing 
transducers between energy domains. A further example of this is shown in Fig-
ure 2.4 where an electrical coil wound on a magnetic core is modelled as a gyrator 
between the electrical and magnetic energy domains. 

In this case, the coil gyrates electrical effort (e.m.f.) to magnetic flow (rate of 
change of flux), with a gyrator ratio equal to 1/N, where N is the number of turns 
in the coil (Faraday's Law). Since the gyrator is energy conserving, the electrical 
flow is related to the magnetic effort variable (m.m.f.) by the same ratio. Whereas 
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path length l 
area a 

iGy 	~C: 
flux t 	 1 
mmf M v=NO M=Ni 

Figure 2.4 Gyration between electrical and magnetic domains 

the coil appears to the electrical system to which it is connected to be an effort 
store, this model indicates that the energy is stored in a flux store in the magnetic 
domain. The capacitance of the magnetic circuit (normally called the permeance) 
can be shown to be given by 

C = pA 

	

	
(2.24) 

Hence the magnetic effort generated by the flow into this capacitance is given by 

1 rdçb 
M 	

CJ dt d 

_ 
t 

CJ Ndt 

lJ 
e dt 

,iAN 

The gyrator relation gives 

_M_ l f 

z N pAN2 ,/ 
e dt 

p 

i.e. the electrical inductance is pAN 2/1 

2.3.3 Energy nodes 

In Section 2.2.2 we divided energy nodes into three categories: energy sources, 
stores and dissipators. Table 2.2 shows the bond graph representations for each 
of these elements and standard (linear) forms for their associated constitutive re- 
lations. Non-linear constitutive relations are of course possible, and may be rep- 
resented within a bond graph model. Each node is illustrated with one associated 
energy bond, indicating that these are representations of single port elements. The 
effort and flow sources are shown supplying energy while for the remaining elements 
the nominal direction of the energy flow is toward each element. 

At this point, it is useful to consider what elements or behaviours these symbols 
represent in the context of specific energy domains. 

(2.25) 

(2.26) 
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Symbol Element type Constitutive relation 
SF — 
SE — 
— C 
— I 
— R 

Flow source 
Effort source 
Flow store 
Effort store 
Dissipator 

f = fin 

e = ein  
e = 1/C f f dt = q/C 
f =1./I f e dt = p/I 
e = Rf or f = e/R 

Table 2.2 Bond graph elements 

Electrical Elements 

Since this domain has relatively ideal components, their behaviours can be mapped 
exactly onto those listed in Table 2.2. Voltage and current sources are represented 
by `SE' and `SF', respectively, and these can be modulated by some other system 
variable to model perfect amplifiers. `C' and `I' energy stores represent capacitors 
and inductors which store energy either as electric charge or magnetic flux. Finally, 
electrical resistors dissipate energy from the system and can be represented by `R' 
nodes in the bond graph. 

Magnetic Elements 

Magnetomotive force (m.m.f.) can occur as a fixed effort source, when modelling 
the remanent magnetism in a permanent magnet, or as an effort source when pro-
duced by an electric current in a wire. In our discussion of gyrators, in Section 2.3.2, 
it was noted that the magnetic flow (rate of change of flux) is proportional to the 
voltage across the coil, so a magnetic flow source is created whenever a voltage is 
applied to an electrical path. 

It was also seen that the energy is stored in the magnetic path, due to the 
accumulation of flux resulting in a magnetic `C' element. There is no equivalent 
magnetic element to the effort store - `I' node - this will be discussed further at the 
end of this section. Magnetic circuits can only dissipate energy when the m.m.f. is 
changing - this is due to the hysteresis loss of a magnetic core, and can be modelled 
by an `R' node. Eddy current losses can also occur in metal cores, but these are 
due to a gyration back to the electrical domain. 

Hydraulic Elements 

When dealing with incompressible hydraulics, pumps can be represented by `SE' 
(pressure sources) or `SF' nodes depending on the type of pump. A tank capacity 
is readily seen to be an accumulator of flow, and is represented by a `C' node. 
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An ideal pressure source is a large reservoir - effectively an infinite capacitance. 
The kinetic energy associated with mass flowing through a pipe is the result of 
accumulated effort and represented by an `I' node. 

Energy may be dissipated in two basic ways in hydraulic systems, either due to 
viscous forces between the fluid and static objects or viscous forces between fluid 
particles. Both are represented by an `R' node. Laminar flow results in a linear 
constitutive relationship, but whenever turbulent flow exists this becomes highly 
non-linear. 

Mechanical Elements 

Although translational and rotational mechanics are deemed to be separate do-
mains, they are dealt with together here as so much terminology is common. Im-
posed forces and torques are effort sources, the most common constant `SE' node 
being gravity. Imposed (linear or angular) velocities are also possible, represented 
by the `SF' node. 

Mechanical engineers make the distinction between potential and kinetic energy, 
according to whether it is stored in a `C' or `I' element respectively. Springs are 
flow stores ('C' nodes), while mass accumulates effort and is represented by an `I' 
node. Friction dissipates energy from the mechanical system and is represented by 
an `R' node (often with a non-linear constitutive relation). 

Thermodynamic Elements 

Thermodynamic systems are often analysed using the variables temperature and 
heat flow rate (Q), but the latter cannot be used as the flow variable in an energy 
bond graph, as it is an energy rate variable. One can use heat flow rate in some 
bond graph representations (called pseudo bond graphs), but then care has to be 
exercised in interfacing with other energy domains. 

Energy bond graphs for thermodynamic systems use entropy flow rate (S) as 
the flow variable and absolute temperature (T) as the effort variable, thus satisfying 
the requirement that the product of effort and flow is instantaneous power. Effort 
sources are therefore models of elements which can force the temperature at one 
point in the system - a standard `SE' input to thermodynamic systems is the 
ambient temperature. 

Although entropy flow sources do exist they rely on inputs from other energy 
domains - cf. flow sources in the magnetic domain. In this case, energy lost through 
a dissipator in the other energy domain is conserved in the thermodynamic domain 
and emerges as a defined entropy flow rate. Since this is such a common mechanism 
for sourcing entropy flows, bond graphers have added the `RS' node (Figure 2.5) 
to the terminology. 

The constitutive relation of the `RS' node is energy conservative as indicated 
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e1— RS e~ 
f1 	f2 

Figure 2.5 An 'RS' element 

in Equation 2.27 

f2 

i.e. S2 

elfi  
e2 

elfi 

T2 
(2.27) 

It can be seen from this constitutive relation that this is a modulated `SF' node 
in that the flow is dependent on the effort variable (temperature), as well as the 
energy imparted from the other domain. 

The argument applied to dissipators from other energy domains conserving en-
ergy by passing it into the thermal domain, implies that thermodynamic dissipator 
cannot exist. Thermal resistance is not a dissipator but rather a dual entropy flow 
source which is also represented by an `RS' node. The constitutive relation of a 
thermal resistance is given by 

E = T1 ,. '1 = T252 = H.(T1 — T2) 	 (2.28) 

where H is the heat transfer coefficient. 
Thermodynamic systems have flow stores in the form of thermal capacity, rep-

resented by a `C' element. The constitutive relation of a thermal capacity is 

T = To exp(S/C) 	 (2.29) 

where To is the initial (absolute) temperature. Equation (2.29) approximates to 

T = T0(1 + S/C) 	 (2.30) 

for small differences between T and To. 
Like magnetic systems, there is no effort store (`I') in thermodynamic systems, 

which has led Breedveld (1984b) to the conclusion that such stores are not fun-
damental. It was shown, in the discussion of gyrators, that the electrical effort 
store (inductance in a coil) is fundamentally a gyrated version of a magnetic flow 
store. Thus, it is always possible to use the gyrator's ability to make duals of 
elements to remove the need for the effort store. They are, however conceptually 
convenient, and in the mechanical domain, at least, neither the `I' nor `C' element 
appears more fundamental. Breedveld (1984b) has proposed a generalised bond 
graph theory, where inertances only exist when gyrated from `C' elements, thus 
requiring dual (potential and kinetic) mechanical domains. 
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Bond graph examples 

2.4 BOND GRAPH EXAMPLES 

2.4.1 An Electrical Second Order Lag 

R1 RZ 
Wi 

n i 
Figure 2.6 An electrical second order lag: schematic 

1 ' 0' 1 " 0~ 

L 
R: R 1 C: C2 R: R3 C C4 

Figure 2.7 An electrical second order lag: bond graph 

The electrical schematic for a second order lag is given in Figure 2.6, while the 
bond graph equivalent is shown in Figure 2.7. 

Since electrical schematics provide an unambiguous representation of the real 
system, it is possible to give precise rules for transforming such schematics to bond 
graph notation: 

1. Draw a `0' junction for each point in the schematic where parallel paths 
coincide. 

2. Draw a `1' junction for each component on a series path, and attach the ap-
propriate bond graph component by a bond to that junction. The arrowhead 
on each bond indicates the assumed direction of power flow, i.e. from sources 
and towards stores and dissipators. 

3. Draw bonds between adjacent junctions, again indicating notional direction 
of power flow. 

4. Remove the `0' junction representing the reference point (typically the 0 Volt 
rail) and remove all bonds attached to this junction. 

5. Remove any remaining two-port junctions and move attached nodes to the 
adjacent junction. 

U 

~T CT 

This procedure converts even the most complex electrical schematics to bond 
graph form, for further analysis using bond graph techniques. The `SS' element 
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at the end of the graph shown in Figure 2.7 has been added to represent a sensor, 
since for this second order lag, we are interested in monitoring the output voltage 
across capacitor C4. 

 

R2 

~T 

  

U 

 

Y 

   

Figure 2.8 An electrical second order lag with buffer: schematic 

SE :U 	1 	0-> 1~0 1L 

R:R1 C:C2 R:R3 C C4 

Figure 2.9 An electrical second order lag with buffer: bond graph 

Figure 2.8 shows a modified version of the circuit of 2.6 containing a buffer 
amplifier (of unit voltage gain) connecting the two halves of the circuit. In this 
case there is no current flow from the `0' junction to the `1' junction and so the 
corresponding bond in Figure 2.9 is replaced by a signal. 

2.4.2 A hydraulic brake system 

Figure 2.10a shows a simplified schematic of an automobile braking system with 
a hydraulic system connecting the foot pedal to two brake pads, pressing against 
the brake disc. 

The system is shown first as a word bond graph (Figure 2.10b) to better illus-
trate the components of the system, while Figure 2.10c shows the complete bond 
graph of this system. A force is applied (by the effort source SE1) to the brake 
pedal, which is coupled by an end-pivoted lever, represented by TF2, to a return 
spring with compliance C3. Since the piston rod is connected to a third point on 
the lever a further transformer (TF4) is required to couple the resultant of the 
applied and spring forces to the piston rod. Frictional force imposed on the piston 
rod is represented by R5 which is attached to the `1' junction representing the 
velocity of the piston rod. 



Brake 
piston 

Brake 
Master 	 pistons 	Foot _..0.Compression _..sBrake _.r 0 
cylinder 	_ 	 pedal 	piston 	pipe 

Disc  
Brake 
piston 

Foot 
pedal 

1 

a) Disc brake system 	 b) Word bond graph 
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Disc 

R:R 9  
SE -.."` TF --.11.4 -+11•TF - .I+ 1-+11•TF -+11►1-+11• 0 
SEI 	:TF2 	:TF4 	

l 	

:TF6  	R: ,R 12 

C: C 3 	 R: R 5 	R: R 7 	 1 
TF -"Ilk  1 --"'°L  C: C 13 
: TF I1 

c) Disc brake bond graph 

Figure 2.10 A disc brake system 

The master cylinder (TF6) transforms the force on the piston to a hydraulic 
pressure. This pressure is measured at the outlet of the master cylinder into the 
brake pipe, which is assumed to have a small resistance (R7) to fluid flow. The 
brake fluid is assumed to be incompressible, as is the case for normal safe operation 
of the system; in a faulty system, however, air in the fluid can make it appear 
compressible. 

The split into pipes for each brake is modelled by a `0' junction where the 
common pressure is applied to each brake piston in its caliper cylinder. These 
cylinders transform (TF8, TF11) the hydraulic pressure to forces on the brake 
pads which firstly overcome the frictional forces and the compliance due to the 
pad retainers. The reaction force from the brake disc may be modelled in several 
ways, but here it has been chosen to model this by modulating the dissipator 
parameters (R9 and R12) according to the position of the pads (i.e. the states of 
C10 and C11). The modulation causes the `friction' to become infinite when the 
pads meet the disc thus giving zero velocity. A more detailed model of this system 
could employ an `RS' element (Section 2.3.3) to indicate that the force of the pad 
on the disc converts energy into heat which can effect the pad friction parameters 
and cause the brake fluid to expand. 

TF --++1L l —+ C: C 10 
TF8 

1 
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2.4.3 A DC motor 

The bond graph model of a DC motor is developed from first principles, by consid-
ering the force F on a current carrying wire perpendicular to a uniform magnetic 
field B. If the length of the wire is l and the current is i, then Faraday's law gives 

F = Bli (2.31) 

Assuming the wire is free to move across the magnetic field with velocity u the 
e.m.f. generated in the wire is 

e = Blu (2.32) 

Since we have defined voltage and translational force as effort variables, and 
current and velocity as flow variables, we can see that Equations (2.31) and (2.32) 
represent gyrator action between the electrical and mechanical energy domains. 
The power passed through the motor is Blui, and the gyrator ratio is Bl. 

urrent carrying 
Wires 

I: inductance 	I: mass 

1 	 1 
SES 1----\ GY--1 

K.If  

L 	 L 
R: resistance 	R: friction 

Figure 2.11 Models of a DC motor 

Figure 2.11a schematically shows how this is implemented in a DC motor, where 
each turn of the armature wiring experiences a force 2F due to the two lengths per 
turn. In practice, the armature winding has significant resistance and inductance 
since many turns are required. The armature mass also results in rotational inertia, 
while friction losses occur in the bearings. The bond graph model is shown in 
Figure 2.11b, indicates that the electrical resistance and inductance are in series 
with the EMF required to drive the motor, and the armature inertia and friction 
losses are on a common velocity junction. 

It can be seen that the gyrator ratio is proportional to both the number of 
active turns on the armature (n), and to the magnetic flux density, B. Since the 
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magnetic field is often generated by a separate field winding, the gyrator ratio is 
then dependent on the field current, since 

B = Â = IiN Zf 	
(2.33) 

where it is the permeability of the field core, N is the number of turns on the field 
winding, le is the effective magnetic path length, and if is the field current. Thus 
for a given motor the gyrator ratio is Kif , 

le 
	 (2.34) 

Hence the motor gyrator ratio is actually modulated by the field current, if this is 
not constant. 

2.4.4 An electric heater 

For this example we will develop an energy bond graph model of an electrical heater 
rather than the more common model which uses heat flow rate as the flow variable. 
Figure 2.12 models the electro-thermal conversion as an energy conservative RS 
element which sources an entropy flow to the thermal capacitance (C3) of the 
heater, and to a thermal resistance (RS4) representing heat loss to the ambient 
(SE5). 

C:C 3 
/ 
3 

SE 1 ~1 	\ RS ~0 4 ,RS 	1 ~ 5 	 SE 
: V1 	 : R1 	 : H 	 :Tp 

Figure 2.12 Bond graph of an electrical heater 

The input power from the electrical source is V12 /R1, where R1 is the electrical 
resistance of the heater. The thermal power generated is therefore 

e2í2 = V12 /R1 	 (2.35) 

where e2 is the absolute temperature and f2 is the entropy flow generated. This 
entropy flow splits at the `0' junction between that into the thermal capacitance, 
causing the rise in temperature, and that passing through RS4 to ambient. The 
(linearised) rise in temperature is approximated T0S/C3 where T0 is the initial 
(ambient) temperature and S the integrated entropy flow into C3, giving 

e3 = T0(1 + S/C3) 	 (2.36) 

2 InNµ 
where K = 
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The heat flow rate to ambient is 

Q9 = e4í4 = H(e4 — To) (2.37) 

where H is the thermal conductance, between heater and ambient. 
Since the efforts are common at a `0' junction 

e4 = e2 = e3 = T3 	 (2.38) 

and the flows split at this junction 

f2 = f3+ f4 	 (2.39) 

Therefore 

f3 = [Vi2/Rl  - H(T3  - To)]/T3 	 (2.40) 

= [V2 /R4  — H(T0(1 + S/C3) — To)]/T0(1 + S/C3) 

For S/C3  < 1 we can approximate (1 — S/C3) = 1/(1 + S/C3), giving the state 
equation 

f3 = [V2 	- HT0S/C3].(1 - S/C3)/To 

i.e. S = [V2 /R, — HT0S/C3  — Vi2S/(C3R4)]/To 	 (2.41) 

ignoring terms in (S/C3)2. 

2.5 CAUSAL AUGMENTATION OF BOND GRAPHS 

The concept of (computational) causality is central to the systematic resolution 
of bond graphs into the mathematical form chosen by the modeller. Due to the 
importance of this concept we have devoted Chapter 3 to exploring this in more 
depth. This section explains causality in the context of bond graph analysis. 

Assigning the causal orientation of a given bond in the graph implies that 
specifically either the effort or flow variable on that bond is known, and this known 
value (or expression) may then be propagated through the graph to arrive at a 
complete mathematical model. The rules for causally augmenting the bond graph 
permit the system equations to be ordered automatically for solution either by 
hand or by computer software. 

In keeping with the concise graphical approach, causality is indicated on the 
bond graph by a causal stroke at one end of a bond joining two nodes on the graph. 
This stroke is drawn at the end of the bond nearest the node to which the effort is 
directed - the flow by implication is directed toward the node at the other end. The 
only elements that can force causality are effort or flow sources, and the structural 
elements - Figure 2.13a shows this notation applied to sources and to dissipators - 
the indicated direction of the energy flow is seen to be irrelevant to causality. 
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Figure 2.13 Permissible causalities 

Figure 2.13b shows how causality is propagated through the bond graph by 
the structural elements; `0', `1', `TF' and `GY'. Since the effort at a `0' junction is 
common to all the bonds on that junction, only one bond can define the effort on 
that junction, the remaining bonds impose flows on the junction, while propagating 
the known effort to attached nodes. In contrast, only one bond determines the flow 
at a `1' junction, while the remaining bonds impose efforts on the junction. The 
transformer (`TF' node) passes causality on directly (thus a bond can be considered 
as a transformer with ratio 1), while gyrators have the effect of inverting causality 
- hence the application of gyrators to achieve the dual of an element. 

Elements which are energy stores or dissipators do not impose causality on the 
system, although they may have preferred causality for computational reasons. In 
general, therefore, the causality assignment of a given bond graph is not unique, be-
ing dependent on the modeller's choice of mathematical model. In particular, sys-
tems having a large proportion of dissipators could be described as `under-causal' 
since the modeller may have to make one or more arbitrary choices of causality 
in order to complete causal assignment on the bond graph. The consequence of 
under-causal systems is that some intermediate variable has to be eliminated by 
the solution of an algebraic loop, before the complete mathematical model can be 
derived. 

In such cases, the modeller's choice of causality assignment may not be entirely 
arbitrary, but rather as preferred to improve ease of computation and minimise 
the number of algebraic loops (Lorenz and Wolper, 1985). For example, it is more 
convenient to calculate the effort variable from the flow for a dissipator representing 
the turbulent flow through a pipe where pressure drop (e) is given by the following 
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function of flow rate (f) 

e=RNLI 
	

(2.42) 

It has been noted that activated bonds can be used to represent sources mod-
ulated by a signal. In such cases, the activated bond has the causality of the 
modulated source and is drawn with a causal stroke in this text. For example, an 
activated bond from a `0' junction transmits the effort from that junction and is 
drawn with a causal stroke at the destination end of the signal. 

2.5.1 Integral or derivative causality? 

Table 2.2 shows that the constitutive relations of the energy stores contain infor-
mation about the system inputs and state variables p and q, thus permitting the 
system dynamics to be fully represented. The emphasis in bond graph literature 
has been on the transformation of graphs to state equations - choosing alternative 
causality assignment rules results in different forms of mathematical model. When 
one is transforming the bond graph into its state equation form, the causality of 
interest for energy stores is termed integral causality, where the constitutive rela-
tions of the energy stores are in the form given in Table 2.2. The ability to assign 
integral causality also implies that the system is physically realistic, thus providing 
a deeper level of analysis of system constraints than would be possible without the 
concept of causality. A mixture of integral and derivative causality may then be 
forced by the causality propagation in real physical systems, but it implies that 
at least two of the energy stores are not dynamically independent - only those 
exhibiting integral causality result in state variables. This causal conflict can be 
considered as `over-causal' by comparison with largely dissipative systems, since 
the consequence is also an algebraic loop - this time relating the interdependent 
energy stores. 

Applying derivative causality to the energy stores in a bond graph results in the 
derivative form of mathematical model for the system. The resulting mathematical 
model is then in the most general form - a set of differential and algebraic equations 
(DAEs), although in some cases ordinary differential equations (ODEs) may result. 

Derivative causality may also be applied to energy stores in order to facilitate 
static analysis of systems, without modifying the fundamental structure of the 
bond graph model. Since the derivative forms of the constitutive relations for 
energy store are 

e=ldt  and f =Cdt 	 (2.43) 

it can be seen that the static model is given either when the constitutive parameters 
I and C are zero, or when the effort and flow derivatives are all zero, i.e. the 
stationary state. 
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Thus, assigning derivative causality to stores and propagating this through the 
bond graph permits a derivative-based model to be generated, and substituting 
zero for all energy store components then results in the steady-state mathematical 
model. Similar bond graph solutions to the problem of deriving the steady-state 
model have been proposed by Breedveld (1984a), but the method described here 
has the advantage of retaining an invariable bond graph core model regardless of 
the transformation required to obtain the desired mathematical model. 

2.5.2 Model reduction 

The subject of model order reduction is covered in more detail in Chapter 5, but 
it is useful to overview the uses to which causal analysis can be put, in this sec-
tion. The modeller may also wish to investigate the effect on the process when 
a component is removed. This can be done by removing the element from the 
graph, or, more conveniently, changing its parametric value to zero. This can have 
fundamental effects on the system states, due to changes in causality. For example, 
if the element is a dissipator whose causality was initially defined such that the 
constitutive relation was evaluated as 

f = e/R 	 (2.44) 

then defining R to be zero gives a computational problem, unless the opposite 
causality is forced by the modeller, with consequent changes in the causal aug-
mentation of the model. This may have the effect of turning a `stiff' model of the 
complete system into a reduced order model with interdependent energy stores. 

2.5.3 Rules for assigning causality to a bond graph 

The rules listed here give a systematic method f.4,r causally augmenting a bond 
graph such that a state equation model may be derived. The corresponding proce-
dure is known as the Sequential Causality Assignment Procedure (SCAP); see, for 
example, Karnopp et al. (1990) Cellier (1991) Thoma (1990) and Wellstead (1979). 

1. Assign causality to any known effort or flow, such as activated bonds (signals) 
derived from junctions. For example, a signal from a `0' junction transmits 
the effort from that junction while the flow from this junction into the signal 
is, by definition, zero. 

2. Assign causality to bonds linking directly to each source and propagate these 
causalities as far as possible through the junction structure by applying the 
causality constraints for structure elements (0, 1, TF, GY). 

3. Assign integral causality to each energy store in turn and propagate this 
throughout the junction structure. Any conflict between the causality due to 
the store must be resolved by reassigning derivative causality on that store 
and propagating the new causality through the bond graph. 
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4. If any unassigned bonds remain, then assign a causality either arbitrarily or 
for computational convenience and again propagate this through the junction 
structure. Assigning causality to an unassigned interjunction bond (internal 
bond), such that this bond forces causality on both attached nodes, minimises 
the number of algebraic loops. Repeat for any remaining unassigned bonds. 

Rule 4 is reconsidered in Section 3.4 of Chapter 3 and by Gawthrop and Smith 
(1992). 

2.5.4 Examples of causally augmented bond graphs 

This section considers two examples of causally augmented bond graphs 

• a fixed field DC motor and 

• an electrical operational amplifier circuit. 

A fixed field DC motor 

A DC motor with a voltage source applied to the armature indicates the potential 
of bond graphs for unambiguously representing a mixed energy domain system 
(Figure 2.14a). 

Applying the causality rules, with integral causality on stores, results in a model 
with two state variables p2  and p4  and a single input el . A bond graph model of 
the same motor, driven by an electrical current source is shown in Figure 2.14b. 
Applying the causality rules to this bond graph indicate that I2 now has derivative 
causality imposed on it, and the system reduces to a first order model since p4  is 
the only state variable and the input is f l . The physical implication of derivative 
causality on the inductance I2 is that the current source, SF1, must be able to 
supply the very high voltages which will occur for step changes in motor loading. 

Figure 2.15 shows the effect of adding a gearbox to the voltage-driven DC 
motor. In this case, derivative causality is forced on the motor shaft inertia or 
the load inertia, since these are not independent, being linked by the transformer 
ratio of the (non-compliant) gearbox. In practice, the shaft linking the motor 
to the gearbox will have some compliance resulting in a `C' element between the 
motor inertia and the gearbox, which solves the causality problem and introduces 
another state variable. The likelihood is, however, that this compliance is very 
small, resulting in a `stiff' system where the time constant due to the compliance 
is significantly smaller than those due to the inertias. This may give numerical 
resolution problems when simulating the system using this mathematical model. 
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Figure 2.14 Causality variations on a DC motor 
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Figure 2.15 Causal conflict due to interdependent inertias 

An electrical operational amplifier circuit 

A simple inverting integrator is shown in electrical schematic form in Figure 2.16a, 
where the operational amplifier is assumed to have infinite input impedance, zero 
output impedance and a large negative gain (—G). The causally augmented bond 
graph for this circuit is shown in Figure 2.16b, where the operational amplifier is 
modelled by the modulated effort source SE4, and the modulating signal defines 
its value as —G*(effort on node 6). This example is analysed in detail to illustrate 
the systematic manner in which computer manipulation can be applied following 

I4 
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Bond Effort Flow 
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Figure 2.16 An electrical circuit model 

Table 2.3 is derived by following causality in the order which it propagates 
through the graph - the second column under each of the effort and flow columns 
indicates this ordering. The state equation may be evaluated by selecting the 
derivative ( f3 ) of the state variable and working backwards through the ordered 
equations, i.e. f3  = f6 =15  — fs and so on. This process gives 

13 = (et — es)lR — fs = (et — q3/C + G * e6)lR — fs 	 (2.45) 

An algebraic loop (in e6  ) has occurred due to the modulation on SE4 in the 
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physical loop, which may be solved as 

1 	q3  

	

es =
(1 + G) C 	

(2.46) 

and hence the full state equation may be derived 

	

1 	q3  
f3 

R (1 + G) C 	
(2.47) 

The system transfer function may be derived from this state equation, giving 

y _ 	—G 
(2.48) 

u 1 + sCR(1 + G) 

which reduces to —1/sCR as expected for G » 1 . 

2.6 MULTI-PORT ENERGY NODES 

In the preceding descriptions of bond graph elements, all those representing compo-
nent behaviour, i.e. sources, stores and dissipators, have had only one port through 
which energy is exchanged with the rest of the system. In general, these elements 
can be multi-ports (alternatively called N-ports or fields) in the same way that the 
structure elements, discussed in Section 2.2.2, have more than one interface to the 
system. This section gives examples of multi-port elements in a variety of energy 
domains, and their application on bond graph models. 

2.6.1 R-fields 

In the electrical domain it is often convenient to group a network of resistors 
together into one multi-port resistor (or R-field) represented by a matrix of resistive 
(or conductive) elements. Figure 2.17a shows a simple electrical circuit where the 
dissipators may be grouped together as a two-port `R-field', as represented in the 
augmented bond graph of Figure 2.17d. The circuit is also shown represented 
by one-port `R' elements in the partially-augmented bond graph of Figure 2.17c. 
Figure 2.17c indicates that there are several options for completing causality on this 
bond graph; choosing to assign f7  as `known' permits causality to be completed, 
resulting in only one algebraic loop and the shortest computation. 

Alternatively, simple circuit analysis of the resistors as a separate network (Fig-
ure 2.17b) gives the constitutive relations of the R-field in the resistive form which 
may be inverted to give the conductance matrix form required by the given causal- 
ity 

f2 _ 1 (R3 + R4) 	—R3 	e1 

f4 ] 	d [ 	—R3 	(R2 + R3) [ e5 I 
(2.49) 
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Figure 2.17 Applications of R-fields 

where denominator d = (R2R3  + R2R4 + R3R4). It is then a trivial substitution, 
f5 = -f4 and Q5/C = e5i  to obtain the state equation 

f5 = d  (R3e1 — (R2 + R3) 
C ) 

(2.50) 

The same result is obtained for similar computational effort, including the al-
gebraic loop, by following the completed causal assignments on the one-port bond 
graph. Hence, it can be seen that the R-field has been used to solve the algebraic 
loop while calculating the matrix coefficients - in such cases, the choice of one-port 
or multi-port representation is purely the modeller's preference. It can be seen that 
R-fields can also be defined as having mixed causality, i.e. the dependent vector 
may be a mixture of efforts and flows. 

2.6.2 I-fields 

A more useful example of an electrical multi-port is that of an N-port inductance (I-
field) representing an electrical transformer with multiple secondaries. For integral 
causality, the constitutive relations of this I-field are given by a symmetric matrix 
with self-inductances on the diagonal and mutual-inductances between windings 
as the off-diagonal elements. 

Many mechanical components are also best represented by multi-ports - the 
dimensional constraints on the mass elements of rigid bodies implies that all such 
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bodies are I-fields, and conceptually it is most appropriate to model such bodies 
using a single constitutive relation. 

2.6.3 C-fields 

Multi-port `C' elements also have significant use in the analysis of mechanical 
systems - a common example is that of an elastic beam deformed by forces applied 
to two points along the beam. For such cases the elastic displacement of the beam 
at the two points is related to both the applied forces and to their relative positions 
along the beam. 

C-fields can also be used to represent the behaviour of energy stores which span 
energy domains - some transducers operate by storing energy in one domain and 
later converting it (ideally without loss) into the other domain. An example of 
such a transducer is the condenser microphone, where a velocity (due to acoustic 
pressure) is imposed on a springy diaphragm (mechanical capacitance), which is 
also a plate on a pre-charged electrical capacitor. Movement of the diaphragm 
causes the electrical capacitance to vary (ideally as the inverse of the distance 
between the diaphragm and the fixed plate) thus resulting in a change of the 
voltage on the capacitor. 

2.6.4 Multi-bonds 

Multi-bonds (originally known as vector bonds) are a generalisation of the sin-
gle bond used up to this point, and indicate multiple energy transfers between 
(multi-port) nodes on the bond graph. The multi-bond is drawn as a large arrow 
(Figure 2.18) to distinguish it from a single bond, and is treated as a vector of 
individual bonds. 

' i  Z \ 	Z > 

n \ 	 n  

Figure 2.18 Multi-Bonds 

Multi-bonds extend the advantage of conciseness and clarity when graphing 
systems with many multi-port components. A restriction is that all the bonds 
represented by the multi-bond must have the same causality i.e. the vector of 
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dependent variables must consist entirely of efforts or entirely of flows. Similarly, 
an activated multi-bond must consist only of signals. 

2.7 PSEUDO BOND GRAPHS 

Throughout this chapter we have restricted our modelling to systems where en-
ergy is the exchange variable, accepting that this may limit the application of the 
resulting modelling technique. This restriction is overcome by the use of pseudo 
bond graphs, which provide a means of modelling systems in which the integrated 
product of the effort and flow variables is not energy. Two examples of the use of 
pseudo bond graphs are given in the remainder of this section, firstly for analysing 
manufacturing system dynamics, and then for a heated tank using heat flow as the 
flow variable (rather than entropy). 

2.7.1 A manufacturing system model 

Significant work has been done in the field of macro economic modelling using 
pseudo bond graphs by Brewer et al. (1982), where the effort variable is price/unit 
and the flow variable is the flow rate of a given commodity. The resulting exchange 
variable is the accumulated price of goods exchanged, i.e. the rate of movement of 
capital (value rate) is analogous to power in an energy bond graph. In economic 
systems, the analogy to energy conservation laws is Walras' Law, which states that 
the sum of the value rates into a port is zero. 

Since we are attempting to achieve a continuous model of the system, it is 
necessary for the flow rate of the commodity to be large enough for aggregation 
of this flow to be statistically valid. This must be born in mind when modelling 
manufacturing systems, where the flow variable is typically the flow of produced 
items throughout the factory. 

For this example, we consider a single manufacturing production line for elec-
tronic instrumentation consisting of a mechanical package, one basic printed circuit 
board (PCB), up to n option PCBs, and the associated documentation and pack-
aging. We will assume that demand for the instrumentation is very variable, but 
delivery times must be low, resulting in the manufacturer building for stock. The 
pseudo bond graph for this system is shown in Figure 2.19, which combines both 
elemental components, and hierarchical sub-systems. 

The sub-systems are represented as word bond graph nodes, which have specific 
dynamics associated with the underlying processes. The system input is a flow 
source representing the demand for the instruments from sales, which is supplied 
from the finished instrument stores, represented by a capacitance. 

In economic bond graphs `1' junctions are used to describe points at which 
several incremental costs are added to give the overall cost of the item, but the 
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Figure 2.19 Bond graph model of a manufacturing system 

flow of items on each attached bond is identical (by application of Walras' law). 
Thus we can see that the overall cost of the instrument before it passes to the 
stores is the sum of the costs of all its sub-assemblies, and the process of locating 
it in the store dissipates additional handling costs. 

The store itself is linked to a `0' junction, at which the cost remains constant, 
but the flows into the junction must all add to zero, i.e. the store accumulates 
the difference between the supply from the production line and the output to 
sales. Again, the process of handling the instruments between stores and sales 
incurs a cost represented by the effort across a dissipator. Dissipators in such 
systems (representing valueless added activities) are typically highly non-linear, 
the constitutive `resistance' having high values for small flows. The final unit cost 
to sales varies according to the demand, being dependent on both the finished 
instrument cost and the additional handling costs. 

The addition of multiple option boards to the instrument is modelled using a 
transformer which scales the cost on the finished instrument side by n, and scales 
the flow rate demand on the option board PCB assembly sub-system by the same 
factor. 

This model has not explicitly included an `I' element, but these occur in macro-
economics, representing investment in capital equipment used to produce higher 
volumes of equipment more cheaply. The constitutive relation of this inertance 
results in rapid unit cost increases when the flow suddenly decreases, and vice versa, 
although the relationship is typically non-linear. Care should be exercised when 
modelling capital investment in individual manufacturing systems using inertance, 
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since the low level of aggregation may invalidate the model. However, applying 
integral causality to manufacturing models using inertance to represent investment, 
does produce interesting qualitative insights whenever causal conflicts occur. 

2.7.2 Heated tank model 

This example has been chosen to illustrate that it is quite reasonable to model 
energy transfer systems using pseudo bond graphs. Further, it is possible to mix 
these with energy bond graphs, as long as the interface between these forms is 
consistent. Figure 2.20a illustrates the single tank system diagramatically, while 
Figure 2.20b shows the pseudo bond graph model of the system. 

SE 

S 

R 

1 
>o- l ~ >s 

1 

 

L 

 

  

R 

  

R 

    

\W . 

1 

SF: Q 

a) Heated tank 
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Figure 2.20 Heated tank system 

The pseudo bond graph model is in two parts; the upper half corresponds to 
the hydraulic properties (pressure and mass flow), and the lower half corresponds 
to the thermal properties (temperature and enthalpy flow). These two parts are 
interfaced via modulated elements in the thermal system - the constitutive relation 
of the `R' elements is 

h = (crrn)T 	 (2.51) 

That is, the enthalpy flow it is the product of the effort T and the `conductance' 
(cp7iz), where the mass flow m derived from the hydraulic model modulates this 
relation. The integral of this relation also gives the constitutive relation of the 
thermal capacitance, in this case modulated by the state (m) of the hydraulic 
capacitor 

h = (cpm)T 	 (2.52) 
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The modulation for this thermal capacitance is thus shown on the bond graph 
as a signal from the hydraulic `C' element, indicating (by the authors' convention) 
that the state is the modulating variable. The hydraulic capacitance is expressed 
in the constitutive relation between the effort variable (pressure at base of tank), 
and the state variable (mass in the tank) 

gm 
P= — 

a 

where g is gravity. 
Although the bond graph is equally valid for non-linear relations, for simplicity 

it is assumed that: 

• the fluid is incompressible, 
• the tank has constant cross-section (a), and 
• the pipes to and from the tank have constant flow resistance (r). 

The hydraulic stateequation can be derived, using the causality shown, as 

fin —  —  	J out 
9m 

fin — 

	

	 (2.54) 
ar 

The thermal state equation is 

. = cpft  n Tin + Q — fout 	 (2.55) 

2.8 CONCLUSION 

This chapter has highlighted the requirements for modelling elementary systems 
based on their energy transfer characteristics. The bond graph notation has been 
shown to meet all these requirements, while pseudo bond graphs may be used 
to model non-energy systems. Choosing energy as the unifying variable permits 
physical systems covering several energy domains to be modelled in a consistent 
manner, with pre-defined interfaces. 

Separating the model structure from the elemental behaviours permits the 
model to be easily modified, due to its close mapping onto the actual system struc-
ture. This also allows non-linear and time-dependent behaviours to be handled 
separately in the constitutive relationships of the bond graph elements. 

The application of a small set of causality rules permits bond graphs to be 
analysed systematically, either by hand or using a computer. Causality analysis 
has been shown to be a very powerful tool not only for deriving different forms of 
the mathematical model, but also for revealing conflicting system constraints. Due 
to the importance of this technique, causality concepts are discussed in greater 
detail in the following chapter. 

(2.53) 
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Causality 

SUMMARY 

• The notion of computational causality is illustrated using a simple example. 

• The notion of computational causality is examined in detail. 

• The determination of component causality from the system bond graph is 
presented. 

• The effect of modulated components on causality is discussed. 

• Links with wider notions of causality, in particular that arising from the 
artificial intelligence community, are made. 

• Links with wider notions of constraint programming are made. 

3.1 INTRODUCTION 

It can be argued that causality is fundamental to understanding and modelling 
systems and so, if such arguments are accepted, it follows that a system mod-
elling methodology should provide a framework within which causality is clearly 
displayed. Bond graphs provide such a framework, together with an evocative 
notation. 

The notion of "cause", though at first sight obvious, is in fact a slippery concept 
which has been the subject of much philosophical debate. However, following 
Simon (Simon, 1952), "we restrict ourselves to a logical, rather than ontological, 
discussion and hence avoid the rational versus empirical philosophical debate and 
the corresponding Humean controversy". 
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3.2 COMPUTATIONAL CAUSALITY: AN EXAMPLE 

Summary 

• The notion of computational causality is illustrated using a simple electrical 
circuit. 

• Three possibilities are exemplified: 

— causal failure 

— causal completeness 

— causal incompleteness 

• The relation between causal incompleteness and simultaneous algebraic equa-
tions is illustrated. 

• Modulated components complicate computational causality. 

3.2.1 Solving an electrical circuit 

System models (should) imply system behaviour: that is it should be possible to 
deduce (numerically or symbolically) system variables from system inputs together 
with the system equations. Loosely speaking, then, system inputs should cause 
system outputs, given the system model. 

     

e2 el e2  el  

         

Figure 3.1 Electrical circuits 

To fix ideas, consider the electric circuits in Figure 3.1 For the sake of argument, 
suppose that the two voltage sources are described by the equations 

e1= 1;e2 =2 (3.1) 

The left-hand circuit is clearly unsatisfactory: two voltage sources are simulta-
neously trying to cause the same voltage. This will be called an over-causal system. 
and is an example of causal failure. In algebraic terms, the three equations implied 
by the circuit 

e1= 1;e2=2;e1 — e2=0 (3.2) 

are inconsistent; either the system must be remodelled or one of the three equations 
relaxed. 



48 	 Causality 

Figure 3.2 Relaxed electrical circuit 

For example, a third voltage source could be introduced as in Figure 3.2. The 
third equation is then replaced by 

el  — e2  = e3 	 (3.3) 

The middle circuit involves no causal failure and, moreover, it can be explicitly 
solved for the current i 

el  — e2 	1 
i= 	 _ — (3.4) 

It is said to be causally complete or just causal. 
Writing the equations for the three components in matrix form 

1 0 0 el 	1 
0 1 0 e2  = 2 	 (3.5) 

—1 1 1 i 	0)  
T T 

The matrix is lower triangular and thus the three variables (el , e2 and i) can 
be explicitly computed without further manipulation. We can reasonably say the 
el  and e2  cause i. 

The right-hand circuit also involves no causal failure, but it is not possible to 
solve for i or y directly from the system equations without further manipulation. 
It is said to be under-causal. 

We can express i in terms of y 

e1  — v 
i =  

	

	 (3.6) 
rl  

and, independently, y in terms of i 

v = e2  + r2i 	 (3.7) 

but this pair of equations must be solved simultaneously to deduce i and y . In 
matrix terms: 

1 0 00 el 	1 
0 1 0 0 	e2  _ 2 

—'— 0 1 r1 	 r1 

0 —1 1 —r2 v 	 0 

(3.8) 
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4. Conflicting causality: two components cause the same variable, but the sys-
tem is physically possible. Defining new variables and additional constraints 
leads to an system. 

3.2.2 Assignment statements and block diagrams 

In view of the above example, computational causality is concerned with the order 
in which variables are computed. Following Breedveld (Breedveld, 1984b) this can 
be described by replacing equations of the form 

x = y 	 (3.12) 

with assignment statements of the form 

x := y 	 (3.13) 

if y causes x, or 

y := x 	 (3.14) 

if x causes y. 
The middle circuit can thus be replaced by 

el  := 1; e2  := 2; i := (ei — e2)/r 

This algorithm could be executed by a computer as the right-hand sides of the 
assignment statements are evaluated in preceding statements. 

However, the right-hand circuit cannot be directly expressed by assignment 
statements, but rather would need a numerical routine to solve the simultaneous 
Equations 3.8. 

Figure 3.3 Causal electrical circuit: block diagram 

(3.15) 

Yet another view of computational causality is provided by block diagrams. In 
the same way as an assignment statement has a left-hand side and a right-hand 
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Figure 3.4 Electrical circuit with incomplete causality: block diagram 

side, so does a block of a block diagram have an output and an input. Thus the 
middle circuit has the block diagram of Figure 3.3. This clearly shows the flow of 
computation. 

In contrast, the right-hand circuit does not have complete causality. There 
is thus more than one possible block diagram - these are shown in Figure 3.4. 
Each of these contains an implicit algebraic loop which is not soluble without the 
simultaneous solution of algebraic equations. 

Figure 3.5 Electrical circuits 

An alternative approach is to make the algebraic equations explicit by addition 
of appropriate sources. In particular, two possibilities are to 

1. add a voltage source as in the left-hand part of Figure 3.5; this will not 
change the currents in the circuit as long as the current i' = O. 

2. add a current source as in the right-hand part of Figure 3.5; this will not 
change the voltages in the circuit as long as the voltage y' = O. 

In each case, the algebraic equation to be solved corresponds to the constraint 
that the additional source input is zero. 

3.2.3 Modulated components 

In the discussion so far, it has been assumed that the components have constant 
parameters: the source voltages are constant and the resistors have constant resis-
tance. This section illustrates that if, in contrast, component parameters depend 
on other system variables, then the computational causality, and the corresponding 
equation solution, is not so obvious. 
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The matrix is not triangular and so must be manipulated to solve for i and v. 
It is reasonable to say that el and e2 cause y and i, but we cannot say that y is 

caused by el , e2 and i, as i is itself `caused' by el , e2 and v. Thus there is a causal 
loop. 

Of course, in this simple case, this difficulty could be avoided by replacing the 
two resistors by a single equivalent resistor with resistance r1 -}- r2 , but this would 
be a remodelling decision rather than a method of solution as such. 

There are other ways to formulate the solution of the right-hand electrical 
circuit. For example, it could be useful to represent both of the two R components 
to give a current output. 

i = i (el — v) 
rl 

i = 1 (v — e2) 
rl 

(For example, this situation would arise if the two R components were diodes (Dijk 
and Breedveldt, 1995)) The pair of Equations 3.9 is said to be over-causal: each 
equation `causes' the current i. This can be resolved by replacing Equations 3.9 
by 

i t 	= 	1 (e1 — y) 
r1 

i2 	= 	1 (v — e2) 
r2 

i1 + i2 	0 	 (3.10) 

The complete set of equations can be written in matrix form as 

/ 	1 	0 	0 	0 	0\ el 	/1 
0 	1 	0 	0 	0 e2 2 

— 	0 	1 	0 
ri i1 = 0 (3.11) 

—1 	0 	0 	1— 	1 y 0 

0~ 	0 	1 	0 	1/ i2 \0 

Equations 3.10 are under-causal in the sense described above. 
This example has highlighted four possible types of causal patterns associated 

with systems: 

1. Causal failure: no solution is possible and the system model cannot represent 
reality. The system is said to be over-causal. 

2. Complete causality: system variables can be explicitly computed from system 
inputs and constitutive relations without recourse to algebraic manipulation. 
The system is said to be causal. 

3. Incomplete causality: system variables cannot be explicitly computed from 
system inputs and constitutive relations; simultaneous equations must be 
solved. The system is said to be under-causal. 

(3.9) 
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Figure 3.6 Electrical circuits with modulation 

As an example, consider the second circuit of Figure 3.1 where the right-hand 
voltage source is replaced by the output stage of of a voltage amplifier with gain g 
and input e0 as in Figure 3.6. 

e2 = geo 

Figure 3.6 shows two possible connections: 

(3.16) 

1. The amplifier input is e0 = el , the input source voltage. 
2. The amplifier input is e0 = el — e2 = ri, the voltage across the resistor. 

In the first case, this does not cause a problem as eo, and hence e2, can be 
directly computed from el which is known. In particular, Equation 3.5 becomes 

1 	0 	0 

	

—g 	1 	0 

	

—1 	1 	1 

	

r 	r  

el 
e2 

i 

= 
1 

0 
0 

(3.17) 

This matrix is still lower triangular and so the current i can be directly computed 
as 

i = (1 — g)ei  
(3.18) 

In the second case, however, this does cause a problem as eo, and hence e2 , 
cannot be directly computed from el . In particular, Equation 3.5 becomes 

1 
0 
—T 

0 
1 

r 

0 
—gr 
1 

el 
e2 
a 

= 
1 
0 
0 

(3.19) 

Equation 3.19 cannot be directly solved and needs algebraic manipulation. 
As a further example, suppose that the two sources are fixed, but that the 

resistor is modulated. Once again, consider two cases: 

1. The resistance is modulated by the voltage across it according to r = _ ~°  

e7 — e2 

2. The resistance is modulated by the current through it according to r = °. 
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Component Possible causalities 
Effort source S I 
Flow source S ~- 
R component R 	R or 	--~ 
I (integral causality) I ~-- 
I (derivative causality) I —~ 
C (integral causality) C —~ 
C (derivative causality) C I 
Transformer TF TF 	or I 
Gyrator GY 	 GY I or ~-- 
Effort amplifier AE —{ 
Flow amplifier AF ~- 
Inter junction bond or 

Inter junction signal 0 	1 —+ or 	F--> 

Table 3.1 Component causality : summary 

Both cases lead to non-linear equations; the first can be solved directly but the 
second cannot 

	

e1 — 62 	(61 — e2)2 
i = 	 

r 	 p 

in the second case 

e1 — e2 	e1 — e2 

r 	ip 

In this particular case, Equation 3.21 may be solved to give 

 

61 — 62 

 

(3.22) 

 

p 

 

but, in general, such modulation would require numerical iterative solution. 

3.3 BOND GRAPH COMPONENT CAUSALITY 

Summary 

• The causality constraints implied by bond graph components are considered 
in greater depth than in Chapter 2. 

• These causality constraints are summarised in Table 3.1. 

i= 

(3.20) 

(3.21) 
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3.3.1 Discussion 

Before considering the causality of system of components, it is necessary to consider 
the causality of individual components. 

For the purposes of this book, each component has one or more ports each of 
which is associated with a bond and hence the two (effort and flow) variables. Sys-
tem causality is concerned with determining which of the two variables associated 
with each port on each component is the input and which the output. Compo-
nent causality is concerned with determining what constraints on the causality of 
a component are imposed by the component itself. 

In this book, we adopt the convention (Karnopp et al., 1990) that each port is 
connected to a junction via a bond. 

3.3.2 Bonds and the causal stroke 

Summary 

• If one of the two variables (one an effort and one a flow) associated with a 
bond connected to a component port is an input, then the other is an output 

• The evocative notation of the causal stroke indicates whether the input is an 
effort or a flow. 

Discussion 

As discussed in Chapter 2, components are connected by bonds, and each compo-
nent port has a bond associated with it. 

In view of the discussion on computational causality in Section 3.2. it is im-
portant to have a notation to distinguish which of the two variables (one an effort 
and one a flow) associated with a port is an input and which an output. In prin-
ciple, if each variable could be either an input or an output there would be four 
possibilities: 

1. flow input, effort output 
2. flow output, effort input 
3. effort output, flow output 
4. effort input, flow input 

However, possibilities 3 and 4 will be excluded by making the following mod-
elling convention 

Of the two variables (one an effort and one a flow) associated with 
a component port, if one is a component input, then the other is a 
component output. 
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There are thus two possibilities remaining: those corresponding to possibilities 1 
and 2. This convention is justified for one-port components related by an invert-
ible constitutive relation in Section 3.3.4. Alternatively, physical considerations 
naturally lead to this convention when using energy bonds (Karnopp et al., 1990). 

	\R 	 ~R 

Flow input, effort output 	Flow output, effort input 

Figure 3.7 The causal stroke 

The notation for these two possibilities is given in Figure 3.7, where an R 

component is used as an example. 

3.3.3 Junctions 

Summary 

The junctions of a bond graph constrain the possible causalities of the components 
of the bond graph 

• One, and only one, bond connected to an 0-junction has an effort output. 
• One, and only one, bond connected to an 1-junction has a flow output. 
• This is illustrated in Figure 3.8 for a four-port 0-junction and in Figure 3.9 

for a four-port 1-junction . 

Discussion 

T 	1 	T 	T 
o 	I--0~ ~ ° ~ 

III 	T 
Figure 3.8 0-junction causality 

The junctions of a bond graph interconnect the corresponding components. One as-
pect of this, discussed here, is that each junction constrains the possible causalities 
of the component ports connected to it. As discussed in Section 2.3.2, a 0-junction 
with n bonds connected to it constrains all the corresponding effort variables to be 
equal 

el = e2 = ... = en (3.23) 
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1 
TI 	,l 
Figure 3.9 1-junction causality 

and the signed sum of the flows to be zero 

E ft = 0 	 (3.24) 
2.1 

where ft = ft if the bond direction is into the junction and f, = —L if the bond 
direction is out of the junction. 

The latter (implicit) equation can be rewritten as an explicit equation in exactly 
n ways with one output variable L. 

_ -E ft 	 (3.25) 
i#J 

Thus a 0-junction can only have one port (the jth) with flow output L ; the other 
bonds must have effort output. In the same way, exactly one of the junction-ports 
(the jth) can have an effort input. As an effort output on the junction corresponds 
to an effort input on the port at the other end of the bond, the statement given in 
the summary (item 1) follows. 

A similar argument holds for 1-junctions. 
The four possible causal patterns for a four port 0-junction is given in Figure 

3.8, and for a four-port 1-junction is given in Figure 3.9. (The half-arrows have 
been omitted to emphasise the independence of sign convention and causality). An 
n-port junction thus implies n equations: n — 1 from equations 3.23 and one from 
Equation 3.25. An n-port junction thus has n possible causal patterns, and this 
restricts the number of causal patterns on the connected n-ports to n. If these 
ports were not causally constrained, there would be 2n possibilities. 

3.3.4 One-port components 

Summary 

• One port components may have either causality unless the constitutive rela-
tion does not exist for a particular causality. 

• Dynamic one-port components (C and I) have a preferred causality - inte-
gral causality - leading to explicit state space equations. These preferred 
causalities are 
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— C: effort output 

— I: flow output 

In each case, the opposite causality is termed derivative causality. 

Discussion 

Non-dynamic components (for example Rs) (Section 2.2.3) have potentially, two 
constitutive relations associated with them relating effort to flow and vice versa 

e = Oe(f) ; f = Of(e) 	 (3.26) 

If MP is invertible 

0f(e) = 0e1(e) 	 (3.27) 

and vice versa 
If both 0e and o f  exist, there is no causality constraint; but if 0e  does not exist, 

the component cannot have effort output and vice versa. 
The dynamic components, C and I, (Section 2.2.3) each have a relation relating 

effort to integrated flow, and flow to integrated effort respectively. 
Thus for the C component 

e = Oe(q);q = 0a(e) 	 (3.28) 

Once again, if both 0e  and 09  exist, either causality is permissible, but if either 
does not exist, then the corresponding causality does not exist. 

Including the dynamics, the two causalities each correspond to a pair of equa-
tions 

e = oe(g); q= f t fdt+qo 
0 

(3.29) 

f = 4; q = 09 (e) 	 (3.30) 

From the form of the dynamic equations in each pair, the former (Equation 
3.29) is termed integral causality and the latter (Equation 3.30) is termed derivative 
causality. This distinction is significant for the form of the dynamic equations 
arising from the system; this is discussed further in Section 4.6. 

The following list displays components which do not have arbitrary causality 

• An effort source (Section 2.2.3) has constitutive relation . (see Figure 3.10) 

Oe(f) = eo 	 (3.31) 

01(e) does not exist and so this component must have effort output. 



58 	 Causality 

e 

e0 	  

f 

Figure 3.10 Effort source constitutive relation 

e 1 

fo f 

Figure 3.11 Flow source constitutive relation 

• A flow source (Section 2.2.3 has constitutive relation (see Figure 3.11) 

Of(e) = fo 	 (3.32) 

0,(f) does not exist and so this component must have flow output. 
• A linear resistance has constitutive relation (see Figure 3.12) 

We(f ) — rf 

if r # 0, 0f 
exists 

(3.33) 

(3.34) 

e 

f 

Figure 3.12 Linear resistance constitutive relation 
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and either causality is possible. But if r = 0 only an effort output is permis-
sible, e = 0 and is thus independent of f the R component; it becomes a zero 
effort source. 
Conversely, if 

1 
r = — 	 (3.35) 

Q 

then either causality is possible if o-0; but if a = 0 then only a flow output 
is possible. 

• A linear capacitance (Section2.2.3) has constitutive relation 

0e(q) = ~g; 0,(e)=-- ce (3.36) 

If the capacitance c = 0 then only flow output is permissible; if c = oo then 
only effort output is permissible. 

3.3.5 Multi-port components 

Multi-port components have more than one energy port. In general, the causality 
associated with such ports is not independent and so the possible causal forms are 
not obvious. An algorithm (Section 3.3.5) is given for checking causal possibilities 
for linear, non-dynamic multi-port components. 

Discussion 

Multi-port components are necessary to model all but the simplest systems. Trans-
formers and gyrators form an important class of two-ports; further examples appear 
in the rest of this section and in part II of this book. 

Each port of an n-port component carries one output and one input (see Section 
3.3.2) thus there are, potentially, 2n possible causal patterns. In the linear case, 
each of these causal patterns potentially has a (matrix) constitutive relation of the 
form 

y = Ou 	 (3.37) 

where ç is an n x n matrix and y and u are n-vectors of outputs and inputs 
respectively. 

Given the constitutive relation for one causal pattern, we may wish to test 
whether the constitutive relation for another causal pattern exists and, if so, derive 
it. 

In general, m of the outputs will be the same as before and we will put these 
into an m-vector yi and the rest of the outputs into the n — m-vector y2. A similar 
decomposition of u is also constructed. 
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The new output and input vectors can, after rearrangement, be rewritten as 

Y— \u2/ ; U = \y21/ 	
(3.38) 

We require the n x n matrix such that 

Y = (DU 	 (3.39) 

The following algorithm tests if exists and, if so, computes its value. 

Algorithm 

1. Choose the vector Y of n outputs and U of n inputs where 

Y— \u2/ 'U — (;21 )  

2. Rearrange the constitutive relation to be of the form: 

(Y1 	(011 
 - ' 021 022 ) \. u2 / 

where 0,, is the ijth sub matrix of 0 appropriately partitioned. 
3. If 022 is singular, then the desired causal form cannot exist. 
4. If 022 is not singular, then the desired causal form has a constitutive relation 

(Th.   _  ~11   — W12y'22 Y'21 012021 
 u2   ~   —   ~  	— ~22   ~21  	(12-21   	

(ui 
   y2 

That is 	
{ = On — 012.022 021 01202z ) 

1\ 	— 022 021 	02-2 J 

Example: Transformer 

A transformer is a two-port device with two inputs and two outputs. There are thus 
potentially 423 = 6 ways of choosing the outputs. Two of these are dissallowed by 
the discussion of Section 3.3.2 leaving potentially four constitutive relation. One 
of these is 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 
fj — \0 k /l f2 / 

We now use our algorithm (Section 3.3.5) to investigate which of the other three 
possible input-output pairings are possible. 
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Firstly, try the output combination: 

Y 
(

f2 ) 

Then, from Equations 3.38, 

Y=u= 
(f2) 

and 

e2 
U =y2= 

f 

Then 

022=0=( o 

and 

' 
~=o 2 2 = Có 1 

0 
) k 

Thus this constitutive relation exists and so does the corresponding causal form. 
However, choosing the output combination 

Y- C

) el  

and input combination 

U — (f2 ) 

gives 

yi = e2, u2 = el, ul = f2, y2 = fi 

and so 

0  (
0 
k k 0) 

022 is zero so the corresponding causal form does not exist. 
A similar argument holds for the remaining output combination 

Y =Cf2) 	
(3.54) 

Thus only two possible causalities are possible with this particular component. 
These are depicted in Figure 3.13. This agrees with the discussion in Section 2.5. 

In a similar fashion, only two possible causalities are possible for a gyrator. 
These are depicted in Figure 3.14. This agrees with the discussion in Section 2.5. 

k
0) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 
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TF 

I 	\ TF { 	\  
Figure 3.13 Transformer causalities 

y  GY I 	\ 

1 	 

 

\ GY 

 

y 

  

Figure 3.14 Gyrator causalities 

Example: ideal amplifiers 

An ideal effort amplifier draws zero flow at its input and gives an output effort pro-
portional to its input effort. One of the four (see Section 3.3.5) possible constitutive 
relations is thus 	

l ( 
(f) h 

ok 
 0) \f2 ) 	

(3.55) 

As in Section 3.3.5, firstly, try the output combination 

e 
Y= 

f
1
2 

As in Section 3.3.5, 

022=0 

But, in this case 

o — 
(0k 0 

0) 

which is singular. So this causal form does not exist. As in Section 3.3.5, the other 
two forms can also be eliminated. 

Thus only one possible causality is possible with this particular component; it is 
depicted in Figure 3.15, where AE denotes the two-port effort amplifier component. 

In a similar fashion, the two-port flow amplifier component has the causality 
depicted in Figure 3.16. 

 

y  AE 

 

) 

  

(3.56) 

(3.57) 

(3.58) 

Figure 3.15 Effort amplifier causality 
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AF 

Figure 3.16 Flow amplifier causality 

Example: two-port resistor 

i] 	Y 	i2 

vj 	 V2 
O 	 o 

Figure 3.17 Two port resistor: schematic 

v2  

/ 1  ` 12 

Figure 3.18 Two port resistor: bond graph 

Typically, n-port components do not have an explicit internal structure. Never-
theless, n-port components with visible internal structure can be viewed as n-port 
components and the standard technique applies. Figure 3.17 shows a simple elec-
trical circuit with two-ports, and Figure 3.18 shows the corresponding bond graph. 

It is clear from bond graph analysis that one of the 4 potential forms is not 
possible (that with both currents as input), but the others are. 

However let us regard this element as a black box, and start off with the con-
stitutive relation 

r \ 11 —1  1 ) \vz/ 
(3.59) 

Choosing 

u2  = 
	

(3.60) 22 

vl  

i l  

v 
Y2 = 

v2 	
(3.61) 
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gives 

1 ( 1 	—1 \ 
~22 	

r —1 	1 ) 

This matrix is singular, so as predicted, the corresponding causal form does not 
exist. 

3.3.6 Inter-junction bonds 

Summary 

Unit-gain transformer 

0--~ 	 1 

Unit-gain effort amplifier Unit-gain flow amplifier 

Figure 3.19 Inter-junction bonds 

The two sorts of inter-junction bonds of Chapter 2 are interpreted as special cases 
of two-port components and thus inherit the same causality constraints. 

Unit-gain transformers 

A unit-gain transformer is a special case of the transformer discussed in Section 
3.3.5 but with k = 1. That is 

e2= ei;.fi=.f2 (3.63) 

The unit gain transformer is given the special notation of Figure 3.19. As there 
are only two possible causalities, the usual convention suffices. This is equivalent 
to a bond connecting two junctions. 

(3.62) 

Unit-gain gyrators 

A unit-gain gyrator is a special case of the gyrator. It is sometimes called the 
symplectic gyrator or SGY element. 
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Unit-gain amplifiers 

A unit-gain effort amplifier is a special case of the effort amplifier discussed in 
Section 3.3.5 but with k = 1. That is 

e2= ei;.%i =0 (3.64) 

The unit gain effort amplifier is assumed alw ays to have its input connected to 
a 0-junction and is given the special notation of Figure 3.19. There is only one 
possible causality, so this notation is unambigu ous. 

A similar convention is used for a unit gain flow amplifier. 

3.3.7 Sensors and source-sensors 

0 	M 
	

1  

Effort measurement 
	

Flow measurement 

Figure 3.20 Sensors 

An ideal sensor measures a system variable without otherwise affecting the system. 
This is rather like a unit-gain amplifier, and so, in this book, we adopt the notation 
of Figure 3.20. 

SS  	 SSI 	 

Effort source - flow sensor Flow source - effort sensor 

Figure 3.21 Source-sensors 

In some cases, system sources and sensors are collocated: they correspond to an 
effort-flow pair. That is, the measured flow is that generated by the corresponding 
effort source and vice versa. 

In this book, the SS (source-sensor) element is introduced with the notation 
shown in Figure 3.21. The left-hand SS element combines an effort source with 
a flow sensor; the right-hand SS element combines a flow source with an effort 
sensor. 

The source and the sensor each has one of three possible attributes: 

• external 
• internal 
• zero 

These attributes have different connotations for the source (Table 3.2) and for 
the sensor (Table 3.3). 
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Attribute Corresponding system input 
external 
internal 
zero 

Externally generated 
Internally generated for equation solution 
zero 

Table 3.2 Source attributes 

Attribute Corresponding system output 
external 
internal 
zero 

Visible externally 
Invisible externally 
Constrained to be zero 

Table 3.3 Sensor attributes 

Internal sources are used with zero sensors as a means of handling under-causal 
systems (Section 3.4.1); the source-sensor concept is particularly useful for dis-
cussing system inversion (Chapter 6). 

3.4 BOND GRAPH SYSTEM CAUSALITY 

Summary 

• The junction structure of a system constrains the causality of the system 
components attached to the structure. 

• A system may be: 

— over-causal, 

— causal or 

— under-causal. 

• Under-causal systems correspond to differential-algebraic equations. 

• A two-stage algorithm for completing causality is given. 

3.4.1 Causal constraints 

The junction structure of a system (consisting of junctions and interjunction con-
nections) constrains the causality of the system components attached to the struc-
ture. 
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As discussed in Section 3.3.3, each junction constrains the causality of the n 
bonds connected to it: a 1-junction must have precisely one flow output connected 
to it; a 0-junction must have precisely one effort output connected to it. The 
inter-junction bonds further constrain the causal possibilities. 

For each system being modelled, the components can be divided into two sets: 

1. those components for which the modeller wishes to impose causality. These 
will be called causally prespecified components. 

2. all other components. These will be called causally reversible components. 

The first class of causally prespecified components would typically contain: 

• sources 
• those C and I components which the modeller wishes specifically to have 

integral or derivative causality (Section 3.3.4). 
• components whose constitutive relation precludes one form of causality (Sec-

tion 3.3.4). 

The second class of causally reversible components contains all the other compo-
nents: the modeller does not care about the causality of these. 

The constraints, together with the causalities chosen for the first class of com-
ponents can have three consequences: 

1. The causalities assigned to the causally prespecified components are incom-
patible with the constraints: the system is said to be over-causal. 

2. The causalities assigned to the causally prespecified components are compati-
ble with the constraints and, given the constraints, there is only one causality 
possible for each of the causally reversible components. The system is said 
to be causally complete. 

3. The causalities assigned to the causally prespecified components are com-
patible with the constraints and, given the constraints, there is more than 
one causality possible for some of the causally reversible components. The 
system is said to be under-causal. 

There are algorithms available for determining which of the three consequences 
holds. The classical Sequential Causality Assignment Procedure (SCAP) is dis-
cussed in the textbooks (Karnopp et al., 1990; Wellstead, 1979; Thoma, 1990) and 
Section 2.5. More recent critical examination is given in a Thesis (van Dijk, 1994) 
and papers (van Dijk and Breedveld, 1991a) (van Dijk and Breedveld, 1991b) (van 
Dijk and Breedveld, 1993) (Borutzky, 1993). 

Over-causal systems 

An over-causal system is a sign to the modeller that the pattern of preassigned 
causality is not compatible with the system structure, and therefore that either 
the causality of these components must be rethought or that the system structure 
is not physically feasible. 
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Causal systems 

A causal system is neither under nor over-causal. The causality of each component 
is implied by the prespecified causalities of source components. Such systems can 
be treated by the classical Sequential Causality Assignment Procedure (SCAP) is 
discussed in the textbooks (Karnopp et al., 1990; Wellstead, 1979; Thoma, 1990) 
and Section 2.5 and lead to ordinary differential equations (Section 4.9). 

Under causal systems 

Under causal systems are not described by ordinary differential equations (ODEs), 
but rather by differential-algebraic equations (DAEs)(Section 4.7). The following 
discussion provides a constructive proof of this (Gawthrop and Smith, 1992). 

Assuming that the bond graph is proper (all bonds impinge on a junction) then 
at least one junction (that to which a non-causal bond is attached) does not have 
causality imposed on it. That is, a causally incomplete 0-junction does not have an 
effort imposed on it; a causally incomplete 1-junction does not have a flow imposed 
on it. 

An appropriate SS (Effort source for a 0-junction; flow source for a 1-junction) 
is then attached to the junction and causality propagated. There are then three 
possibilities for the resultant system: 

1. the system is over-causal, 
2. the system is causal or 
3. the system is under-causal. 

In the first case, the method fails and a more sophisticated approach must be 
used - see for example (van Dijk, 1994) (van Dijk and Breedveld, 1991a) (van Dijk 
and Breedveld, 1991b) (van Dijk and Breedveld, 1993) (Borutzky, 1993). 

In the second case, the procedure successfully terminates. In the third case the 
procedure is repeated. 

We now have a causal bond graph, but it corresponds to a new system with 
n new input sources. However, an effort source connected to a 0-junction has no 
effect on the system if the source effort is such that flow out of the source is zero: 
the junction is at its `natural' effort. A similar statement may be made about a 
flow source on 1-junctions. 

The result of this procedure is to add n additional sources, with output v;  and 
input w;, to the system. The system thus has n additional inputs w, which have no 
effect on the system if they are chosen such that the n implicit algebraic equations 

w; = O (3.65) 

are satisfied. These equations form the algebraic part of the system: the rest of 
the system is causally complete and thus has an ODE representation. 
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3.5 EXAMPLES 

Summary 

• The causal completion of some simple systems is illustrated. 
• Other simple examples appear in Chapter 2, more complex examples appear 

in the remaining chapters of Part I and the applications chapters of Part II. 
• The use of the bond graph to generate system equations and other models is 

deferred to Chapter 4. 

3.5.1 Computational causality: an example (continued) 

Summary 

The example of Section 3.2 is re-examined in the light of completing causality via 
the bond graph algorithm. 

Discussion 

     

e2 el e2 el 

Figure 3.22 Electrical circuits 

SS:el 	71 l:i I 	, SS:e2 

Figure 3.23 Electrical circuit: over-causal 

Figure 3.22 repeats Figure 3.1 of Section 3.2. Figures 3.23, 3.24 and 3.25 show the 
corresponding bond graphs for the three circuits of Figure 3.22. SS components 
represent the two voltage sources in each case. 

The bond graph of Figure 3.23 is over-causal; there is no flow impinging on 
the 1-junction. This can be relaxed following Figure 3.2; the corresponding bond 
graph of Figure 3.26 is causally complete. 
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R:r 

SS:el 	 1:i 	 , SS:e2 

Figure 3.24 Electrical circuit: causal 

R:rl R:r2 
\ 

SS:el 	71 1:i 	, SS:e2 

Figure 3.25 Electrical circuit: under-causal 

In contrast, the bond graph of Figure 3.24 can be causally completed by as-
signing flow causality to the single R component. 

The bond graph of Figure 3.25 is not causally complete; there is no way to 
uniquely assign causality to the two R components. This is resolved by adding 
an additional flow source (with collocated sensor measuring the voltage es) as in 
Figure 3.27. In this case, the algebraic equation 

es  = 0 	 (3.66) 

has to be solved. 
Figure 3.28 corresponds to the alternative formulation of Equation 3.9 where 

both R components have a current output. The bond graph of Figure 3.28 is over-
causal; this is resolved in Figure 3.29 by creating an under-causal diagram and 

SS:e3  

SS:el 	71 1:i 	 , SS:e2 

Figure 3.26 Electrical circuit: relaxed constraint 
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R:rl R:r2 
\ \ 

SS:el 	71 1:i 	, SS:e2 

f  

SS:iO 

Figure 3.27 Electrical circuit: under-causal with current source 

R:rl R:r2 
\ \ 

SS:el 	,I  1:i 	, SS:e2 

Figure 3.28 Electrical circuit: over-causal 

adding a voltage source as in Equation 3.10. The corresponding sensed current 
is  = it  — i2  is constained by the algebraic equation 

(3.67) 

R.r1 	 R.r2 

SS:el 	„.,1 1:i1 --7,  0:v ---7. 1:i21 	/ SS:e2 

f 

SS:V 

Figure 3.29 Electrical circuit: over-causal with voltage source 
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3.5.2 An electrical second-order lag 

Summary 

A simple RC circuit (see Section 2.4.1), and its variations, are used to illustrate 
causal completion for three cases: 

1. a causal system with integral causality. 
2. a causal system with mixed integral/derivative causality. 

3. an under-causal system with integral causality. 

Description 

Figure 3.30 RC circuit: schematic 

R:rl 	C:cl 	R:r2 	C.c2 
/ 

] 1 
S:v_0— 	1:i1l 	\ O:vl 	11:i21 	\ O:v2 

Figure 3.31 RC circuit: bond graph 

 

M:v_2 

 

Figure 3.30 shows a simple two-stage RC filter, with input voltage vo  and output 
voltage y2. The corresponding bond graph appears in Figure 3.31. Causal strokes 
have been added to the bond graph and causality is complete with integral causality 
on each of the C components. This can be interpreted as implying that the R 
elements `cause' the currents in the 1-junctions and that the C elements `cause' 
the voltage on the 0-junctions. 

Figure 3.32 shows a modified version of Figure 3.30 where one of the resistors 
(r2) has been removed. The corresponding bond graph appears in Figure 3.33. 
Integral causality is not possible on both C elements as the 1-junction on which 
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r1 

vo 
f 2 1:\ 

c

~ 	Ti  " 2Ti 
V2 

Figure 3.32 RC circuit with resistor removed: schematic 

	

R:rl 	C:cl 	 C:c2 
7 

] 	 ] 

	

S:v_0-1 1:i1l 	\ O:vl 	11:12 	1 O:v2 

 

M:v_2 

 

Figure 3.33 RC circuit with resistor removed: bond graph 

r2 used to live now must impose opposite causalities on the two neighbouring 0-
junctions. Physically, they share the same voltage y1 = y2 and so the corresponding 
charges (states) cannot be independent. 

Figure 3.33 shows one possibility, c1 has integral causality and c2 has derivative 
causality. Figure 3.34 shows the other possibility: c2 has integral causality and c1 
has derivative causality. 

Figure 3.35 shows a modified version of Figure 3.30 where one of the capacitors 
(ci ) has been removed. The corresponding bond graph appears in Figure 3.36. It 
is not possible to propagate causality further, so a voltage source is added as in 
Figure 3.37. Causality can now be completed - it is, of course the same pattern as 
that in Figure 3.30. 

As discussed in Section 2.4.1, a buffer amplifier can be used to decouple the 
two stages of this RC circuit; this is depicted in Figure 3.38. The corresponding 
causal bond graph appears in Figure 3.39. The causal properties are identical to 
those of the system without the buffer amplifier. 

R:rl 	C:cl 	 C:c2 

] 	] 	 ]  
S:v_0-1 1:il1 	\ O:v1 	\ 1:i21 	\ O:v2 

 

M:v_2 

 

Figure 3.34 RC circuit with resistor removed: alternative bond graph 
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r 1 r 2 

V 
	

Vi C2 V2 

/ 	T/ 

Figure 3.35 RC circuit with capacitor removed: schematic 

	

R:rl 	 R:r2 	C:c2 

	

S:v_0---1 l:il 	~ O:vl 	~ 1:i21 	\ O:v2 

 

M:v_2 

 

Figure 3.36 RC circuit with capacitor removed: bond graph 

3.5.3 DC motor 

Summary 

 

A simple DC motor (see Section 2.4.3) is used to illustrate causal completion for 
two cases: 

1. A voltage driven motor with integral causality. 
2. A current driven motor with mixed integral/derivative causality. 

Description 

Figure 3.40 shows the bond graph corresponding to a simple DC motor with voltage 
drive; both I components have integral causality. 

Figure 3.41 shows the bond graph corresponding to a simple DC motor with 
current drive; the I component labelled la (the armature inductance) is forced to 
have derivative causality. This example is aslo discussed in Section 2.5.4. 

	

R:r1 	SS:v 1 	R.r2 	C:c2 

	

S:v_0--1 1:il) 	\ O:vl 	•I 1:i21 	\ O:v2 

 

M:v_2 

 

Figure 3.37 RC circuit with capacitor removed: modified bond graph 
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V1 V 2  
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Figure 3.38 An electrical second-order lag with buffer: schematic 

R:rl 	C:cl 	R:r2 	C:c2 

] 	1 	] 	]  
S:v_O 	- 1:ill 	\ O:v1 	►Il:i2l 	\ O:v2 

Figure 3.39 An Electrical second-order lag with buffer: bond graph 

M:v_2 

3.5.4 RLC circuit 

Summary 

A simple RLC circuit is used to illustrate the completion of causality when only 
one-port and junctions are involved. For this example, causality is completed in 
three ways: 

1. All integral causality leads to incomplete causality. A voltage source is used 
to complete causality. 

2. All derivative causality leads to a causally complete system. 

3. Mixed causality leads to a causally complete system. 

I:la 
7 

SS:sl 	I 1:a -—\( Y:km 

L 
Rara 

I:jm  

1 
V  1:s I 	\  SS:s2 

1/ 
R:cm 

Figure 3.40 DC motor with voltage drive: bond graph 
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Description 

I:la I:jm 

  

1 
-—\CiY:km 	 1:s1 	 SS:s2 

~ 
R:cm 

  

SS:st 	\ 1:a 

  

/ 
R:ra 

Figure 3.41 DC motor with current drive: bond graph 

e  

Figure 3.42 RLC circuit: schematic 

2 

SS:el 	~1:j1 	0:j2 

	

/ 	V 

	

C:c 	Il 

 

	 SS:e2 

 

Figure 3.43 RLC circuit: bond graph 

This example is taken from Karnopp, Margolis and Rosenberg (Karnopp et al., 
1990). The schematic diagram appears in Figure 3.42; the corresponding acausal 
bond graph appears in Figure 3.43. The source of the SS component el provides 
the input voltage; the sensor of the SS component e2 provides the output voltage. 
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SS:el 	~ 1:j1-70:j2 	~ SS:e2 

	

V 	V  

	

C:c 	I1 

Figure 3.44 RLC circuit: bond graph with integral causality 

Following Karnopp, Margolis and Rosenberg (Karnopp et al., 1990) let us first 
attempt to complete causality with all integral causality. Noting that the effort 
source must have effort output, (section 3.3.4) the assumption of integral causality 
gives Figure 3.44. 

	

1 	:r2 

0:j2 	~ SS:e2 

" 

	

C:c 	I1 

Figure 3.45 RLC circuit: bond graph with additional voltage source 

1 	R:r2 

SS:el 	 1:j1 	0:j2 	 SS:e2 

~ V V SS:iO 

Figure 3.46 RLC circuit: bond graph with additional current source 

The bond graph is not causally complete; the junctions do not constrain the 
causality. Hence the system corresponds to a DAE not an ODE. Following the 
procedure in Section 3.4, either a voltage source is appended to the right-hand 
junction or a current source is added to the left-hand junction. Making the former 
choice leads to Figure 3.45. 

SS:el 	 1:j1 

C:c 	I1 
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The diagram is now causally complete; the additional source indicates an ex-
plicit algebraic equation to be solved: the current into the voltage source must be 
zero. 

Alternatively, a current source can be added to the left-hand junction as in 
Figure 3.46. Once again, the diagram is now causally complete; the additional 
source indicates an explicit algebraic equation to be solved: the voltage into the 
current source must be zero. 

All derivative causality 

	

R:rl 	R:r2 

	

l 	1\ 
SS:el 	,l l:jll 	/0:j2 	,l SS:e2 

V 	V 

	

C:c 	I1 

Figure 3.47 RLC circuit: bond graph with derivative causality 

As an alternative, let us try to causally complete the system with the derivative 
causality. As the capacitor now imposes a current onto the 1-junction, and the 
inductor imposes a voltage onto the 0-junction, the diagram (Figure 3.47) is now 
causally complete. 

It follows that the corresponding set of equations is a set of integral equations. 

Mixed causality 

R:r1 	R:r2 

~ I 
SS:el  	,0:j2 	~ SS:e2 

V 	V 
C:c 	I1 

Figure 3.48 RLC circuit: bond graph with mixed causality 

As a final permutation, let us try mixed causality with integral causality on the C 
and derivative causality on the I. This gives Figure 3.48 and, once again, causality 
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is complete. 

3.6 QUALITATIVE CAUSALITY 

Summary 

• Links between bond graph causality and the qualitative notions of causality, 
arising from the artificial intelligence community, are made. 

3.6.1 Discussion 

There has been an upsurge of interest in the past few years in the qualitative, 
rather than the quantitative, description of systems. It can be argued that a qual-
itative analysis of general system properties should precede quantitative analysis 
pertaining to specific system parameters. 

Bond graphs clearly distinguish between system structure and constitutive re-
lationships and the former aspect is essentially a qualitative description. Bond 
graphs also provide a framework for discussing causality and so in principle pro-
vide a context for the discussion of causality. 

As stated in the introduction to this chapter, causality has much broader con-
notations than just computational causality. The purpose of this Section is to 
place causality in a broader context and thus make a link with more general causal 
notions. In particular, we make links with the work of Simon and Rescher (Si-
mon and Rescher, 1966) (based on the earlier work of Simon(Simon, 1952)) and 
the more recent artificial intelligence work on causality in device behaviour, for 
example Iwasaki and Simon (1986). 

3.6.2 The Causality of Simon and Rescher 

e2 e  

     

Figure 3.49 Electrical circuits 

Simon and Rescher (1966) make two insightful statements about causality: 
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1. Causality is not logically the same as implication: from "a implies b" it 
follows that "not b implies not a" but "a causes b" does not lead to "not b 
causes not a". 

2. Causality is not a relation between values of variables, but rather a functional 
relationship between the variables. 

Simon and Rescher (1966) go on to give an explanation of causality in terms of 
the so-called structure matrix. The structure matrix has one row for each system 
output and one column for each system input. If there is a causal relation between 
the jth input and the ith output, then the ijth element of the structure matrix is 
1, otherwise, the ijth element of the structure matrix is O. A structure matrix can 
be analysed in terms of self-contained submatrices. We shall illustrate this matrix 
in terms of the example of Section 3.2, the relevant figure of which is repeated here 
as Figure 3.49. 

The centre circuit has a structure matrix obtained from the matrix on the 
right-hand side of Equation 3.5 by replacing all non-zero elements by 1 

1 0 0 
S = 0 1 0 

1 1 1 
(3.68) 

The structure matrix is then decomposed into `self-contained' sub structures — 
self-contained meaning that there are exactly enough equations to solve (in prin-
ciple) for the unknowns. The first and second rows are clearly self-contained: the 
first gives el , the second e2. The knowns are now substituted into the final row 
giving the value for the remaining unknown i. 

i 

e 
z 

Figure 3.50 Causality diagram 

Simon and Rescher (Simon and Rescher, 1966) use a causality diagram to depict 
system causality. An arrow from A to B is to be read as "A causes B". The structure 
matrix of Equation 3.68 leads to the causality diagram of Figure 3.50. This should 
be compared topologically with the corresponding block diagram of Figure 3.3. 

Turning now to the right-hand circuit, the structure matrix corresponding to 
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Equation 3.8 is given by Equation 3.69 

1 0 0 0 

S
— 0 1 0 0 

1 0 1 1 
0 1 1 1 

Proceeding as before, the first two rows each form a complete structure, but nei-
ther of the last two rows do. However, having eliminated the first two columns 
(determined by the first two rows) the last two rows have the structure matrix 

(1 1 
S34  — 1 1 

(3.70) 

This is complete as it corresponds to two simultaneous equations in two variables. 
Thus i and y are jointly determined by el  and e2 . 

Figure 3.51 Causality diagram 

The causality diagram is given in Figure 3.51. 
As illustrated by these examples, then, the structure diagram approach to 

causality gives precisely the same causality diagrams as causal completion of a 
bond graph. The bond graph thus gives an alternative framework for discussing 
causality for these systems which do have a bond graph representation. Thus, in 
this sense, bond graph causality has a wider interpretation than just computation 
and thus may be used for causally reasoning about systems. 

3.6.3 Device causality 

The causality of a bathtub has become a standard test case for discussions in the 
artificial intelligence community. For example, Iwasaki and Simon (1986), gives 
a detailed discussion of causality for various versions of the bathtub including 
equilibrium and with various levels of sophistication in representing the dynamics. 

This Section presents the bathtub, and its causality from the bond graph point 
of view. As with the previous Section, this provides a link with other notions 
of causality as well as providing an illustration of the utility of bond graphs in 
providing a context for discussion of causality. 

(3.69) 
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Irlflow 

i 

Outflow 

Figure 3.52 A bathtub 

~c 

 

I:i  

1 

) 1:of 

V 
R:r 

   

SS:if 	\ O:p 

 

 

Figure 3.53 A bathtub: bond graph 

The bathtub depicted in Figure 3.52 is modelled by the bond graph of Figure 
3.53. 

The tap has been modelled as a flow source - the flow is independent of the 
bathtub level. 

The bath has been modelled as a C element (not necessarily linear, the bath 
may not have vertical sides) thus neglecting the velocity of liquid in the bath itself. 

The outflow has been modelled as a combination of a (non-dynamic) resistance 
to flow together with an inertia representing the mass of liquid in the pipe that 
needs to be accelerated. Figure 3.53 has been completed with integral causality. 
Following the causal strokes gives the causality diagram of Figure 3.54, where, as 
in Figure 3.50, an arrow from A to B is to be read as "A causes B". In the linear 
case, corresponding equations are 

i  = i 

V V— P f f out 	out 

Figure 3.54 Bathtub causality 

(iui — x2) (3.71) 

fin 



x2 = 

Qualitative causality 

(—(crx2 — ixi)) 

(ci) 

x i 
yl = —

c 
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(3.72) 

(3.73) 

(3.74) 

fout 

where x1 = y is the volume of liquid in the bath, x2 = q is the outflow rate, u1 = qo 
is the inflow, y = p is the pressure at the base of the bathtub and c, i and r are 
the corresponding coefficients of the C, I and R components. The transfer function 
relating pressure to inflow is 

G(s) — 	r + is 

1 + crs + cis 2 

C•c 

~  
SS:if I 	\ 0:p 

 

1l:of 

V 
R:r 

 

Figure 3.55 Simplified bathtub: bond graph 

V 	 V 	- P 

Figure 3.56 Simplified bathtub causality 

A simplified version of this model could neglect the outflow dynamics by as-
suming that govt responds rapidly to changes in pressure. In bond graph terms, 
the I component is deleted from Figure 3.53 to give Figure 3.55. The causality on 
the outflow resistance now changes: the outflow is caused by the pressure in the 
bathtub acting across the R element. In the linear case, corresponding equations 
are 

ii= 
(crui — xl) 

(cr) 
(3.75) 

xi 
Yi = —

c 
(3.76) 

fin 
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SS:ifl 	~ O:pl 	\ 1:of 

/ 
R:r 

Figure 3.57 Equilibrium bathtub: bond graph 

fin 	fout 

 

	 p 	 V 

 

Figure 3.58 Equilibrium bathtub causality 

The transfer function relating pressure to inflow is 

G(s) = 	r 	 (3.77) 
1 + crs 

The causal ordering is now given by Figure 3.56 
Finally, following Iwasaki and Simon (1986), it is of interest to consider the 

equilibrium (or steady-state) situation. This is essentially equivalent to removing 
the C, (as well as the I) component. Figure- 3.57 shows the corresponding bond 
graph. Note that, as the C no longer imposes causality on its 0-junction, the 
overall system causality is completely changed: the flow throughout the system is 
determined by the inflow, and thus the pressure is determined by the outflow. 

In the linear case, corresponding equations are 

yl = rui (3.78) 

The transfer function relating pressure to inflow is 

G(s) = r 	 (3.79) 

The corresponding causality diagram appears in Figure 3.58. 
In the light of this example, it can be seen that when systems can be modelled 

by bond graphs, the causality implied by the bond graph corresponds to the notions 
of causality espoused by the artificial intelligence community. 

3.7 CONSTRAINTS AND CONSTRAINT PROPAGATION 

Summary 

• Links are made betwen causality and the notion of constraints and the corre- 
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sponding constraint programming languages arising from the artificial intelli-
gence and computing science communities. 

3.7.1 Discussion 

Constraints(Winston, 1984; Leler, 1988), and their corresponding constraint pro-
gramming languages (Leler, 1988; Fattah, 1992), form a well-developed part of 
computing science. As in Section 3.6.3, the aim of this Section is to make links 
with the notion of bond graph causality and the corresponding notion of constraint 
programming. This has recently been discussed by El Fattah (Fattah, 1995). 

R 

V 
0 

Figure 3.59 An electrical circuit 

To fix ideas, consider the electrical circuit of Figure 3.59, consisting of a resistor 
and a voltage source. From the constraint point of view, this circuit can be seen 
as imposing a global constraint relating y and i 

v=Ri+ vo 	 (3.80) 

made up from the local constraints arising from the individual components and 
their interconnections 

vT  = Ri, 
vs  = vo 
2 = 2T  
v = vT  + vs  (3.81) 

These equations are constraints in the sense that equality, not assignment, is 
implied and the order of the equations is immaterial. Thus the constraints could, 
for example, be rearranged as 

vT  — RiT  = 0 
V,— vo = 0 
i — ir  = 0 
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v — yr  — vs  = 0 	 (3.82) 

The global constraint Equation 3.80 can be used to: 

• compute v (given i, vo  and R) from the assignment 

v := Ri + vo 	 (3.83) 

• compute i (given v, vo  and R) from the assignment 

v — vo 
i :=  
	

(3.84) 

• compute vo  (given v, i and R) from the assignment 

vo :=v— Ri 	 (3.85) 

• compute R (given v, i and vo) from the assignment 

v — vo 
R := 

That is, the single constraint 3.80 can be used in four different ways to compute 
unknown variables from known variables. 

Global constraints such as 3.80 can be deduced, in this case, from local con-
straints such as those listed in equations 3.81. As discussed in the references 
(Winston, 1984; Leler, 1988), local propagation is the simplest technique to deduce 
global information from local constraints. Briefly the algorithm is as follows: 

REPEAT 

Pick a constraint with exactly one unknown 
Compute the single unknown using the appropriate assignment statement 
Propagate the computed value to all other constraints 

UNTIL desired value found 

i R 1 

i (3.86) 

V 

Figure 3.60 An electrical circuit where local propagation fails 
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Unfortunately, this algorithm may sometimes fail. The circuit of Figure 3.60 is 
equivalent to the local constraints 

Vi 	R1 il 
V2 	R2i2 

vs = v0 
= il 

i = i2 

V = vl + v2 + vs 

For example, if i, vo and R are all known, then v can be deduced from the following 
series of assignment statements 

V s := vo 

i2 .= i 
vl .= R1i 
V2 := R2i 
v := vl + 272 + vs 	 (3.88) 

But if v, vo and R, i cannot be deduced by this local constraint propagation. 
The problem is that the following set of constraints 

vl = Rl i 
V2 = R2i 

V = vl + v2 + vs (3.89) 

each has two unknowns and so the algorithm fails at this stage. Note, however, 
that these three equations in three unknowns (i, v1 and v2) do have a solution, but 
simultaneous algebraic equations must be solved. 

(3.87) 

R R 
~ 

  

    

    

SS 	 SSI \ 1
i 

Figure 3.61 An electrical circuit bond graph 

To see the relationship of constraint propagation to bond graph causality, it is 
illuminating to consider the bond graphs of the two preceding examples. 
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Figure 3.61 shows the bond graph of the electrical circuit of Figure 3.59; the left-
hand circuit corresponds to known voltage (the SS output) and unknown current 
(the SS input) and the right-hand circuit corresponds to known current (the SS 
output) and unknown voltage (the SS input). Because each bond graph is causally 
complete, the equations of each component can be written down as assignment 
statements in such a way that the appropriate output can be computed. 

R:r 	 R:r 

SS i 	1 SS  I1 	\ 1 	

[ 	 [ 
R.r2 	 R:r2  

Figure 3.62 An electrical circuit bond graph 

Figure 3.62 shows the bond graph of the electrical circuit of Figure 3.60; the left-
hand circuit corresponds to known voltage (the SS output) and unknown current 
(the SS input) and the right-hand circuit corresponds to known current (the SS 
output) and unknown voltage (the SS input). In this case, the left-hand bond graph 
cannot be causally completed and so the equations of each component cannot be 
written down as assignment statements in such a way that the appropriate output 
can be computed. 

A standard example in the constraint literature is the conversion of degrees 
Celsius to degrees Farenheit using the constraint equation 

C= aF+13 	 (3.90) 

where a and 0 are the conversion constants and C and F are temperatures in 
Celsius and Farenheit respectively. This constraint equation is algebraically the 
same as Equation 3.80. Thus, in principle, an equivalent bond-graph may be 
constructed - but it does not have a clear physical meaning. Indeed, there seems 
to be no systematic way of generating the bond graph corresponding to arbitrary 
sets of constraint equations. 

From these examples, it follows that there is a close connection between the con-
straint programming technique and bond graphs when applied to physical systems. 
In particular: 

• The interpretation of an equation as a constraint implying a number of pos-
sible assignment statements, the choice of which is not prespecified, is equiv-
alent to the acausal bond graph representation. 
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• If variables (as opposed to parameters) are regarded as system outputs then 
the set of ordered assignment statements needed to deduce an output value 
from known inputs and parameters is equivalent to the causal bond graph 
representation. 

• The local constraint propagation algorithm is equivalent to the algorithm for 
causally completing a bond graph. Both algorithms get stuck for precisely 
the same reasons. 

There are, however, some differences: 

• Constraint programming applies to sets of equations which do not necessarily 
arise from physical systems. 

• Constraint programming can regard parameters as unknown `outputs'; stan-
dard bond graphs cannot. 

• Bond graphs give a nice representation and a clear interpretation of the 
causally incomplete situation. 



4 

System representations and 
transformations 

SUMMARY 

• Various system representations can be automatically derived from the system 
bond graph including 

Ordered elementary system equations 

Differential-algebraic equations (DAE) including special cases: 

* Algebraic equations 

* Ordinary differential equations (ODE) 

* Constrained-state equations 

* Semi-explicit differential-algebraic equations 

Linearised descriptor equations 

Transfer functions 

Simulation code 

• Different types of causality give rise to different equation formulations. 
• Each such representation has a use to which it is appropriate. 

4.1 INTRODUCTION 

Derived system representations can be automatically derived from system bond 
graphs. They provide alternative ways of looking at a system and, as such, are 
useful for specific aspects of analysis and synthesis of dynamic systems. 

Each derived system representation has a use: for example, 

• control design, 
• system design, 
• system simulation and 
• system understanding. 
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• Physical system 
• Transformations  = Representations  
• Trans f ormation2 	Representation2  
• 
• Trans f ormationN = Core representation 
• Trans formationN+l  = RepresentationN+s  
• Trans formationN+2  = RepresentationN+2  
• 
• Trans f ormationN+M  Model 

Figure 4.1 System modelling: transformations 

System modelling, the procedure for arriving at an appropriate (for its use) 
model can be viewed as a sequence of transformations between system representa-
tions as indicated in Figure 4.1. The start of this chain of transformations is the 
physical system; an intermediate representation is the core representation; the final 
representation is the system model in an appropriate form. The core representation 
used in this book is the system bond graph. 

With reference to Figure 4.1, this Chapter discusses a number of derived rep-
resentations together with the appropriate transformations. In particular, the fol-
lowing derived representations are considered: 

• acausal bond graph: graphical representation (Section 4.2) 
• acausal bond graph: list representation (Section 4.3); 
• causal bond graph: graphical representation (Section 4.4); 
• causal bond graph: list representation (Section 4.5); 
• ordered elementary system equations (Section 4.6); 
• differential-algebraic equations (DAE) (Section 4.7) including the special 

cases: 

— algebraic equations (Section 4.8) 

ordinary differential equations (ODE) (Section 4.9) 

— constrained-state equations (Section 4.10) 

— semi-explicit differential-algebraic equations (Section 4.11); 

• linearised descriptor equations (Section 4.12); 
• transfer functions (Section 4.13); 
• simulation code (Section 4.14). 

A set of modelling transformation tools (MTT) have been developed (Gawthrop 
et al., 1991a; Gawthrop, 1995). The discussion in this chapter is based on some 
of the MTT implementation; but does not constitute a full description of MTT. 
Rather, it gives an idea of the sort of implementation issues that are involved in 
computer manipulation of bond graphs. 
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An example, described in Section 4.1.1, is used throughout to illustrate the 
various representations. Further examples, drawn from Chapter 3, are collected in 
Section 4.15. 

4.1.1 Example 

to 	rl 	 r2 

    

1 	~ 

T T~ 

 

Vo 

 

r3 

 

V2 

     

Figure 4.2 Electrical circuit 
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Figure 4.3 Electrical circuit: resistor removed 

io 	rl 	 2 

          

          

Vo 

      

r3 

 

V2 

          

Figure 4.4 Electrical circuit: capacitor removed 

A simple, linear, example is chosen to illustrate the various representations dis-
cussed in this chapter. It corresponds closely to the example of Section 3.5.2. The 
remaining examples from Chapter 3 are collected together at the end of this chapter 
in Section 4.15. More complex examples are considered in subsequent chapters. 
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Figure 4.5 Electrical circuit: two capacitors removed 

io 

Figure 4.6 Electrical circuit: input resistor removed 

Figure 4.2 represents a simple electrical circuit comprising two capacitors and 
three resistors. It is driven by a voltage source vo, with corresponding current io  
and the output voltage is v2. Thus this system has one input and two outputs 

u=(vo); y= ( vi° ) 	 (4.1) 

To illustrate various points in this chapter, a number of similar circuits, but with 
components removed, are also considered: 

• Figure 4.3 has r2  removed, 
• Figure 4.4 has c1  removed, 
• Figure 4.5 has c1  and c2  removed and 
• Figure 4.6 has r1  removed. 

4.2 ACAUSAL BOND GRAPH: GRAPHICAL REPRESENTATION 

As discussed in the preceding, and subsequent, chapters and elsewhere (Well-
stead, 1979; Karnopp and Rosenberg, 1975; Thoma, 1975; Rosenberg and Karnopp, 
1983; Karnopp et al., 1990), The schematic diagrams of many physical systems 
can be translated into bond graph form by a suitably experienced system mod-
eller. Such an (acausal) bond graph is the starting point of this chapter. Because 

V2  
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such a representation is precise and unambiguous, further transformations to give 
alternative representations can be largely automated. 

MTT describes bond graphs using the graphical software xfig together with its 
associated description language. The figures on the following examples are from 
postscript versions of xfig representations. 

This graphical description does not fully define the bond graph; in particular 
constitutive relations are not specified. In MTT, the additional information is 
provided in two text files: 

• a label file and 
• a CR file. 

These are illustrated in the following example. 

4.2.1 Example 

R:rl 	C.cl 	R:r2 	C:c2 

SS:v_O 

 

	
/I 

 1:i1 	O:vl 	1:i2 	O:v2 	 SS:v_2 

R:r3 

 

Figure 4.7 Electrical circuit: acausal bond graph 

Figure 4.2 of Section 4.1.1 shows a simple electrical circuit. The corresponding 
bond graph (with integral causality) appears in Figure 4.7. 

Causal strokes have been added to the SS components to indicate that the SS 
component labelled v_0 is imposing an effort whereas the SS component labelled 
v2 is measuring an effort. 

The label file appears in Figure 4.8. The first column corresponds to the labels 
appended to each component and junction in Figure 4.7. The second column gives 
a name to each component; this may be the same as the label. In the case of R, 
C and I components, the third and fourth column give the name and arguments 
respectively of the corresponding CR. In this case, all components are linear and 
use the CR labelled lin. The notation 

[effort,r_1] 

means that the corresponding component has a gain of r1  when the component 
output is an effort. 
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elag2 
'/, System elag2 
% Electrical second-order lag 
% File elag2_lbl.txt 

'/,Junctions 
il currentl 
i2 current2 
vi voltages 
v2 voltage2 

%R components 
rl rl lin [effort,r_1] 
r2 r2 lin [effort,r_2] 
r3 r3 lin [effort,r_3] 

%C components 
cl cl lin [state,c_1] 
c2 c2 lin [state,c_2] 

%SS components 
v_0 ss0 	[external,external] 
v_2 ss2 	[zero,external] 

Figure 4.8 Electrical circuit: label file 

The CR file appears in Figure 4.9. This is written in the algebraic manipulation 
language REDUCE (Rayna, 1987). It defines two CRs: `lin' and `unity'. The CR 
`lin' implements a linear CR as follows: 

• If the component output has the same causality (Causality) as specified in 
the label file (DefaultCausality), then the component output is `Gain*Input'. 

• If, on the other hand, the component output has a different causality (Causal-
ity) to that specified in the label file (DefaultCausality), then the component 
output is `(1/Gain)*Input'; 

4.2.2 Example: r2  removed 

This example corresponds to Figure 4.3 of Section 4.1.1. The bond graph is given 
as Figure 4.10. 

The text files associated with this example are the same as those in Figures 4.8 
and 4.9 except that the the line corresponding to r2  is deleted from the label file 
of Figure 4.8. 
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''h System elag2 
''h Electrical second-order lag 
''h File elag2_cr.r 

/,Generic linear operator 
OPERATOR Lin; 
FOR ALL Causality, DefaultCausality, Gain, Input 
SUCH THAT Causality = DefaultCausality 
LET Lin(Causality, DefaultCausality, Gain, Input) = Gain*Input; 

FOR ALL Causality, DefaultCausality, Gain, Input 

SUCH THAT Causality NEQ DefaultCausality 
LET Lin(Causality, DefaultCausality, Gain, Input) = (1/Gain)*Input; 

'/,Generic unit operator 
OPERATOR Unity; 
FOR ALL Causality, Input 
LET Unity(Causality, Input) = Input; 

Figure 4.9 Electrical circuit: cr file 

R:rl 	C:cl 	 C:c2 

SS:v_0 

 

~ 1:il — 7 O:v1-7 1:i2-7 O:v2 	 SS:v_2 

 

R r3 

Figure 4.10 Electrical circuit (resistor removed): acausal bond graph 

4.2.3 Example: el removed 

This example corresponds to Figure 4.4 of Section 4.1.1. The bond graph is given 
as Figure 4.11. 

The text files associated with this example are the same as those in Figures 4.8 
and 4.9 except that the the line corresponding to c1 is replaced by a corresponding 
source-sensor statement. 
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R:rl 	SS:cl 	R:r2 	C:c2 

[ 	[ 	

\ 

SS:v_O 	/I 1:il — 	/ O:vl 	1:i2-7  O:v2 	/
I 

SS:v_2 

R r3 

Figure 4.11 Electrical circuit (capacitor removed): acausal bond graph 

4.2.4 Example: cl  and c2  removed 

R:rl 	SS:cl 	R.r2 	SS:c2 

SS:v_O 

 

	 l:il- 70:v1 	1:i2--70:v2 	/1 SS:v_2 

R:r3 

 

Figure 4.12 Electrical circuit (two capacitors removed): acausal bond graph 

This example corresponds to Figure 4.5 of Section 4.1.1. The bond graph is given 
as Figure 4.12. 

The text files associated with this example are the same as those in Figures 
4.8 and 4.9 except that the the lines corresponding to c1  and c2  are replaced by 
corresponding source-sensor statements. 

4.2.5 Example: r1  removed 

This example corresponds to Figure 4.6 of Section 4.1.1. The bond graph is given 
as Figure 4.13. 

The text files associated with this example are the same as those in Figures 4.8 
and 4.9 but with a line deleted. 
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C:cl 	R:r2 	C:c2 

f 	f 	f 
SS:v_0 	~ 1:i1 	O:v1-7 1:i2--7 O:v2 	~ SS:v_2 

R:r3 

Figure 4.13 Electrical circuit - resistor removed): acausal bond graph 

4.3 ACAUSAL BOND GRAPH: LIST REPRESENTATION 

Bond graphs are essentially a diagrammatic representation of system dynamics. 
This section considers an equivalent representation more appropriate in the context 
of system transformations. For simplicity, systems without modulated components 
will be considered. 

From this point of view, a system bond graph is a list of junctions, and with 
each junction is associated a list of bonds impinging on that junction. Each bond 
is itself a data structure containing information about the bond. 

The following Prolog-like representation (as used by MTT) is one possibility: 

System 

System = system(SystemName, Junctions). 

• 'SystemName' is the name of the system. 
• `Junctions' is a list of junctions. 

Junctions 

Junctions is a list of junctions of the form 

Junctions = [Junctions, 
Junction2, 

JunctionN 
] . 

Each junction is of the form 

Junction(JunctionName, JunctionType, Bonds). 

• 'JunctionName' is the junction name. 
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• 'JunctionType' is either 0 or 1. 
• `Bonds' is a list of bonds. 

Standard name MTT name 
R Dissipator 
C Estore 
I Fstore 
SS Source-sensor 
TF Transformer 
GY Gyrator 
Interjunction bond Junction 
Signal bond Signal 

Table 4.1 MTT bond names 

Bonds 

`Bonds' is a list of bonds of the form 

Bonds = [Bondi, 
Bond2, 

BondN] . 

Each bond is itself a structure of the form 

Bond = bond(BondName, Component, BondDirection, BondCausality, CR). 

• `BondName' 

— If the bond is connected to a one-port component, then `BondName' is 
the name associated with the component 

— If the bond is connected to a two-port component, then `BondName' is 
the name of the junction to which the other end is attached. 

• `Component' is one of the standard bond-graph components renamed as in 
Table 4.1. 

• `BondDirection' is either `in' or `out' . This indicates direction of power flow 
with respect to the junction. Thus `out' indicates that power is flowing out 
of the junction; this would usually be the case for a one-port component. 

• `BondCausality' is one of `effort', `flow' or `_' , the first two indicate whether 
the component output is an effort or a flow, the last indicates that causality 
is as yet unassigned. 

• 'CR' denotes the constitutive relationship of the component. 
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4.3.1 Example 

Figure 4.2 of Section 4.1.1 shows a simple electrical circuit. The corresponding 
bond graph (with integral causality) appears in Figure 4.7. In particular, (regard-
ing inter-junction bonds as unit-gain transformers), the causally complete bond 
graph of Figure 4.7 can be rewritten in this list structure (see below). 

The other circuits have a similar representation, the only difference is that some 
components are deleted from the list. 

Example: acausal bond graph as a list 

system(elag2, 

[ 
junction(currentl, flow, 

bond(ss0,source_sensor, in,effort,[external,external]), 

bond(voltagel,junction,out,_,[unity, D , ❑ ]), 
bond(rl,dissipator,out,_,[lin, [effort ,r_1],❑]) 

] ) , 

junction(current2, flow, 

bond(voltage1, junction, in,_,[unity, [], [] ]), 

bond(voltage2,junction,out,_,[unity, ❑ , ❑ 3), 
bond(r2,dissipator, out,_, [lin, [effort ,r_2],❑]) 

] ) , 

junction(voltagel, effort, 

bond(currenti,junction,in,_,[unity, [], [] ]), 
bond(current2,junction,out,_,[unity, [], [] ]), 

bond(cl,estore,out,_,[lin,[state,c_1],[]]) 

] ) , 

junction(voltage2, effort, 

bond(current2, junction, in,_,[unity, [], [] ]), 
bond(c2,estore, out,_ , Clin, Estate, c_2],[]]), 
bond(ss2,source_sensor,out,f low, [zero, external]), 
bond(r3,dissipator, out ,_, [lin, [effort ,r_3] , ❑]) 

]) 
]). 
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4.4 CAUSAL BOND GRAPH: GRAPHICAL REPRESENTATION 

There are often many ways to complete the causality of an acausal bond graph to give a 
causally complete bond graph. As the modeller is often interested in generating differ-
ential equations, it is conventional to use integral causality (Section 3.3) with dynamic 
components. If causality is left unassigned, then MTT tries to complete causality with 
the maximum number of components with integral causality. However, the modeller 
must be free to override this default. This is easily done by adding additional causal 
strokes to the acausal bond graph; MTT never overrides prespecified causality, it just 
checks that it is correct. 

SS:v_0 

 

	

R:rl 	C:cl 	R.r2 	C:c2 
N 	\ 

r 	r  
	/I 1:i11 	/ O:v1 	/11:i21 	/ O:v2 	/I SS:v_2 

 

I 
R r3 

Figure 4.14 Electrical circuit: causal bond graph 

Figure 4.14 shows the causal bond graph corresponding to Figure 4.7 where causality 
has been completed by hand to give integral causality. 

SS:v_0 

 

	

R:rl 	C:cl 	 C:c2 

r 	r 	 r 	 
	/I 1:i11 	/ O:vl 	/I 1:i2 	/10:v2 	/1 SS:v_2 

 

/ 
R:r3 

Figure 4.15 Electrical circuit- resistor removed: causal bond graph 

Figure 4.15 shows the causal bond graph corresponding to Figure 4.10 where causality 
has been completed by hand to give integral causality on el  but derivative causality on 
C2. 
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4.5 CAUSAL BOND GRAPH: LIST REPRESENTATION 

The list representation used by MTT is identical to that described in Section 4.3 except 
that, by definition, all causalities are assigned. 

4.5.1 Example 

The lists corresponding to the examples of Section 4.1.1 appear in the following sections. 

Integral causality 

The following list representation corresponds to Figure 4.14 

/,'/,'/, File created by MTT (Version of 4 July 1994) . 
'G'/.V. This file contains all possible causally complete systems 
/,,% with the minimum number of non-states 
'/,'/.'/, System name: elag2 
Y.Y.Y. File: elag2_cbg.pl 

Y.Y.Y. There is only 1 possible causal completion 
'/,'/.'/, with 0 non-states 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Y.Y. States(2): 
[cl,effort, [lin, [state,c_1] , []] ,voltages] 
[c2,effort,[lin,[state,c_2],[]],voltage2] 

Non-states(0) : 
'/.'/, Inputs(1) : 

'/. 	[ss0,effort,[external,external],currentl] 
Outputs(2): 

[ss0,f low , [external, external] , current 1] 
'/. 	[ss2,effort,[zero,external],voltage2] 
'4% Zero outputs(0): 

system(elag2, 

[ 
junction(currentl, flow, 

bond(r1, dissipator, out , flow, 
[lin, [effort,r_1] , DJ) 

bond(ss0, source_sensor, in, effort, 
[external,external]), 

bond(voltagel, junction, out, effort, 
[unity, ❑ , ❑]) 
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7), 

junction(current2, flow, 

[ 
bond(r2, dissipator, out, flow, 

[lin, [effort,r_2] , []]) , 
bond(voltagel, junction, in, effort, 

[unity,[],❑]), 
bond(voltage2, junction, out, effort, 

[unity, ❑ , ❑ ]) 
]), 

junction(voltagel, effort, 

bond(cl, estore, out, effort, 

[lin, [state,c_1] , []]) , 
bond(currentl, junction, in, flow, 

[unity, ❑ , ❑]) , 
bond(current2, junction, out, flow, 

[unity, [7 , ❑ ] ) 
7), 

junction(voltage2, effort, 

bond(c2, estore, out, effort, 

[lin, [state,c_2] , []]) , 
bond(current2, junction, in, flow, 

[unity,❑,❑7), 
bond(ss2, source_sensor, out, flow, 

[zero, external]), 

bond(r3, dissipator, out, flow, 

[lin, [effort,r_3] , []] ) 

~ ) 

7 ). 

r1 removed, mixed integral and derivative causality 

The following list representation corresponds to Figure 4.15. 

/,'/,'/, File created by MTT (Version of 4 July 1994) . 

'/,%'/, This file contains all possible causally complete systems 

%'/,'/, with the minimum number of non-states 

'/,'/,'/, System name: elag2rl 

'/,'/,'/, File: elag2rl_cbg.pl 
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'/,'/,'/, There is only 1 possible causal completion 
'/,'/,'/, with 1 non-states 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% States(1): 
[cl,effort,[lin,[state,c_1],[]],voltagel] 

%% Non-states(1): 
[c2,flow, [lin, [state,c_2] , []] ,voltage2] 

%'/, Inputs(1) : 
'/, 	[ss0,effort,[external,external],currentl] 
'/,% Outputs(2) : 
'/, 	[ss0,flow,[external,external],currentl] 
'/, 	[ss2,effort,[zero,external],voltage2] 
'/,'/, Zero outputs (0) : 

system(elag2rl, 

junction(currentl, flow, 

bond(r1, dissipator, out, flow, 
[lin, [effort,r_1] , [7])  , 

bond(ssO, source_sensor, in, effort, 
[external,external]), 

bond(voltagel, junction, out, effort, 
[unity, 0, 0]) 

]), 

junction(current2, flow, 

bond(voltage2, junction, out, flow, 

[unity, [J,0]), 
bond(voltagel, junction, in, effort, 

[unity ,[], ❑]) 
] ) , 

junction(voltagel, effort, 

bond(cl, estore, out, effort, 
[lin, [state,c_1] , [J]) , 

bond(currentl, junction, in, flow, 

[unity,0,E]]), 
bond(current2, junction, out, flow, 

[unity ,0,0]) 
] ) , 



Ordered elementary system equations 	 105 

junction(voltage2, effort, 

bond(current2, junction, in, effort, 
[unity,[],[]]), 

bond(c2, estore, out, flow, 
Clin, [state,c_2] , []]) 

bond(ss2, source_sensor, out, flow, 
[zero, external]), 

bond(r3, dissipator, out, flow, 
[lin, [effort,r_3] , []] ) 

]) 

4.6 ORDERED ELEMENTARY SYSTEM EQUATIONS 

The equations describing a system comprise: 

• the component constitutive relationships (including modulation), 

• the differential equations associated with C and I components, 

• and the interconnection constraints via 0-junctions and 1-junctions 

The causally complete system bond graph (of a system that is neither under-causal 
or over-causal) provides a structure for writing these equations in a systematic manner. 
In particular, they can be written as causally ordered assignment statements where the 
right-hand side of each assignment statement contains terms that have been computed 
by preceding assignment statements or are assumed to be known. 

The system dynamics arise from the C and I components within the system. As 
discussed in Section 3.3.4, such components have either integral or derivative causality. 

Integral causality gives rise to differential equations of the form 

i = u 

y = 0(u) (4.2) 

where, for a C component, x is the integrated flow, y the effort output, u the flow input. 
¢ is the constitutive relation giving effort output y in terms of x. For an I component, 
x is the integrated effort, y the flow output and u the effort input. q  is the constitutive 
relation giving flow output y in terms of x. 

According to common usage, x is called the state of the component and its corre-
sponding differential equation is Equation 4.2. 

Differential causality gives rise to integral equations of the form 

z = 0—lu 
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y = 
~ 

z dt 	 (4.3) 

In this book, z is called the non-state of the component; it is not a state as such because 
it is directly dependent on the component input. 

These equations can be systematically written in four groups of equations with the 
following outputs 

1. State derivatives is inputs of C and I components with integral causality, 

2. Non-states z, 

3. Measurements (corresponding to SS components) which are constrained to be zero 
w, and 

4. System outputs y. 

Each of these four groups of equations is expressed in terms of four groups of variables: 

1. states x of C and I components with integral causality 

2. outputs of S and SS without zero input constraints u (that is, system inputs). 

3. outputs of SS components with zero input constraints y 

4. non-state derivatives of C and I components with derivative causality z. 

Different sets of equations will arise for the same system if different causal patterns 
are applied. Thus, for example, assigning differential or integral causality can give rise 
to quite different sets of equations as discussed by Karnopp (1983). 

4.6.1 Transformation 

In the context of bond graph modelling, the transformation from a causal bond-graph 
to a set of ordered assignment statements is important. 

The following recursive algorithm is used to generate equations for a particular vari-
able (defined according to the data structure in Section 4.2 as that variable with given 
`Causality' associated with a `Bond' attached to a `Junction ') in terms of a list of known 
variables contained in `oldlist'. A `newlist' is produced of the variables in `oldlist' to-
gether with those discovered in generating the equations needed to deduce the particular 
variable. 

The algorithm is presented in pseudo-Pascal form below. (MTT actually uses a Prolog 
implementation - but this is not readable without a working knowledge of Prolog.) 

The algorithm is applied in turn to each variable in the first set of four groups. 
`oldlist' is initialised to contain the names of all variables in the second set of four 
groups, and thereafter updated to `new_list' after each application of the algorithm. 
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Algorithm 

PROCEDURE write_equation_for(Junction, Bond, Causality, old_list, new_list) 
BEGIN{write_equation_for} 
IF NOT already_known(Junction.Name,Bond.Name,Causality,old_list) 

THEN 
BEGIN{Write equations} 
IF Causality = Bond.Causality 
THEN 
BEGIN{Component output} 
IF Bond.Component = r 
THEN {Write its input equation} 

write_equation_for(Junction, Bond, OtherCausality, 
old_list, intermediate_list) 

ELSEIF Bond.Component = tf 
THEN {Write its input equation} 

write_equation_for(Bond.Name, Bond, OtherCausality, 
old_list, intermediate_list) 

ELSEIF Bond.Component = gy 
THEN {Write its input equation} 

write_equation_for(Bond.Name, Bond, Causality, 
old_list, intermediate_list) 

{Write out the component equation} 
write_component_equation(Junction, Bond); 
END{Component output} 

ELSE 
BEGIN{Component input from junction} 
IF Junction.Causality = Bond.Causality 
THEN 

BEGIN{Same causality as junction}\\ 
find_causing_bond(Junction,Causing_Bond); 
write_equation_for(Junction, Causing_Bond, OtherCausality, 

old_list, intermediate_list); 
write_equality(Bond,Causing_Bond,OtherCausality); 
END{Same causality as junction} 

ELSE 
BEGIN{Opposite causality to junction} 
find_causing_bonds(Junction,Causing_Bonds); 
write_equations_for(Junction, Causing_Bonds, OtherCausality, 

old_list, intermediate_list); 
write_summation(Bond,Causing_Bonds,OtherCausality); 
END{Opposite causality to junction} 

END{Component input} 
append(Junction, Bond, Causality, intermediate_list, new_list); 
END{Write equations} 

END{write_equation_f or} 
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Remarks 

1. The line beginning `IF NOT already_known' prevents redundant repetition of equa-
tions. It requires the function already_known to check against a list of already 
known equations. 

2. The line beginning `IF Causality = Bond.Causality' checks whether the output of 
a component is reqired. If so, the statements between `BEGINComponent output' 
and `ENDComponent output' are executed. 

3. The lines beginning `IF Bond.Component = ' and `ELSEIF Bond.Component =' 
perform the operations appropriate to each component. If the components have 
an input, then the procedure `write_equation_for' is recursively executed to write 
the necessary equations. 

4. The line beginning `write_component_equation' writes out the appropriate compo-
nent CR. 

5. If the statement `IF Causality = Bond.Causality' is false the statements between 
`BEGINComponent input' and `ENDComponent input' are executed. In this case, 
the component input must be computed from the appropriate junction equation. 
Regarding a 0 junction as an effort junction and a 1 junction as a flow junction, 
there are two possibilities: 

(a) The variable causality is the same as that of the junction 

(b) The variable causality is not the same as that of the junction 

6. In the former case, the single bond imposing the common variable onto the junction 
must be found (the line beginning `find_causing_bond (Junction, Causing_Bond)' 
does this). 

7. In the latter case, all the other bonds must be found (the line beginning 
`find_causing_bonds (Junction, Causing_Bond)' does this). 

8. In the former case, a single equality must be written - using the line beginning 
`write_equality' does this. 

9. In the latter case, a summation (having regard to direction) must be written - 
using the line beginning `write-summation' does this. 

4.6.2 Example 

Continuing the example of Section 4.1.1 the elementary equations can be written down 
as in Section 4.6.2 below. Intermediate variables associated with components are auto-
matically labelled as 

junction_component_E 

or 
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junction_component_F 

to indicate effort or flow respectively associated with a component on a junction. Simi-
larly intermediate variables associated with interjunction bonds are labelled as 

junctionl_junction2_E 

or 

junctionl_junction2_F 

In this case, only the first and last sets of equations are needed. 

Full circuit 

OFF echo; 
/,'/,'/, File created by MTT (Version of 14th Dec 1993) . 
,File: elag2.req 

'/, States(2): 
'/, 	[cl,effort, [lin, [state,c_1] , []] ,voltagel] 
'/, 	[c2,effort,[lin,[state,c_2],[]],voltage2] 
'/, Non-states (0) : 
'/, Inputs(1): 
'/, 	[ss0,effort,[external,external],currentl] 
'/, Zero Inputs(1): 

[ss2,flow,[zero,external],voltage2] 
Internal Inputs(0): 
Outputs(2): 

'/, 	[ss0,flow,[external,external],currentl] 
'/, 	[ss2,effort,[zero,external],voltage2] 
'/, Zero Outputs(0) : 

'G Set up the system input vector 
matrix MTTU(1,1)$ 
MTTU(1,1) := MTTU1$ 
currentl_ss0_E := MTTU1$ 

'/, Set up the system zero input vector 
voltage2_ss2_F := 0$ 

Set up the system internal input vector 

'/, Set up the system state;matrix MTTX(2,1)$ 
MTTX(1,1) := MTTX1$ 
voltagel_cl_S .= MTTX1$ 
MTTX(2,1) := MTTX2$ 
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voltage2_c2_S .= MTTX2$ 

Equations generating state: 
'h Junction: voltagel 
% Component: cl 

voltagel_cl_E := lin(effort, 
state, 
c_1, 
voltagei_cl_S)$ 

voltagel_currentl_E :_ + ( 
+ voltagel_cl_E)$ 

currentl_voltagel_E := unity(effort, 
voltagel_currentl_E)$ 

currentl_rl_E :_ + ( 
+ currentl_ss0_E 
- currentl_voltagel_E)$ 

currentl_rl_F := lin(flow, 
effort, 
r_1, 
currentl_rl_E)$ 

currentl_voltagel_F :_ + ( 
+ currentl_rl_F)$ 

voltagel_currenti_F := unity(flow, 
currenti_voltagel_F)$ 

voltagel_current2_E :_ + ( 
+ voltagel_cl_E)$ 

current2_voltagel_E := unity(effort, 
voltagel_current2_E)$ 

voltage2_c2_E := lin(effort, 
state, 
c_2, 
voltage2_c2_S)$ 

voltage2_current2_E :_ + ( 
+ voltage2_c2_E)$ 

current2_voltage2_E := unity(effort, 
voltage2_current2_E)$ 

current2_r2_E :_ + ( 
+ current2_voltagel_E 
- current2_voltage2_E)$ 

current2_r2_F := lin(flow, 
effort, 
r_2, 
current2_r2_E)$ 

current2_voltagel_F :_ + ( 
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+ current2_r2_F)$ 
voltagel_current2_F := unity(flou, 

current2_voltagel_F)$ 
voltagel_cl_F :_ + ( 

+ voltagei_currentl_F 
- voltagel_current2_F)$ 

Equations generating state: 
% Junction: voltage2 

Component: c2 

current2_voltage2_F :_ + ( 
+ current2_r2_F)$ 

voltage2_current2_F := unity(flocr, 
current2_voltage2_F)$ 

voltage2_r3_E :_ + ( 
+ voltage2_c2_E)$ 

voltage2_r3_F := lin(flon, 
effort, 
r_3, 
voltage2_r3_E)$ 

voltage2_c2_F :_ + ( 
+ voltage2_current2_F 
- voltage2_ss2_F 
- voltage2_r3_F)$ 

''h Set up the system state derivative;matrix MTTdX(2,1)$ 
MTTdX(1,1) := voltagel_c1_F$ 
MTTdX(2,1) := voltage2_c2_F$ 

''h Set up the system output vector; 
matrix MTTY(2,1)$ 
'I. Output equation: ss0; 
currenti_ssO_F :_ + ( 

+ currentl_rl_F)$ 

''h Output equation: ss2; 
voltage2_ss2_E :_ + ( 

+ voltage2_c2_E)$ 

MTTY(1,1) := currentl_ssO_F$ 
MTTY(2,1) := voltage2_ss2_E$ 

''h Set up the system zero output vector; 
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;END; 

OFF echo; 
/,'/,'/, File created by MTT (Version of 14th Dec 1993) . 
/,File: elag2c.req 

States(1): 
[c2,effort, [lin, [state,c_2] , []] ,voltage2] 

'/, Non-states(0): 
'/, Inputs(1): 

[ss0,effort,[external,external],currentl] 
'/, Zero Inputs(1): 
'h 	[ss2,flow, [zero,external] ,voltage2] 
'/, Internal Inputs(1): 

[cl,effort,[internal,zero],voltagel] 
Y. Outputs(2): 

[ss0,flow,[external,external],currentl] 
[ss2,effort,[zero,external],voltage2] 

'/, Zero Outputs(1): 
[cl,flow,[internal,zero],voltagel] 

'/, Set up the system input vector 
matrix MTTU(1,1)$ 
MTTU(1,1) := MTTU1$ 
currentl_ss0_E := MTTU1$ 

'/, Set up the system zero input vector 
voltage2_ss2_F := 0$ 

'/, Set up the system internal input vector 
voltagel_cl_E := MTTUII$ 

'h Set up the system state;matrix MTTX(1,1)$ 
MTTX(1,1) := MTTX1$ 
voltage2_c2_S := MTTX1$ 

Equations generating state: 
'/, Junction: voltage2 
'/, Component: c2 

voltagel_current2_E :_ + ( 
+ voltage1_c1_E)$ 

current2_voltagel_E := unity(effort, 
voltagel_current2_E)$ 

voltage2_c2_E := lin(effort, 
state, 
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c_2, 
voltage2_c2_S)$ 

voltage2_current2_E :_ + ( 
+ voltage2_c2_E)$ 

current2_voltage2_E := unity(effort, 
voltage2_current2_E)$ 

current2_r2_E :_ + ( 
+ current2_voltagel_E 
- current2_voltage2_E)$ 

current2_r2_F := lin(flow, 
effort, 
r_2, 
current2_r2_E)$ 

current2_voltage2_F := + ( 
+ current2_r2_F)$ 

voltage2_current2_F := unity(flow, 
current2_voltage2_F)$ 

voltage2_r3_E :_ + ( 
+ voltage2_c2_E)$ 

voltage2_r3_F := lin(flow, 
effort, 

r_3, 
voltage2_r3_E)$ 

voltage2_c2_F :_ + ( 
+ voltage2_current2_F 
- voltage2_ss2_F 
- voltage2_r3_F)$ 

'/, Set up the system state derivative;matrix MTTdX(1,1)$ 
MTTdX(1,1) := voltage2_c2_F$ 

Set up the system output vector; 
matrix MTTY(2,1)$ 
'/, Output equation: ss0; 
voltagel_currentl_E := + ( 

+ voltagel_cl_E)$ 
currentl_voltagel_E := unity(effort, 

voltagel_currentl_E)$ 
currentl_rl_E :_ + ( 

+ currentl_ssO_E 
- currentl_voltage1_E)$ 

currenti_rl_F := lin(flow, 
effort, 

r_1, 
currentl_rl_E)$ 

currentl_ssO_F := + ( 
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+ currentl_rl_F)$ 

Output equation: ss2; 
voltage2_ss2_E :_ + ( 

+ voltage2_c2_E)$ 

MTTY(1,1) := currentl_ssO_F$ 
MTTY(2,1) := voltage2_ss2_E$ 

'h Set up the system zero output vector; 
Output equation: cl; 

currentl_voltagel_F :_ + ( 
+ currentl_rl_F)$ 

voltagel_currentl_F := unity(flow, 
currentl_voltagel_F)$ 

current2_voltagel_F := + ( 
+ current2_r2_F)$ 

voltagel_current2_F := unity(flow, 
current2_voltage1_F)$ 

voltagel_cl_F :_ + ( 
+ voltagel_currentl_F 
- voltagel_current2_F)$ 

MTTYz1 := voltagel_cl_F$ 

;END; 

4.7 DIFFERENTIAL-ALGEBRAIC EQUATIONS 

The ordered elementary system equations of Section 4.6 can be compressed by eliminating 
the intermediate variables in each block of assignment statements. 

After this process, there will be four groups of equations giving: 

1. state derivatives ±, 

2. non-states z, 

3. zero internal system outputs w = 0 and 

4. system outputs y 

all in terms of 

1. system states s, 

2. system inputs u, 



x = 
z = 

w= 0 = 
y = (4.4) 
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3. internal inputs y, 

4. and non-state derivatives z. 

Mathematically, this can be expressed in functional form as 

These equations represent a set of differential-algebraic equations (Gear and Petzold, 
1984; Brenan et al., 1989; Mattsson, 1989; Pantelides et al., 1988). 

This set of equations may be rewritten in a more compact form by defining the 
descriptor vector 

X where 

x 
X  _ z 

z 

v 

(4.5) 

and 

1. x is the Nx  x 1 vector of state variables associated with C and I elements with 
integral causality. 

2. z is the N, x 1 vector of non-state variables associated with C and I elements with 
derivative causality. 

3. z is the Nz  x 1 vector containing the corresponding derivatives. 

4. y is the N„ x 1 vector of additional inputs. 

The system equations then become 

E.X = F(X, u) 
y = G(X, u) 	 (4.6) 

Where 	
\ 

E = (0/  0) 	
(4.7) 

Where E is a square matrix of dimension N, + 2N2  + N„ and I is the unit matrix of 
dimension Nx  + N2. For simplicity, we will denote this particular form of E by 

E = Io(N1 + NZ, N2  + N„) 	 (4.8) 

where /0(N1, N2) is an N1  + N2 x N1 + N2 matrix with unit elements on the first N1  
diagonal elements and zeros elsewhere. 

In general, E is singular (unless Nz  = N„ = 0), and so Equations 4.6 cannot be 
written as an ordinary differential Equation 4.14. Such equations are variously called 



116 	 System representations and transformations 

differential-algebraic equations (Gear and Petzold, 1984; Brenan et al., 1989; Mattsson, 
1989; Pantelides et al., 1988) descriptor equations (Luenberger, 1977), singular equations 
(Campbell, 1980; Campbell, 1982), or generalised state-space equations (Verghese et al., 
1981). 

In general, such equations are hard to handle, so particular forms of these will be 
discussed in the following sections: 

• Algebraic equations 

• Ordinary differential equations 

• Constrained-state equations 

• Semi-explicit differential-algebraic equations 

4.8 ALGEBRAIC EQUATION 

A special case of the general equations 4.4 arises when: 

• there are no system states æ and 

• there are no system non-states z. 

In this case, the general equations 4.4 are purely algebraic and are given by 

w=0 = fw(u,v) 
y = fy(u, v) 

This form arises when the bond graph contains no C or I components: the system has 
no dynamics. The solution of Equation 4.9 involves the algebraic or numerical solution 
of N,,, algebraic equations for the N,,, unknowns v. This is particularly easy in the linear 
non-singular case where 

w=0 = Bu+B,,,v 
y = Du + D,,,v 	 (4.10) 

where B,,, is a non-singular N, x N,,, matrix. In particular 

y = Du+D,,,Bw1 Bu 	 (4.11) 

4.8.1 Example 

Figure 4.5 of Section 4.1.1, which corresponds to the bond graph of Figure 4.12, contains 
no dynamic elements and therefore represents a set of algebraic equations. 

Eliminating the intermediate variables gives the algebraic equations 

O  = ( — ((r2 + r1)vl  — v2r1  — r2u1)) 
(r2ri) 

(4.9) 
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i2 

yl 

y2 
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~ = ( — ((r2 + r3)7/2 — 411r3)) 
(4.12) 

(r2r3) 

Yi = (
— (vi — ul)) 

rl 

Y2 = v2 (4.13) 

4.9 ORDINARY DIFFERENTIAL EQUATIONS 

A special case of the general equations 4.4 arises when: 

• there are no additional inputs y and 

• there are no system non-states z. 

In this case, the general equations 4.4 become 

= f f (x,u) 
	

(4.14) 

This is an ordinary differential equation (ODE), and is perhaps the simplest conceptual 
dynamic system. This form arises when the bond graph is causally complete and contains 
no C or I components with derivative causality. 

The solution is particularly easy in the linear case where 

i = Ax Bu 
y = Cx + Du (4.15) 

4.9.1 Example 

Figure 4.2 of Section 4.1.1 corresponds to the bond graph of Figure 4.7. This is causally 
complete, has integral causality and has no SS components with constrained measure-
ments. 

Eliminating the intermediate variables in Section 4.6.2 gives the ordinary differential 
equation 

(—(r1c2x1 — rlclx2 — c2r2cl u1 + c2r2x1)) 

(rlc2r2cl) 
_ ( — ((r2 + r3)Yix2 — c2r3x1)) 

(c2r2cir3) 

_ (Clui — xl) 

(r1cl) 
X2 

c2 

(4.16) 

(4.17) 
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4.10 CONSTRAINED-STATE EQUATIONS 

A special case of the general Equations 4.4 arises when: 

• there are no additional inputs y, 

• the system non-state z is a function of the state x and the system input u only 
and 

• the state and output equations are linear in the non-state z. 

Equations of this form are associated with 

• system approximation (Chapter 5), 

• system inversion (Chapter 6) and 

• mechanical systems (Chapter 10). 

In this case, the general Equations 4.4 become 

= fx(x, u) + Fx(x, u)z 
z = f z(x, u) 
y = f y(x, u) + Fy(x, u)z (4.18) 

The non-states arise from C and I components whose state is determined directly by 
states of other C and I components with integral causality and/or system inputs. The 
discussion is restricted to the special case where z appears linearly in the state and output 
equations. 

It is termed the constrained-state form as the second equation indicates that the 
non-states are constrained in terms of the states and inputs by an algebraic equation. 

A standard technique associated with differential algebraic equations is to use dif-
ferentiation followed by substitution to reduce the differential algebraic equation to an 
ordinary differential equation (Gear and Petzold, 1984; Brenan et al., 1989; Mattsson, 
1989; Pantelides et al., 1988). Because of the special structure of the constrained-state 
Equation 4.18, arising from the bond-graph formulation, this technique is easily applied 
to Equations 4.18. 

In particular, the equation constraining z in terms of x and u can be differentiated 
with respect to time 

z = Gx(x, u)i + Gu(x, u)ii 

where the Jacobian matrices Gx(x, u) and Gu(x, u) are given by 

aG(x,  u) , 	aG(x,  u)  
Gx(x) = ax 	Gu(x)  = au 

Equations 4.18 can be rearranged to give 

(4.19) 

(4.20) 

E(x, u)i = fx(x, u) + Emit 
y = f y(x, u) + Eyxi + Equ ii 	 (4.21) 
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where 

E(x, u) = I - Exx(x, u) 

I is the appropriate unit matrix and 

Exx(x, u) = Fx(x)Gx(x) 

Exu(x,u) = Fx(x)Gu(x) 

E yx(x,u) = Fy(x)Câx(x) 
E qu(x, u) = Fy(x)Gu(x) 

It is convenient to rewrite Equation 4.21 as 

= fx(x, u) + Exuù 

= fy(x,u)+Eyx x+Equu 

= E(x)X 	 (4.25) 

As will be seen in the subsequent example and in Chapters 5, 6 and 10, this form can 
give useful physical insights into system behaviour. Indeed, in Section 10.8, the standard 
robot-form equations are shown to be directely linked to constrained-state equations. 

Note that E is not usually singular in this case (unlike Section 4.7) so, in principle, 
Equations 4.24 can be rewritten as the ODE 

X = E-1(x, u) [fx(x, u) + Exuit] 

y = fy(x, u) + EyxE-1(x,  u) [fx(x, u) + Exuit] + Equ v, 	 (4.26) 

4.10.1 Example: r2  removed 

Figure 4.3 of Section 4.1.1 corresponds to the bond graph of Figure 4.10. This is causally 
complete, but has one C component with derivative causality and one with integral 
causality. 

Eliminating the intermediate variables gives the DAE 

xl  
_ (-(r1r3c1z1 + r1x1  - r3c1u1  + r3x1)) 

(r1r3c1) 
(4.27) 

z1 = 
(c2x1)  

cl 
(4.28) 

yl 

Y2 

(c1w1 — x1) 

(rlcl) 
Xi 

Ci 
(4.29) 

X 

y 

where 
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(4.22) 

(4.23) 

(4.24) 
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which can
/ 
 be rewritten in constrained-state form as 

(  
Xl = 

(—((ri + r3)xl — r3clu1))  
(ri r3ci ) 

(col  — xi)  
(riel) 

xi 
= Y2 —

C1 
E _((ciic2))  

Note that E reflects the fact that the two capacities cl  and c2  add to form an 
equivalent capacity. Further examples of constrained-state equations appear in Chapters 
5 and 10. 

The corresponding ODE is 

(—((ri  +  r3)xi  — r3clu1)) 

((c1 + c2)ri r3) 

(ciul — x1)  

(r1C1) 
xl 

Y2 = — 
C1 

(4.36) 

4.10.2 Example: ri  removed 

Figure 4.6 of Section 4.1.1 corresponds to the bond graph of Figure 4.13. Capacitor c1  
has its state directly determined by the input voltage ul . 

The DAE is 

( — ((r2 + r3)xi — r3C2u1)) 

(r2r3c2) 

z1 = c1 u1 

(r2C2z1 + C2u1 — xi ) 
= 

 

(r2c2) 

Y2 
Xi 

C2 
(4.39) 

which can be rewritten in constrained-state form as 

Xl = (—((r2 + 
 r3)xi  — r3C2u1)) 
(r2r3c2) 

(r2e1c2u1 + C2u1 — xi)  

Yi = 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

X1 = 

Yi = 

(4.34) 

(4.35) 

(4.37) 

(4.38) 

Yi 

Yi = 
(r2c2) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

As E = 1, this equation is already in ODE form. 
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4.11 SEMI-EXPLICIT DIFFERENTIAL-ALGEBRAIC EQUATIONS 

In this case, the general Equations 4.4 become 

X = f x(x, u, v) 

w = 0 = fw(x,u,v) 
y = f y(x, u, v) 

This is an ordinary differential equation (ODE) in x, together with an algebraic equation 
relating x and v. This form arises when the bond graph is causally incomplete and 
contains no C or I components with derivative causality. 

4.11.1 Example 

Figure 4.4 of Section 4.1.1 corresponds to the bond graph of Figure 4.11. This is causally 
complete, has integral causality but has one SS component c1  with a constrained mea-
surement. 

Eliminating the intermediate variables of the corresponding elementary system equa-
tions gives the Semi-explicit differential-algebraic equation 

i1 = (—((r2 + r3)x1 — vir3c2)) 

(r2T3C2) 

6  = (—((r2 + rl)vic2 — r2c2u1 rlxl)) 

(r2c2r1) 

Yi 

Y2 

(--(vi — ul)) 
ri 

C2 
(4.47) 

4.12 LINEARISED DESCRIPTOR EQUATIONS 

In general, the system Equations 4.6, repeated here as 

EX = F(X, u) 
y = G(X, u) 
	

(4.48) 

will be nonlinear. For analysis purposes, it is useful to linearise these equations about a 
given steady-state condition. There are two stages to this process: 

• finding the steady-state 

• performing the linearisation. 

121 

(4.44) 

(4.45) 

(4.46) 
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The first stage is the hardest, and it may not be possible to obtain an explicit algebraic 
solution to the problem. By definition, a steady-state solution to Equation 4.48 implies 
that X = 0. Thus a steady-state solution corresponds to a value of X = Xs  and u = us  

such that 

F(Xs, us) = 0 	 (4.49) 

The second step involves expanding F and G of Equation 4.48 in a first order Taylor 
series about the steady state. X, Y and u are written as 

X = X3  + X 
Y = Ys +Ÿ 
u = u3  + ü 	 (4.50) 

and 

F(X3 +X,us +ft) 	F(Xs,us)+AX +Bü 
G(X3  + X , us + û) 	G(X3, u3) + CX + Dú 	 (4.51) 

where the Jacobian matrices A, B, C and D are given by 

ali 
ai; _ 

bi3 = 
Oui 

cii = agi 
ax; 

au 	
(4.52) 

where ai; is the ijth element of A (similarly for B, C and D), fi  is the ith (function) 
element of the vector F xi is the ith element of the vector X and ui is the ith element 
of the vector u. 

Substituting into Equation 4.48, it follows that 

Ek 	F(X3,us)+AX+Bit 
Y N G(X3, us) + CX + Dú 	 (4.53) 

Noting Equation 4.49 and the fact that Xs  is constant 

EX 	AX + Bú 
Ÿ 	CX+Dû 
	

(4.54) 

If the underlying system is linear, there is no approximation involved and so the 
tildes can be removed and replaced by = in the linearised Equations 4.54 to give 

EX = AX Bu 
Y = CX + Du 	 (4.55) 

Noting the special structure of Equation 4.4 the linearised equations have the special 
form 

x= Axxx + Axzz + Axwv + Bxu 

ax;  
Of 

agi 
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z = 
0 = —z + Azxx + AzXz  + Az,,,v Bzu 

0 = w = A,,,x x + A911z z + A,,,w v + B,,,u 
y 	Ayxx + Ayz z + Ayyv + Byu 

Thus A, B , C and D are given by 

(4.56) 

0 Axz  Ary, 
0 I 0 

— I Azz Azw 
0 Awz Aww 

(4.57) 

(4.58) 

C = (Ayx  0 Au, Ayv ) 	 (4.59) 

D=(By ) 	 (4.60) 

In the special case that E = 1, the descriptor vector X becomes the state vector x 
and Equation 4.55 becomes the linear state-space equation: 

x = Ax 
y = Cx + Du 

4.12.1 Example 

All the examples in this chapter are linear, and so they do not have to be linearised as 
such. Nevertheless, it is convenient to rewrite the system equations in the systematic 
form of Equation 4.51. In particular, the five matrices A, B ,C , D and E fully describe 
the systems. This is done for the various versions of the electrical circuit discussed in 
the previous examples. 

Full circuit 
(/ (—(r1+7.2„)) 1  

	

A = ( (r1r2c1) 	(r2c2 ) 
i 	(—(r2+r3))  

	

(r2c,) 	(r2c2r3) 

B— 
\ 0 / 

z2  

(4.61) 

(4.62) 

(4.63) 

(4.64) 

(4.65) 



124 	 System representations and transformations 

r2 removed 

1 	0 	0 
E= 0 	1 	0 

0 	0 	0 
(—(rl +r3)) 0 —1 
(rlr3cl) 

A= 0 1 0 
22. -1 
cl 

0 
1 
ri 

B= 0 
0 

C = 
( (-1 
 
	 0 Ol 
(r1c1) 	J 
i 0 0 

D— \ 0 / 

c1 removed 

 0
E 

(01 
0_ 

I/ (—(rr3)) 
A = 

C 

(r2r3G2
2+

) 
1  

( 

(

1

r2c2) 

B— 
/ 

/ S~ 
C=I o p ~ 

D— Co) 

(—(r2+7.1))  
(r2r1) 

(4.71) 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

c1 and e2 removed 

E=
(0 0~ 

0) 

(—~r2+r1))  

	

_ 	r2r1 ) 

	

A — 	1 	(—(r2+r3))  
\ 	r2 	(r2r3

r2

) 

(4.76) 

(4.77) 

(4.78) 

(4.79) 

(4.80) 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

(4.70) 
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r1 removed 

E = 

A = 

B= 

C= 

D= 

functions 

1 	0 	0 
0 	1 	0 
0 	0 	0 

(—(r2+r3)) 0 

0 
-1 

1) 

0 

0 

1 
0 
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(4.81) 

(4.82) 

(4.83) 

(4.84) 

(4.85) 

(r2 

1 
r2 
0 

Cl 

(-1) 

Óc2) 

0 

0 (r2c2) 
i 	0 

( 	

C2 

(Ó) 

4.13 TRANSFER FUNCTIONS 

Much of the linear analysis and design of systems and control system is concerned with 
transfer functions. The reader is referred to the many standard texts for further infor-
mation on this; this section just gives an outline of the main ideas. 

A basic formula of Laplace transform theory states that if X(s) is the Laplace trans-

form of X(t) then if X(0) = 0 the Laplace transform of X is 

sX (s) 	 (4.86) 

Thus using the overbar notation to indicate Laplace transform, the linearised descriptor 
equations 4.54 can be rewritten in transformed form as 

sEX(s) = AX(s) + Bi(s) 
Y(s) = CX(s) + Dfi(s) 	 (4.87) 

Eliminating X(s) gives 

G(s) = 
ú~sj 

= C [sE - A]-1 B + D 	 (4.88) 

In the special case that E = I (the unit matrix) 

G(s) = ú(s) = C [sI - A]-1 B + D 	 (4.89) 

4.13.1 Example 

The transfer functions corresponding to the descriptor matrices of Section 4.12.1 are: 



126 
	

System representations and transformations 

Full circuit 

1 + (r2C1 + r3C1  +  r3C2 )S + r2r3C1C2s2  
G11(s) = 

(rl + r2 + r3) + (r1r2c1 + r1r3C1 + r1r3C2 + r2r3C2 )S + 

G21(s) = 	
r3 	

(4.91) 

(4.90) 
r1r2r3C1c2s2  

(rl +  r2 + r3) + (r1r2C1 + r1r3C1 + r1r3C2 + r2r3c2)s + rlr2r3cic2s2 

r2 removed 

Gli(s) = 	1  + (r3(c) + c2))s  

(r3 + r1) + (r3r1(C1 + c2))s 

G21(s)  = 	 r3 

c1  removed 

1+  r3c2s 	 (4.94) Cil(S) = 
(r3 + r2 + r1) + (r3c2(r2 + r())s 

G21(s) = 	
r3 	

(4.95) 
(r3 + r2 + ri ) + (r3c2(r2 + rl))s 

e1  and e2  removed 

Gii(s) = 
(r2 + r1 + r3) 

G21(s)  = 	r3  
(r2 + r1 + r3) 

r1  removed 

(r3 + r1) + (r3r1(Ci + C2 )).S 

(4.92) 

(4.93) 

1 
(4.96) 

(4.97) 

G11(s) = 
1  + (r2C1 + r3C1  + r3c2)s  + r2r3C1C2s2  

(r2 + r3) + r2r3c2s 
(4.98) 

r3  
G21(s) = 	

 

(r2 + r3) + r2r3c2s 
(4.99) 

4.14 SIMULATION CODE 

Simulation is an important tool for analysing systems. Much simulation is done using 
special-purpose simulation languages or, even worse, general purpose programming lan-
guages. An important theme of this book is that systems should be described at a high 
level using bond graphs: a representation suitable for simulation should thus be a lower 
level description derived from the higher level description. 

One possible route to this is to use the `Differential-algebraic' equation representation 
as a basis for simulation code generation. 
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function [sys,x0] = elag2_ode(t,x,u,flag,xinitial, ... 
r_1,... 
r_2,... 
r_3,... 
c_1,... 
c_2) 
/,function [sys,x0] = elag2_ode(t,x,u,flag,xinitial, 
%r_1,... 
%r_2,... 
/.r_3, .. 

''/,c_1, .. . 

''/,c_2) 
%ode in simulab form for system elag2 
/,file elag2_ode.m 
%generated by mtt 
if nargin<4; flag=0; end; 
if (abs(flag) == 1) I (abs(flag) == 3); 
'/, set up the state variables; 
X1 = x(1); 
X2 = x(2); 
'/, set up the input variables; 
ul = u(1); 
end; 
if abs(flag) == 1 '/.state derivative; 
ans1=-X1*r_1*c_2-X1*r_2*c_2+X2*r_1*c_1+ul*r_2*c_2*c_1; 
dX(1,1)=ans1/(r_1*r_2*c_2*c_1); 
dX(2,1)=(X1*c_2*r_3-X2*r_2*c_1-X2*c_1*r_3)/(r_2*c_2*c_1*r_3); 
sys = dx; 
elseif abs(flag) == 3 %outputs; 
y(1,1)=(-X1+u1*c_1)/(r_1*c_1); 
y(2,1)=X2/c_2; 
sys = y; 
elseif abs(flag) == 0 '/,structure; 
sys = [2,0,2,1,0,0]; 
if nargin<5; xinitial = zeros(2,1); end; 
x0 = xinitial; 
end; 

Table 4.2 Simulink code 

As an example of this, the Simulink code, automatically generated for the electrical 
second-order lag is given in Table 4.2. 

Another set of important tools is based on transfer function representations and 
frequency-domain analysis; many of these have been implemented in the Matlab envi-
ronment. Once again, MTT can generate appropriate representations in the Matlab 
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function [num, comden] = elag2_tf(... 
r_1,... 
r_2,... 
r_3,... 
c_1,... 
c_2) 
''/.function [num, comden] = elag2_mtf(... 
%r_1,... 
%r_2,... 
%r_3,... 
%c_1,... 
'/,c_2) 
%transfer function in my toolbox form for system elag2 
'/,file elag2_mtf.m 
%generated by mtt 
comden = zeros(1,3); 
num = 	zeros(2,3); 
comden(1,1)=r_1*r_2*r_3*c_1*c_2; 
comden(1,2)=r_1*r_2*c_1+r_1*r_3*c_1+r_1*r_3*c_2+r_2*r_3*c_2 ; 
comden(1,3)=r_1+r_2+r_3; 
num(1,1)=r_2*r_3*c_1*c_2; 
num(1,2)=r_2*c_1+r_3*c_1+r_3*c_2; 
num(1,3)=1; 
num(2,3)=r_3; 

Table 4.3 Matlab code 

language. For example, transfer function representations appropriate to the Multivari-
able Frequency Domain Toolbox can be generated as displayed in Table 4.3. 

This can be used within the matlab environment to generate, for example, the Nyquist 
diagram of Figure 4.16. For this example, all system parameters have been set to unity. 

4.15 EXAMPLES 

This section contains two further illustrative examples: 

• a DC motor and 

• an RLC circuit. 
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Figure 4.16 Electrical circuit: Nyquist diagram 

4.15.1 DC motor 

Summary 

The simple DC motor of Sections 2.4.3 and 3.5.3 is used to illustrate the derived equations 
for two cases: 

1. A voltage driven motor with integral causality. 

2. A current driven motor with mixed integral/derivative causality. 

Description 

The bond graphs (Figures 3.40 and 3.41) of Section 3.5.3 are repeated here as Figures 
4.17 and 4.18. 

Both systems have two inputs u and two outputs y. In the case of the DC motor 
with voltage drive 

u _ (u.) 
y= C~) (4.100) 

where is is the armature current, va the armature voltage, r the (external) applied shaft 
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I:la 	 I:jm 

1 	1 
SS:sI 	 1:a --,('Y:km 	~ 1:s I 	 SS:s2 

R:ra 	 R:cm 

Figure 4.17 DC motor with voltage drive: bond graph 

I.la 

SS:s! 	\ 1:a 

I:jm 

--\C'Y:km 	y I:s I 	 SS:s2 

	

~ 

	

~ 

	

R ra 
	 R:cm 

Figure 4.18 DC motor with current drive: bond graph 

torque and S2 the shaft angular velocity. In the case of the DC motor with current drive 

n= (T) ; y= 
(1),a) (4.101) 

Differential-algebraic equation representation 

The DC motor with voltage drive (Figure 4.17) is causal with no derivative causality and 

two components with integral causality. It therefore has an ODE representation with 

two states 

xl = 

i2 

l — ((raxl — 	 la lCm x 2 )) 

(.Îmla) 
( — ((lau2 — kmxl)jm + lacm x2))  

(jmla) 
(4.102) 

Xi 
yl = 

la X2 
Y2 = — 

3m 

where 

x =(Ah) 

(4.103) 

(4.104) 



xl = im 

((kmui — u2).im — Cmxl) 
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and A is the inductor state (flux density) and h the angular momentum of the motor. 
On the other hand, the DC motor with current drive (Figure 4.18) has one component 

with derivative causality the system therefore has one state 

x=(h) 
	

(4.105) 

and one non-state 

z =(A) 
	

(4.106) 

and the DAE is 

(4.107) 

Z1 = laU1 (4.108) 

yl 

Y2 

((rai( + zl).~m + kmxl)  

~m 
Xi 
.im 

(4.109) 

Constrained-state equations 

The DC motor with current drive (Figure 4.18) has one component with derivative 
causality due to the imposition of the input current. Equation 4.107 has the appropriate 
form and can therefore be rewritten as a constrained-state equation 

Xi 
= ((kmul — u2).Î m — Cmx1) 

im 

y 
—_ ((rain + laul)!m + kmxi) 
l  

.im 

x1 
Y2 =

7m 

E=(1) 

This is already in ODE form. 



B=(
1 0

I 
1/ 

(—re) 	
(—km) 

 ) 

(4.114) 

(4.115) 

0 1) 
0 0 

G11
(S) = (racm + km) + (jmra  + lacm )3 +.ÎmlaS2  

cm  +,Îm3  
(4.123) 

G12( 3) = (rac
m + km) + (.imra + lacm)3 + .ÎmlaS

2  
km  

(4.124) 
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Descriptor/state-space matrices 

The DC motor with voltage drive has an ODE representation and therefore has a State-

space representation 

0 

3m ) 
(4.116) 

D = (0 0 
0 0 

On the other hand, the DC motor with current drive has a singular E matrix. 

1 0 0 
E= 0 1 0 

C0 0 0 

,mm  0 0 
A= 0 0 1 

C 0 —1 0 

km  —1 
B= 0 0 

la 	0 

ism  
m C = Ji  

int 

Ta  0 
D _

0 0  

(4.117) 

(4.118) 

(4.119) 

(4.120) 

(4.121) 

(4.122) 

Transfer function 

The transfer function matrix of the DC motor with voltage drive contains four second-

order transfer functions 



—km  
G12(s) = 

cm+jms 

km  

G22(8) = cm 	+ jmS  

G21(S) = 
cm +jms 

—1 

Gli(s) _ (cmra + km ) + (jm ra +  lacm )s + .imlaS2  

cm+ jms 
(4.127) 

(4.128) 

(4.129) 

(4.130) 
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G21(S) = (racm + km) + (jmra + lacm,)S + j.mla S 2  

G22(s) = 	  
—ra  + —la s 

(racm + k-m.) + (jmra + lacm)S + jmlas2  

km  
(4.125) 

(4.126) 

In contrast, the DC motor with current drive has four first order transfer functions and 
one, relating is  to va  is an improper transfer function. 

4.15.2 RLC circuit 

Summary 

The simple RLC circuit of Section 3.5.4 can be causally completed in a number of ways; 
each of these results in a different equation formulation for the same system. 

This section illustrates this by displaying the DAE, the descriptor matrices and the 
transfer function for each causal pattern. Not surprisingly, the transfer function is the 
same in each case. 

Description 

ei  

Figure 4.19 RLC circuit: schematic 

The schematic diagram of Section 3.5.4 reappears as Figure 4.19; the corresponding 
acausal bond graph appears in Figure 4.20. The source of the SS component el provides 
the input voltage; the sensor of the SS component e2 provides the output voltage. 
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1 	R:r2 

SS:el 	~ 1:j1 	0:j2 	~ SS:e2 

	

V 	V 

	

C:c 	II 

Figure 4.20 RLC circuit: bond graph 

Integral causality: extra voltage source 

1 	R:r2 

SS:el 	 

V 
C:c 

0:j2 	 SS:e2 

I " SS:eO 

I1 

Figure 4.21 RLC circuit: bond graph with additional voltage source 

Following Section 3.5.4, an extra voltage source is appended to the right-hand junction 
to give Figure 3.45 repeated here as Figure 4.21. 

The corresponding bond graph is causal (with integral causality) and so represents 
an ODE. However, an additional algebraic equation arises from the constraint that the 
extra voltage source must have a corresponding zero current. These two equations form 
a DAE where the unknown source output y1 is the solution of an algebraic equation 

il 	= 
(—(cxi + vl — u1)) 

rl 

æ2 	= vl (4.131) 

0 = ( — ((ri + r2)vl + cr2x1 + lrlr2x2 — r2u1)) (4.132) 
(rlr2) 

yl 	= vl (4.133) 

This can be expressed in descriptor matrix form as 

1 	0 	0 
E= 0 	1 	0 (4.134) 

0 	0 	0 
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(-`) 0 
A = ( rd 	0 

(-0 —1 T1 

Ln
T1 

1 	 (4.135) 
(-(T1+T2))  

(r1 T2) 

(4.136) 

C=(0 0 1) 
	

(4.137) 

D=(0) 
	

(4.138) 

and as a transfer function 

G(s) = 
+r2s2 

(4.139) 
clr2 + (c + 1r2r1 )s + (r2 + r0s2 

Note that the system has relative order zero. 

Integral causality: extra current source 

1 2 

  

SS:el 	 1:j1 	0:j2 

~ / V  SS:iO 
C:c 	I1 

 

	 SS:e2 

 

Figure 4.22 RLC circuit: bond graph with additional voltage source 

Following Section 3.5.4, an extra current source is appended to the left-hand junction to 
give Figure 3.46 repeated here as Figure 4.22. 

The corresponding bond graph is causal (with integral causality) and so represents 
an ODE. However, an additional algebraic equation arises from the constraint that the 
extra current source must have a corresponding zero voltage. These two equations form 
a DAE where the unknown source output y1 is the solution of an algebraic equation 

xl = vl 

±2 = -(1x2 - vl)r2 (4.140) 

0 = -((r2 + rl)vl + cx1 - 1r2x2 - u1 ) (4.141) 

yl = -(lx2 - vl)r2 (4.142) 
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This can be expressed 

1 	0 	0 

System representations and transformations 

in descriptor matrix form as 

E= 	0 	1 	0 (4.143) 
0 	0 	0 

0 	0 1 
A = 0 	—1r2  r2  (4.144) 

—c 	lr2  —(r2  + ri) 

0 
B = (0)  (4.145) 

1 

C = ( 0 	—1r2 	r2  (4.146) 

D=(0) (4.147) 

Although both of these representations are different to those of the previous section, 
because the system is the same, so is the transfer function and is given by Equation 
4.139. 

All derivative causality 

	

R:rl 	R:r2  

SS:el 	711:j11 	70:j2 	 

	

V 	V 

	

C:c 	I1 

Figure 4.23 RLC circuit: bond graph with derivative causality 

The bond graph is causally complete and has all derivative causality It follows that the 
corresponding set of equations is a set of integral equations 

SS:e2 

z1 = 

z2 = 

ÿl = 

( — (Tizi — ul  +  zz2))  
c 

(r2z1 — z2)  
(lr2) 

(4.148) 

(4.149) 
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which can be expressed in descriptor matrix form as 

1 	0 

E_ 	
0 	1 
0 	0 
0 	0 

0 
0 
0 
0 

0 
0 
0 
0 

0 0 1 	0 
0 0 0 	1 

A  — —1 0 ( — ri) 	(-1) 
C  

0 —1 1 ( —
C 

 1) 
T 	(17'2) 

0 

B = (?)  

0 

C=(0 	0 0 1) 

D = ( 0) 

(4.150) 

(4.151) 

(4.152) 

(4.153) 

(4.154) 

Once again, the transfer function is unchanged by the different causal pattern and is 
given by Equation 4.139. 

Mixed causality 

R:r1 	R:r2 

f 

SS:el 	/II 1 I 	,0:j2 	 SS:e2 

C:c 	I1 

Figure 4.24 RLC circuit: bond graph with mixed causality 

Figure 4.24 shows the version with mixed causality, both derivative and integral. The 
corresponding DAE is 

— (—(cxl  — ul + zl)) 	 (4.155) 
rl 

_ ( — ((ri + r2)zl  + cr2 x1  — r2u1)) 
(lrlr2) 

z1  (4.156) 
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Yi 	= 	zl 

which can be expressed 

E 
 = (

1 	0 	0 
0 	1 	0 

System representations and transformations 

(4.157) 

in descriptor matrix form as 

(4.158) 
0 	0 0 

(-c) 0 (-1) 
r1 r] 

A = 0 0 	1 (4.159) 
SS ~ 

1 

1 (- rl+r2))  

!r] (lrir2) 

1 
r] 

B = 	0 (4.160) 
1 

(17 

C =(0 	0 1) (4.161) 

D = ( 0) (4.162) 

Once again, the transfer function is unchanged by the different causal pattern and is 
given by Equation 4.139. 
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System approximation 

SUMMARY 

• A systematic approach to model-based system approximation using bond graphs 
is presented. 

• The causual implications of approximation are discussed. 

• The derivation of the steady-state system from the bond graph is discussed. 

• An extended example is given. 

5.1 INTRODUCTION 

System approximation is concerned with finding a simpler approximation to a complex 
model. This process has also been called aggregation by Simon and Ando (1961) and 
model reduction. 

System modelling and system approximation go hand in hand: a good system model 
includes enough, but no more than enough, detail for the purpose for which it is required. 
This is essentially a tradeoff between having sufficient detail for accuracy and "seeing 
the wood for the trees". There are two possible approaches to system approximation. 

1. Creating a differential equation model of the system and then approximating the 
differential equation model. This could be called a black-box approach. 

2. Working with the bond graph model itself to remove or combine physical compo-
nents. This could be called a model-based approach. 

The latter approach is discussed here. 
Thus a system modeller often has to make the decision as to which parts of the 

system may be approximated. Approximating system components may have far-reaching 
consequences on the resultant equation formulation: in bond graph terms, the causality 
of the approximate system may be quite different from that of the approximated system. 
Bond graphs provide a systematic way of exploring the causal implications of system 
approximation before the equations themselves are formulated. 
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5.2 CAUSALITY OF APPROXIMATING COMPONENTS 

Component Effort output Flow output 
R 
I 
C 

e=rf 

p=if 
e= _q 

f= Te 

f=p 
q =ce 

Table 5.1 Component constitutive relations 

In this context, systematic system approximation involves examining each component 
and deciding whether to approximate it. In this chapter, we will consider the effect of 
approximating the three basic bond graph components: 

• resistances (R-components), 

• capacitances (C-components), 

• inertias (I-components). 

For simplicity, the discussion is limited to linear components, but the conclusions also 
hold for appropriate non-linear components. The corresponding constitutive relations 
appear in Table 5.1; each written in the two possible forms. A component would be 
approximated 

• if the constitutive relation coefficient is small ( r = e, c = e or i = c where e is 
small) 

• or if the inverse constitutive relation coefficient is large (T = e, lc  = e or 
where e is small). 

In either case, system approximation involves replacing the component with by an 
approximating component of the same type but with 

e = 0 	 (5.1) 

5.2.1 R components 

	 R 	 yR  

r=0 	 1/r=0 

Figure 5.1 Causality of approximating R components 

The assumption that infinite values of effort or flow variables are disallowed implies 
that only one of the two possible forms of the R equation in Table 5.1 is possible: that 
with finite (in fact zero) output. Thus, in these circumstances, the causality of an R 
component is not arbitary: if r = 0 the output is a (zero) effort; if r- = 0, the output is 
a (zero) flow. 

This is summarised in Figure 5.1. In effect, the R component is approximated by a 
source of appropriate causality and zero output. 

= e 
x 
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5.2.2 C components 

I 	"C 
1/c=0 

Figure 5.2 Causality of approximating C components 

There are two cases to consider: c = 0 and = O. These will be considered in turn. 

If c = 0, and assuming that the effort e is finite, as q = ce it follows that q = 0 and 
thus f = q = O. In this case, then, the C component has a flow output. On the other 
hand, the effort associated with the C component is not determined by the component. 
The causality is summarised in Figure 5.2. 

Unlike the R component, there is an integrated variable q associated with the C 
component. The restriction to finite flow f variables does not restrict the integral of 
flow q to be finite. Indeed, it makes sense to allow infinite states where this does not 
imply infinite inputs or outputs. For example, a large reservoir of water, with a finite 
water level, may be approximated by an infinite capacity containing an infinite amount 
of water. 

In the case that 1 = 0, the appropriate form of the constitutive relationship is e = q. 

The causality is summarised in Figure 5.2. Like the R component, the C component 
is approximated by a source of appropriate causality. Unlike the R component, the source 
corresponding to the the left-hand component of Figure 5.2 (integral causality) may have 
non-zero output. 

5.2.3 I components 

C 

c = 0 

Figure 5.3 Causality of approximating I components 

As with the C component, it makes sense to allow infinite states where this does not 
imply infinite inputs or outputs. For example, a large mass, with finite velocity, may be 
approximated by an infinite mass with infinite momentum. 

A similar discussion leads to Figure 5.3. Once again, the I component is approximated 
by a source of appropriate causality, and the source corresponding to integral causality 
may have non-zero output. 
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5.3 REMOVING APPROXIMATING COMPONENTS 

Under some circumstances, to be discussed in this section, approximating components 
may be removed from the bond graph; this has the benefit of leading to a simplified bond 
graph. 

Components may be removed from a bond graph if two requirements are satisfied: 

1. The component does not impose causality on the junction to which it is attached; 
that is, if connected to a 0-junction it has a flow output and if connected to a 
1-junction it has an effort output. 

2. The output of the component is zero. 

These two criteria can be applied to the approximating components. 
The first criterion depends on the system bond graph together with the causalities 

of Figures 5.1, 5.2 and 5.3. 
The second criterion is automatically satisfied for R components and C and I compo-

nents with derivative causality, but not for C and I components with integral causality 
(see Sections 5.2.2 and 5.2.3). 

5.4 REPLACING APPROXIMATING COMPONENTS BY SOURCE-SENSORS 

The approximating components discussed in Section 5.2 have two characteristics in com-
mon: 

• the causality is fixed and 

• the output is not dependent on the input. 

These characteristics are shared with source-sensor components. It follows that an ap-
proximating component may be replaced by an SS component. There are two possibili-
ties: 

• the causality of the SS is the same as the approximating component 

• the causality of the SS is not the same as the approximating component. 

It is emphasised that the causality of the approximating component may be different 
from the causality of the approximated component. 

In the first case, the SS source imposes a constant value (possibly zero) (effort or 
flow) on the system; the corresponding sensor output is the value of the other variable 
(flow or effort) on the SS bond. 

In the second case, the sensor is constrained to have a fixed output; this is equivalent 
to an additional constraint equation. 
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5.5 CAUSAL IMPLICATIONS OF APPROXIMATING COMPONENTS 

As will be seen in the example of Section 5.7, approximation changes, but does not neces-
sarily simplify, system equations. It is helpful to the system modeller if the implications 
of system approximation appear at the bond graph, rather than the equation, level. This 
section introduces a terminology for discussing system approximation at the bond graph 
level. This will be used in the Example of Section 5.7. 

For each component, approximation can have three possible outcomes: 

1. The causality of the approximated component is the same as that of the approxi-
mating component - this will be called a causally neutral approximation. 

2. The causality of the approximated component is not the same as that of the ap-
proximating component. 

(a) The causal changes do not propagate beyond the junction to which the com-
ponent is attached - this will be termed a causally local approximation. 

(b) The causal changes do propagate beyond the junction to which the component 
is attached. 

5.6 STEADY-STATE SOLUTIONS 

A related, but different form of approximation arises from the approximation of a dy-
namic system by a non-dynamic system corresponding to the steady-state of the dynamic 
system. The steady state of a dynamic system is characterised by constant integrated 
effort and flow variables associated with all C and I components; it follows that the 
corresponding efforts and flows (respectively) must be zero. 

As in Section 5.4, these (dynamic) C and I elements are replaced by (non-dynamic) 
SS elements. 

There are four causal possibilities to consider: 

1. The causality of the SS is the same as the dynamic component: 

(a) the dynamic component had integral causality and 

(b) the dynamic component had derivative causality. 

2. The causality of the SS is not the same as the dynamic component: 

(a) the dynamic component had integral causality and 

(b) the dynamic component had derivative causality. 

The two cases la and lb leave the causal structure of the system unchanged; thus 
a causally complete system will remain so; whereas the two cases 2a and 2b change the 
causal structure of the system, thus a causally complete system will not necesarily remain 
so. 
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The two cases lb and 2a give SS components with constrained (to zero) sensor signals 
which thus represent additional system constraints not represented on the bond graph; 
whereas the two cases la and 2b give SS components with zero source output. 

The best choice of 1 or 2 depends on the system. The simplest situation arises if 
la/2b leads to a causally complete system; if it does not then it is probably simplest to 
stick with la/lb throughout. Examples appear in Section 5.7.8. 

5.7 EXAMPLE: COUPLED TANKS 

1m, 1 	 
—31D. 	 —3110. 
f0 	f 1 	f 2 

Figure 5.4 Three coupled tanks 

f3 

	

R:rll 	I:il 	R:r12 

~ 
SS:sc, 	, O:p1 	I l:fl ~ 	~ 0:p2 

	

C:cl 	R r1 	C:c2  

I:i2 	R:r13 	I.i3 

1 	1 	1 
11:f21 	\O:p3 	~ 1:f3) 	~ SS:s3 

R r2 	C:c3 	R:r3 

Figure 5.5 Three coupled tanks: bond graph 

This section gives an illustrative example of model-based approximation using the tech-
niques of this chapter. 

Figure 5.4 shows three coupled tanks. fo is the inflow, fl and 12 the intertank flows 
and f3 is the outflow. p, is the pressure at the base of the ith tank. 

The following effects are included: 

1. capacity of liquid in each tank c;; 

2. loss of liquid from each tank rj;; 

3. resistance to flow of each connecting pipe rt; 

4. inertia of liquid in each connecting pipe i;. 
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For clarity, all components are assumed linear with corresponding coefficients 0, 1 or 
oo. 

5.7.1 Full system 

Figure 5.5 shows the corresponding bond graph with causal strokes corresponding to all 
coefficients having value 1. The system causality is completely implied by the sources 
and stores, and all stores have integral causality. 

The system equations are 

x = 

/h1 \ 
h2  
h3  
ml  
rn2 

\m3J 

; y = (83);  ZL = (so)  (5.2) 

±1 	= 	-(x1 - X4 + x5) 
X2 	= 	-(x2 - X5 + X6) 

x3 	= 	-(x3 - x6) 
x4 	= 	-(x1 + X4  - u1) 
x5 	= 	xl - X2 - X5 

x6 	= 	X2 - X3 - X6 

Y1 	= 	X3 

and the transfer function is 

G(s) = 1  

(5.3) 

(5.4) 

(5.5) 
13+38s+51s2 +40s3 +20s4+6s5+s6 

In these equations, m; is the mass of liquid in the ith tank and hi the momentum of the 
fluid passing beween the tanks. 

In terms of this example, various approximations are possible. For example: 

1. Approximating leakage is causally neutral: setting ri = oo does not change the 
causality of the component. 

2. Approximating flow resistance is causally neutral (assuming that inertia is not 
approximated): setting ri = 0 does not change the causality of the component. 

3. Approximating inertia is not causally neutral, but (assuming that flow resistance 
is not approximated) the effect is local: setting ii = 0 causes the flow resistance 
on each 1 junction to change causality. 

4. Approximating both inertia and flow resistance is not causally neutral and the 
effects are not local; setting ri = 0 and ii = 0 makes the causality changes which 
propagate to adjacent 0-junctions. 

5. Approximating capacities is not causally neutral and the effects are not local; 
setting ci = 0 makes causality changes which propagate to adjacent 0-junctions. 
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5.7.2 Causally neutral approximation: approximating leakage 

As noted above, approximating the tank leakage is causally neutral. Moreover, the 
corresponding components do not impose causality on their junctions and can therefore 
be removed. 

	

I:il 	 I:i2 	 I.i3 

	

T 

	~ 
SS:s01 	\ O:pl 	11:f11 	 0:p2 	~ 1 :f21 	b:p3 ~ 1:f31 	~ SS:s3 

C:cl 	R rl 	C:c2 	R r2 	C:c3 	R:r3 

Figure 5.6 Three coupled tanks - no leakage: bond graph 

Figure 5.6 shows the corresponding bond graph. The system equations are 

/ h1 \ 
h2 

x= 	
h3 ; 

y=(s3); u=(so) 	 (5.6) 
ml 
m2 

~ m3 

21 = — (x1 — x4 + xs) 
22 = —(x2 — x5 + x6) 

X3 = — (x3 — x6) 
x4 = — (x1 — U1) 
X5 = xl — x2 
26 = x2 — x3 

y1 = X3 

and the transfer function is 

(5.7) 

(5.8) 

G(s) = 
1+6s +11s2+11s3+8s4+386+56 

5.7.3 Causally neutral approximation: approximating flow resistance 

As noted above, approximating the flow resistance is causally neutral (if the inertias are 
not approximated). Moreover, the corresponding components do not impose causality 
on their junctions and can therefore be removed. This example approximates the leakage 
terms as well. 

i 

1 
(5.9) 
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I:i1 	 I:i2 	 I:i3 

1  	1  	1 
SS:s01 	\O:pl 	11:f11 	0:p2 	~ 1:f21 	\O:p3 	1:f31 	 SS:s3 

C cl 	 C:c2 	 C:c3 

Figure 5.7 Three coupled tanks - no leakage or flow resistance: bond graph 

Figure 5.7 shows the corresponding bond graph. The system equations are 

y=(S3); u=(so) 

i1 = x4 — x5 

x2 = xs — x6 
x3 = x6 
x4 = — (Xi — u1) 
x5 = x1 — x2 
26 = x2 — x3 

yl = X3 

and the transfer function is 

1 	 G(s) =  
1+ 6s2 +5s4 4_o 

5.7.4 Causally local approximation: approximating flow inertia 

Assuming that flow resistance is not approximated, neglecting flow inertia is a causally 
local approximation. As Figure 5.8 shows, the causality of the flow resistances change, 
but the causal pattern is otherwise unchanged. The inertias no longer impose causality 
on the 1-junctions and thus the approximating zero sources have been removed. 

The system equations are 

m1 

x= m2 ; y=(s3); u=(so) 
m3 

(5.14) 

x = 

\ 
h2 
h3 
m1 
m2 

\ms/ 

(5.10) 

(5.11) 

(5.12) 

(5.13) 



il = 

i2 = 

x3 = 

—(2x1 — x2 — ul) 
x1 - 3x2 + x3 
x2 - 3x3 (5.15) 
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R:rl  l 	 R.r12 	 R:r13  

1 	 1 

	

SS:s1--\ O:pl 	1  l:fl l 	\ 0:p2 	1  112 I-----\0:p3 	1  l:f31 	\ SS:s3 

1/ 	1/ 	1/ 	, 	L 	"  

	

C cl 	R rl 	C:c2 	R r2 	C:c3 	R:r3 

Figure 5.8 Three coupled tanks - no flow inertia: bond graph 

yl = x3 

and the transfer function is 

(5.16) 

1 	 G(s) = 13+19s+8s2 +s3  (5.17) 

Because there are now three less energy stores, the system order has reduced from 6 
to 3. 

5.7.5 Causally non-local approximation: approximating flow inertia and resistance 

In the absence of flow inertia, removing a flow resistance has a non-local effect on causal-
ity. In this example, the resistance labelled r2  is removed. Figure 5.9 shows the cor-
responding bond graph. It is no longer possible to have integral causality on the two 
capacities joined via r2: the pressures (and in this case the levels) are constrained to be 
equal. In Figure 5.9, the right-hand tank is given derivative causality. 

R.r11  

1 
SS:s¢---\ O:pl 

R:r12 	 R:r13  

" 	 1 
1  l:fl I 	\ 0:p2 	y  1:f2 	1  0:p3 	1  l:f31 	\ SS:s3 

I/ 	1/ 	/ 

	

L 	1/  
C cl 	R rl 	C:c2 

	
C:c3 	R:r3 

Figure 5.9 Three coupled tanks - zero flow resistance: bond graph 



(5.18) 

(5.22) 
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The system equations are 

m1 x— 
\ m2 /

' z=(ms); y=(s3); u=(so) 

il = —(2x1 — x2 - ul) 
X2 = x1 - 4x2 - il 

z1 = X2 

Y1 = X2 

and the transfer function is 

1 	 G(s) = 
7+8s+2s2  

As there is now one less store with integral causality, the system order is reduced by 
1to2. 

5.7.6 Causally non-local approximation: approximating a capacity 

Removing a capacity has a non-local effect on causality. In this example, the capacity 
labelled c2  is removed. Figure 5.10 shows the corresponding bond graph. The capacity 
has been replaced by a source-sensor SS component, the output of which corresponds to 
the pressure, but the input of which is the zero flow corresponding to the zero capacity. 
It is not possible to replace the C element by a flow output SS element and achieve a 
causally complete bond graph. 

R: rl  l 	 R: r12 	 R:r13 

1 	 1 	 1 
SS:sCI 	\ 0.p1 	1  l:fl 1 	\ 0:p2 	\I l:f21 	\O:p3 	11:f31 	\ SS:s3 

[ 	I 	[ 	[ 	[ 	I  
C:cl 	R:rl 	SS:c2 	R:r2 	C:c3 	R:r3 

Figure 5.10 Three coupled tanks - zero capacity: bond graph 

The system equations are 

x = 
(rruni3); 

w=(c2); y=(s3); u=(so) (5.23) 

il = vi  — 2x1  + u1 
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x2 	= 	v1 - 3x2 (5.24) 

0 	= 	—(3v1 — xl  — x2 ) (5.25) 

yl 	= 	x2 

and the transfer function is 

1  = 

(5.26) 

(5.27) G(s) 
13+13s+3s2  

As there is now one less store with integral causality, the system order is reduced by 
1 to 2. 

5.7.7 Causally non-local approximation: approximating a capacity and a resistance 

This example looks at the combined effect of removing both an R and a C. The same 
capacity (the centre tank) is removed and, in addition, the R component labelled r2  is 
regarded as being small. As the R component labelled r2  can no longer impose the flow 
on to the corresponding junction, and it has zero (effort) output, it can be removed from 
the diagram. 

R:rll 	 R:r12 	 R:rI3  

1 	 1 	 1 
SS:sOI 	• O:pl 	1  1:f1 I 	• 0:p2 	1  1:f2 	1  0:p3 	1  l:f31 	• SS:s3 

[ 	[ 	[ 	 [ 	[  
C cl 	R rl 	SS:c2 	 C:c3 	R:r3 

Figure 5.11 Three coupled tanks - zero capacity and resistance: bond graph 

Figure 5.11 shows the corresponding bond graph. Note that derivative causality has 
now been imposed on the C element labelled c3. The system equations are 

x=(ml); z=( m3); w=(c2) ; y=(s3); u=(so) 	 (5.28) 

il  = vl — 2x1  + ul  

z1 = Vi 

0 = —(4v1  — xl  + zl) 

(5.29) 

(5.30) 

(5.31) 
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R:r11 	 R 	r12 	 R:r13  

1 	 1 
SS:s01 	• O:pl 	\I l:fl 1 	• O:p21 

/ 	r  
C:cl 	R rl 

Figure 5.12 Three coupled tanks - zero capacity and resistance: alternative bond graph 

Pl = v1 

and the transfer function is 

1  G(s) = 
7 + 6s + s2  

(5.32) 

(5.33) 

As the R element labelled r2 has been removed, it is possible to complete causality 
even if the source replacing c2 has flow output - and this source can then be removed as 
in Figure 5.12. The resulting equations are 

x— 
\ ms /

; y=(s3); u=(so) (5.34) 

il = — (2x1 — x2 — u1) 
i2 = x1 — 4x2 	 (5.35) 

y1 = x2 	 (5.36) 

and the transfer function is 

1  
G(s) = 7 + 65 + 52 	

(5.37) 

5.7.8 Steady-state solutions 

The system of Section 5.7.2, with bond graph given in Figure 5.6, has integral causality 
throughout. With reference to Section 5.6, there is thus a choice between option la and 
2a. 

Figure 5.13 shows the corresponding bond graph where all SS causalities are re-
versed with respect to the six storage elements. The system causality is changed, but is 
causally complete. From physical considerations, it is clear that the inflow, outflow and 
all intermediate flows are the same. 

The corresponding (steady-state) transfer function is 

/ 
• SS:s3 • 1:f21 • 0:p3 •I  1:f31 

/ 	L 
C:c3 	R:r3 

G(s) = 1 	 (5.38) 
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SS:il 	 SS:i2 	 SS:i3 

1 	 1 	 1  
SS:sl 	• 0:p1r 	• l:fl1 	• 0:p21 	• 1:f21---•0:p31 	• 1:f3l 	• SS:s3 

[/ 	V 	L 	V 	J 	V 

	

SS:cl 	R:rI 	SS:c2 	R r2 	SS:c3 	R:r3 

Figure 5.13 Three coupled tanks - no leakage: steady-state bond graph 

SS:il 	 SS:i2 	 SS:i3 

1  	1  	1 
SS:s11 	• O:pl 	•11:f11 	• 0:p2 	•11:f21 	•O:p3 	11:f31 	• SS:s3 

	

V 	V 	/ 	V 	V 	V 
SS:cl 	R:rl 	SS:c2 	R r2 	SS:c3 	R:r3 

Figure 5.14 Three coupled tanks - no leakage: steady-state bond graph 

Alternatively, Figure 5.14 shows the corresponding bond graph where all SS causal-
ities remain the same with respect to the six storage elements. The system causality is 
unchanged, but the six additional SS elements impose six additional constraint equations. 
The six unknown souce outputs are labelled v1, ..., v6. The system equations are 

0 = —(Vi — v4 + vs) 
0 = — (v2 — vs + v6) 
0 = —(v3 — v6) 
0 = — (v1 — u1) 
0 = Vi — v2 
0 = v2 — v3 (5.39) 

yi = v3 	 (5.40) 

The six unknown souce outputs are labelled vi...v6. The corresponding (steady-state) 
transfer function remains the same. 

A more complicated example is based on the full model of Section 5.7.1. Figure 
5.15 shows the corresponding bond graph with the same causal strokes as Figure 5.5 of 
Section 5.7.1. There are thus six constraint equations (again in vi...v6) leading to the 
system equations 

0 = —( VI — v4 + v5) 
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R:rll 	SS:il 	R:r12 	SS:i2 	R:r13 	SS:i3 

1 	1 	 1 	1 	 1 	1 
SS:s(1 	•O:pl 	11111 	•0:p2 	11:f21 	•O:p3 	1 1:f31 	\ SS:s3 

[ 	1/ 	I/ 	[ 	1/ 	1/ 
SS:cl 	R:rl 	SS:c2 	R r2 	SS:c3 	R:r3 

Figure 5.15 Three coupled tanks: steady-state bond graph 

0 = —(v2 — v5 + v6) 
0 = -

/
(v3 - v6) 

0 = — lvl + v4 - U1) 
O = vl - v2 - v5 

O = v2 - v3 - v6 

yl = v3 

The corresponding (steady-state) transfer function is 

G(s) = 1 
13 

(5.41) 

(5.42) 

(5.43) 

Notice that this corresponds to Equation 5.5 but with s = O. 
In this case, the corresponding system with reversed causality on the six additional 

SS components is not causally complete and so algebraic equations need to be solved. 

R:r11 	 R:r12 	 R:r13 

1 	1 	1 
SS:s01 	\ O:pl 	1 1:f11 	 0:p2 	•11:f2 	~ 0:p3 	11:f31 	• SS:s3 

SS:cl 	R:rl 	SS:c2 	 SS:c3 	R:r3 

Figure 5.16 Three coupled tanks: steady-state bond graph 

In Section 5.7.7 an approximate system (Figure 5.11) containing C components with 
both integral and derivative causality is discussed. The steady-state bond graph appears 
in Figure 5.16. The three C components c1...c3 have all been replaced by SS compo-
nents. The SS components c1 and c2 correspond to C components with integral causality 
and therefore are associated with external constraint equations; the SS component c3 
corresponds to the C component with derivative causality and therfore imposes a zero 
flow. 

There are thus two constraint equations (in vi and v2 ) leading to the system equations 
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0 = —(2v1  — v2  — ui ) 

0 = vi — 4v2  (5.44) 

Yi = v2 

The corresponding (steady-state) transfer function is 

G(s) = 7 

Notice that this corresponds to Equation 5.33 but with s = O. 

(5.45) 

(5.46) 
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System inversion 

SUMMARY 

• A system inverse gives the system input required to generate a given system output. 

• The bond graph of a system inverse can be derived from the system bond graph. 

• There is an important distinction between collocated and non-collocated sensor/actuator 
pairs. 

• Feedback and inversion are closely related; this has a nice bond graph interpreta-
tion. 

6.1 INTRODUCTION 

For a given input (as a function of time), a dynamic system generates a corresponding 
output (as a function of time). The bond graph representation and its corresponding 
methodology (Karnopp et al., 1990; Thoma, 1990; Wellstead, 1979) provide a systematic 
and insightful way of generating the equations describing such dynamic systems and, as 
such, support the analysis of dynamic systems. 

For the purposes of design and synthesis of control systems , it is sometimes useful to 
find the system input (as a function of time), which will produce a given system output 
(as a function of time). This leads to the idea of the inverse of a dynamic system : that 
system which, given the system output at its input, will reproduce the system input at 
its output. Control design based on such inverse system models are used in a number 
of application domains. In robotics, the computed-torque and feedforward manipulator 
control techniques (An et al., 1988; Craig, 1989) use inverse models to give the joint 
torques required to give a prespecified manipulator trajectory. In process engineering, 
internal model control (Morari and Zafiriou, 1989), generic model control (Lee and 
Sullivan, 1988) and exact linearisation strategies (Henson and Seborg, 1991) implicitly 
use the notion of inverse models and the corresponding ideal control. In flight control, 
non-linear inverse dynamics have been used as a basis for control design (Lane and 
Stengel, 1988). The inverse of a system has independent interest for revealing properties 
of the system itself (Kailath, 1980). 
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The usual approach to finding a system inverse is to model the system itself, derive its 
dynamic equations and then invert these equations. In contrast, a purpose of this chapter 
is to provide a way of deriving the bond graph of the inverse system from the bond graph 
of the system itself. Thus the inverse system is derived at the modelling, rather than 
the derived equation stage. This provides all the insights concerning the inverse system 
associated with the bond graph approach, thus allowing modelling decisions to be made 
in advance of equation formulation. 

The exact linearisation strategies of Isidori (1989), reviewed in the process engi-
neering context by Henson and Seborg (1991) augment the non-linear system with 
state-dependent (but non-dynamic) non-linear functions to give a linear augmented 
system which consists of multiple integrators. This augmented system can then be 
controlled using standard techniques; because the non-linear augmenting functions are 
state-dependent, this method requires all system states to be available. In contrast, this 
chapter considers system inverses which are in general dynamic and do not require (but 
may utilise) state information. 

In the context of linear systems described by transfer functions, the inverse system 
may be described by the (algebraic) inverse of the system transfer function. This imme-
diately shows some of the peculiar properties that may arise when dealing with inverse 
systems. For example, a strictly proper rational transfer function (more poles than ze-
ros) will have an improper inverse (more zeros than poles). It follows that the usual 
representations (such as state equations) associated with proper dynamic systems will 
not be appropriate in the context of system inverses. 

The differential-algebraic equation (or descriptor, or generalised state space, or sin-
gular system) formulation of system equations (see Section 4.7) has been suggested some 
time ago in the context of bond graphs by Brewer and Craig (1982) and has recently 
seen an upsurge of interest (van Dijk and Breedveld, 1991a; van Dijk and Breedveld, 
1991b; Borutzky, 1993; van Dijk and Breedveld, 1993). In these papers, the descriptor 
formulation has proved useful for representing systems where causal considerations lead 
to derivative causality or algebraic loops. In contrast, the emphasis in this chapter is 
on the use of the descriptor formulation to represent inverse linear systems which are 
improper and non-linear systems with the corresponding property. The fundamental 
issue is that whereas the inverse of a state-space system is not a state space system 
(except in special circumstances) the inverse of a descriptor system is (except in special 
circumstances) another descriptor system. Another purpose of this chapter is, therefore, 
to explore the idea of using the descriptor system representation in this context. In 
the appropriate circumstances (see Section 4.10) the constrained-state equations are also 
useful in this context. 

A further relation between control theory and inverse systems is associated with the 
notion of negative feedback. This chapter explores the relation between feedback and 
approximate system inversion in the context of bond graphs. 

The chapter is organised as follows. 

• Section 6.3 considers a special class of systems where the inputs (sources) and 
outputs (sensors are) collocated: they form an effort-flow pair. 

• Section 6.4 considers the general N-input, N-output system. 

• Section 6.6 discusses the relationship between feedback and inversion. 
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6.2 INVERSES AND PARTIAL INVERSES 
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Figure 6.1 A system and its (partial) inverse 

Consider the system represented in the left-hand part of Figure 6.1 with Ny  outputs 
Yi and N„ inputs ui. The first N inputs ui ; i = 1..N are associated with outputs 
yi ; i = 1..N to form the input-output pairs pi = [yi, ui]. Thus the system output y and 
input u are 

y= 

/ 	yl 	\ 

Y2 

YN 

YN+1 

;u= 

/ 	u1 	\ 

U2 

UN 

UN-F1 

(6.1) 

This pairing is not an inherent feature of the particular system but rather represents 
the choice of the person modelling the system. The right-hand part of Figure 6.1 shows 
the partial inverse system with respect to the these input-output pairs. The output yi 

\ yNy 	\ uN„ / 
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and input 

yl = 

wi of this 

/ 	ul 	\ 
U2 

UN 

YN+1 

YNy  / 

partial 

; ul = 

inverse 

/ 	yl 	\ 
Y2 

YN 
uN+1 

\ 1N,. / 

System inversion 

system are 

(6.2) 

When Ny  = Nu  = N the right-hand system becomes the inverse of the left-hand 
system. 

6.2.1 Example: two coupled tanks 

jni 1  	m2  
.fl 	Pl 	P2  

Figure 6.2 Two coupled tanks 

SS:s2 
\ 

SS:sl I 	I 0:p1-7 l:fl--7 0:p2-7  1:f2 

[ 	[ 	[ 	[ 
C:cl 	R rl 	C:c2 	R r2 

Figure 6.3 Two coupled tanks: bond graph 

The system in Figure 6.2 comprises two uniform tanks of cross sections a1  and a2  respec-
tively containing incompressible liquid of density p and coupled by short pipes of (linear) 



Inverses and partial inverses 	 159 

resistance r1 and r2 respectively. The (controlled) inflow is fi; the pressures at the base 
of the tanks are pi and p2 respectively; these pressures are regarded as system outputs. 
Making the usual approximations, the system bond graph appears in Figure 6.3. 

In this case Nu = 1 and Ny = 2; and the system output and input vectors are 

pi 
y = \

p2 / 'u
—(fi) (6.3) 

This is a linear system and and is conveniently represented in linear state-space form 
(Section 4.12, Equation 4.61) 

	

= ~

(( lh ) 	(42)A 
(—(r1+T2)9) ~ 

	

alr1) 	(rla2r2) 

or in transfer function matrix form (Section 4.13) as 

G(s) = (GGri11) 

where 

Gll(s) — 2 	
(92(ri + r2)) + 9ri r2a2s 

g2 (9(riai + r2a2 + r2a1))s + ri r2a2ais2 

G21(s) = 2 
9 + (9(riai + r2a2 + r2ai))s + rl r2a2ais2  

6.2.2 Example: two coupled rods 

The system in Figure 6.4 comprises two uniform rigid rods of mass m, length 21 (and 
hence angular inertia about the mass centres of J =32 . A torque is applied at each 
joint. There is no gravity. 

The input torque at joint 1 is r1 and the input torque at joint 2 is r2. The (rela-
tive) angular velocities associated with each joint are Q1 and Q2 respectively, and the 
corresponding angles are 01 and 02. The tip velocity components in absolute Cartesian 
coordinates are V, and Vy, and the absolute angles of each rod are ai and a2 respectively. 

The system bond graph appears in Figure 6.5. (The derivation of this bond-graph is 
unimportant at this stage — Chapter 10 gives a detailed discussion.) 

92r2 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 
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Vy  

21 
S22  

Vx  

Figure 6.4 Two coupled rods 

In this case, the torques are regarded as inputs and the velocities as outputs. Two 
of the possible pairings are described by 

21 

(6.11) 

Vy  

(r/s  
Ti 

Y = 	u — ( 72 ) 
112 

(6.12) 

The rest of this section considers the first (collocated) pairing. 
This non-linear system does not have a transfer function representation. It can, 

however be described by a differential-algebraic equation (Section 4.7) 

= (z1  + 2Z3) cos (x2)l — (22  + 2Z4) sin (x2)l + u1  — u2  
x1 

_ 7 
—(sin (x4)1i4  — cos (x4)1i3 — u2 ) 
X3 
j  

(— cos (x 2)lmxl ) 
_ 	j  

(sin (x2)lmxi )  
_ 	j  

( — (2 cos (x2)x1  + cos (x4)x 3)lm) _ 	j  

((2 sin (x2 )x1  + sin (x4)x3)lm)  

i1 

i2  
x3  
x4  

z1 

z2 

Z3 

z4 

(6.13) 

(6.14) 
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Figure 6.5 Two coupled rods 

(—(xi — x3))  

(— 2(cos(x2 )xi + cos (x4)x3)l) 

(2(sin (x2)xi + sin (x4)x3)l) 

~ (6.15) 

yl 

Y2 

y3 

y4 

Following Section 4.10 these equations are in constrained-state form and can be rewrit- 
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ten as the ODE 

_ (3(ju2 + 6sxi)c — 2(ul — u2 )j + 12sx3) 	
(6.16) xl 	

(2(3c + 4)(3c — 4)j) 

i2 = xl 	 (6.17) 
~ 

i 
_ (3((ui — u2 ),i — 6sx3)c — 8ju2 — 48sxi) 	

(6.18) 3 	 (2(3c + 4)(3c — 4)j) 

i4 = X3 
	

(6.19) 

xl 
yl = — 	 (6.20) 

J 

Y2 = 	

 

	

(—(x1 — X3)) 	 (6.21)• 

Y3 = (-2(cos(x2)xl + cos(x4)x3)1) 	 (6.22) 
j 

(2(sin(x2)xi + sin(x 4)x 3)1) 
Y4 = 

	
(6.23) 6.23 

7 

The following substitutions have been made to simplify the equations 

J 	
ml2 

3 
c = cos 02 

s = sin 82 	 (6.24) 

6.3 COLLOCATED SENSORS AND SOURCES 

Systematic modelling, including bond graphs, is based on the idea of pairs of variables 

catagorised into effort and flow (Karnopp et al., 1990; Thoma, 1990; Wellstead, 1979) 
(the alternative across and through convention (Wellstead, 1979) will not be used here). 

For the purposes of this chapter, a system has collocated sensors and sources if each 
sensor, or system output, measures the other member of the pair associated with the 
corresponding source, or system input. By definition, such systems have the same number 
of inputs and outputs. 

In bond graph terms, a collocated source-sensor pair can be regarded as a source 
element with the corresponding measurement being the source input: the SS element of 
Section 3.3.7. 

In such a system, then, the system inputs are the source outputs (as indicated by 
the causal stroke), and the system outputs are the source inputs. The inverse system, 
that is the system where the inputs and outputs are interchanged, is simply obtained by 
reversing the causality on each of the source sensors. 

The algorithm for deriving the bond graph of the inverse system of a system with N 

collocated sensors and sources is then as follows. 
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Algorithm 

1. Represent the N system input/output pairs by source-sensor (SS) elements. 

2. The bond graph of the inverse system is obtained by reversing the causality of the 
N source-sensor (SS) elements. 

6.3.1 Example: two coupled tanks 

SS:s2 

SS:sI 	/1 O:pl 	, 1:f1 	, O:p2-7  1:f2 

[ 	[ 	[ 	[ 

	

C:cl 	R:rl 	C:c2 	R:r2 

Figure 6.6 Two coupled tanks: bond graph of inverse 

Continuing the example of Section 6.2.1, the first pairing corresponds to the collocated 
input-output pairing u = fl ; y = pi. Inverting with respect to this pair gives the bond 
graph of Figure 6.6; the source-sensor element s1 has reversed causality. 

The bond graph corresponding to the inverse system, Figure 6.6, (with collocated 
source-sensor) has 

r

one 

l

input and two outputs 

ur = pi; yr = 
\ pz / 	

(6.25) 

It has one state s = m2  (the mass of liquid in tank 2) and one non-state z = mi  (the 
mass of liquid in tank 1). As the sytem has a collocated source-sensor, there are no 
additional SS elements (N„ = 0). The corresponding descriptor vector is thus 

m2  
X = ml  I 	 (6.26) 

I 

The descriptor matrices (Section 4.12) describing the (linear) inverse system are 

1 0 0 
E= 0 1 0 

0 0 0 

(—(rl+r2)9)  
A  _ 	(ri óQZ) 

0 

(6.27) 

0 0 
0 1 	 (6.28) 

—1 0 
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(6.29) 

C = (P092)) 
a2 

o il 
0 0 

(6.30) 

(6.31) 
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Figure 6.7 Two coupled rods: bond graph of inverse 
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The inverse system is conveniently represented in transfer function matrix form (Sec-
tion 4.13) as 

G(s) = ( 11) 
	

(6.32) 

where 

C11(s) _ g
2 + (9(r1a1+ atr2 + r2a2))s -~ r1(L1 r2a2 S2 

(9

2 

(ri + r2)) + 9r1r2a2s 

gr

2 G21(s) = (9(r1 + r2))+ r1r2a2s 

6.3.2 Example: two coupled rods 

Continuing the example of Section 6.2.2, the first pairing corresponds to the collocated 
input-output pair 

y = (Q2) 	
T2 

;n = ( Tl ) 	 (6.35) 
2  

Inverting with respect to this pair gives the bond graph of Figure 6.7; the SS elements 
labeled t1 and t2 have reversed causality. 

The bond graph corresponding to the inverse system of Figure 6.7 (with collocated 
source-sensors) has two inputs and two outputs 

511 
yl = (T

2)'uI — (~2 ) 

From the bond graph of Figure 6.7, it has two states a1 and a2 and six non-states (the 
angular and two translational momenta of each rod). There are no additional source 
sensors N„ = O. 

The corresponding descriptor vector is thus 

X = 

/a1\ 
a2 

Pri 

Pyi 
h1 

Pr2 

Py2 
h2 

h1 

Pri 

Py, 
h2 

I 
~ Py2  

/ x1\ 
22 

zl 
Z2 

z3 

Z4 

Z5 

z6 

z1 
z2 

z3 

z4 

is  

1 

(6.37) 

(6.33) 

(6.34) 

(6.36) 
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The inverse system differential-algebraic equation is 

it = ul 

~2 = u1 + u2 

z1 = — cos (xi )lmui 
z2 = sin (xi )lmui 

z3 = .Îu1 
z4 = —((u1 u2 ) cos (x2 ) + 2 cos (x i )ni )lm 

z5 = ((u1 + u2 ) sin (x2 ) + 2 sin (xi )ui )lm 

z6 = (n1 + u2)j 

yi = —((ii + 2.24 ) cos (xi )1 — (Z2 + 225 ) sin (xi )! — sin (x2 )1.25 + cos (x2 )1.24  

y2 = sin (x2 )125 — cos (x2 )124 + 26 
y3 = —2((ui + u2) cos (x2 ) + cos (xi )ui )l 
Y4 = 2((u1 + u2 ) sin (x2 ) + sin (xi)ui)l 	 (6.40) 

The tip velocities y3 and y4 are functions of the two joint velocities u1 and u2 and 

joint angles only. 
In particular: 

(Vv:) 
—
Q(x)() (6.41) 

where 

(6.38) 

(6.39) 

= 	
2(cos(xi) + cos(x2))l 

Q(x) — ( 2(sin (x i ) + sin (x 2 ))1 
—2 cos (x 2)1 
2 sin (x2 )1 

(6.42) 

Following Section 4.10 these equations are in constrained-state form and can be rewrit-

ten as the ODE 

it = ut 	 (6.43) 

i2 = ui + u2 	 (6.44) 

Yi = 2((3(2u1 + u2)su2 + 101.1 + 2ú2 ) + 3(2úi + n2)c)7 	 (6.45) 

Y2 = —2((3su? — 21.1 — 21.2 ) — 3.ú1)j 	 (6.46) 

y3 = —2((ui + u2 ) cos (x2 ) + cos (xi )ui )1 	 (6.47) 

y4 = 2((u1 + u2 ) sin (x2 ) + sin (xi )ui )1 	 (6.48) 

Once again, Equations 6.24 have been used to simplify the system equations. 
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6.4 NON-COLLOCATED SENSORS AND SOURCES 

In many systems, for example that discussed in Section 6.2.1, the sensors and sources are 
neither collocated nor quasi-collocated. Constructing the bond graph of the inverse of 
such systems is not as straightforward as for systems with collocated (or quasi-collocated) 
sensors and sources. 

When the N input output pairs (Section 6.2) of a system are collocated, they can 
be represented by N SS elements. This section considers the more general case where 
some (or all) of the N input output pairs of a system are not collocated. In particular, 
it is assumed that the system has Nn  sensors without corresponding collocated sources 
and precisely N,,, sources without corresponding collocated sensors. In addition, the 
system may have N, collocated source-sensor pairs. Thus the number of inputs (and 
corresponding outputs) is given by 

N=Nn +N, 	 (6.49) 

The method for deriving the inverse system bond graph for systems containing non-
collocated sensors and sources has two stages: 

1. Convert the system bond graph into that of an equivalent system with collocated 
sensors and sources. 

2. Apply Algorithm 6.3. 

Part 1 of the algorithm is as follows. 

6.4.1 Algorithm 

1. Replace all sources without corresponding collocated sensors by source-sensor ele-
ments. This introduces Nn  additional system outputs internal to the system model. 
The ith such internal system output is denoted 

2. Replace all sensors without corresponding collocated sources by source-sensor ele-
ments. This introduces N,,, additional system inputs internal to the system model. 
The ith such internal system input is denoted wi 

3. Impose the additional Nn  constraint equations 

wi = 0 i = 1, ..., Nn 	 (6.50) 

The additional inputs wi, together with the additional outputs vi, play a crucial role 
in determining the system inverse as detailed below. 

1. Equations 6.50 ensure that the Nn  additional inputs to the system have no effect 
on the system. 

2. The internal system inputs w, become internal outputs of the inverse system. 

3. The internal system outputs vi become internal inputs of the inverse system. 
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4. The N., constraint equations 6.50 applied to the inverse system outputs wi , implic-
itly imply the values of the Nn, inverse system inputs vi. 

5. This procedure is related to that described elsewhere by Gawthrop and Smith 
(1992) for solving algebraic loops. 

6.4.2 Example: two coupled tanks 

SS:s3 	 SS:s2 
~ 

SS:sl 	
~ 
0:p1-7 1:f1-7 0:p2 	J 1:f2 

L 	L 	L 	L 
C cl 	R rl 	C:c2 	R r2 

Figure 6.8 Two coupled tanks: bond graph of inverse 

Continuing the example of sections 6.2.1 and 6.3.1, the second pairing corresponds to 
the non-collocated input-output pairing u = fi; y = p2. 

Figure 6.8 shows the SS elements sl and s2 with reversed causality. The additional 
constraint is that 

w = 0 	 (6.51) 

where w is the flow associated with the additional SS element (labeled s2). This flow is 
an output of the inverse system and serves to determine pl, the pressure associated with 
the SS element sl. 

An additional SS element has been added to display the pressure pi . 
The matrices describing the (linear) inverse system are 

1 0 0 0 0\ 
0 1 0 0 0 

E = 0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0/ 

/ 0 	0 	1 0 	0 \ 
0 0 0 1 0 

A= —1 0 0 0 
0 —1 0 0 0 

\0 0 0 —1 1/ r; 

f 

(6.52) 

(6.53) 
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/ o  1 
0 

B = 	0 	 (6.54) 
Ea 

S

9 

\ (  (ri 2)2)) 
 / 

C,  — (0 0 1 0 	) 
	 (6.55) 

0 0 0 0 1 

D = (
( 1) 

	

—ó 
 ) 	

(6.56) 

The inverse system is conveniently represented in transfer function matrix form as 

G(s) = (
G21) 	

(6.57) 

where 

G11(s) = g
2  + (9(alrl + a1r2 + r2a2))S + alrlr2a2s2  

92 r2 

G21(s)  
= (9(r1 + r2)) + r1r2a2s 

9r2 

6.5 QUASI-COLLOCATED SENSORS AND SOURCES 

fy !vy 

Figure 6.9 A lever with source-sensor pair 

SS 	
o. ,io 	/I TF 	/10 	

v 
/I SS 

Figure 6.10 A lever with source-sensor pair: bond graph 

(6.58) 

(6.59) 

A source-sensor pair may be spatially separated yet behave as if collocated. An example 
of such a pair is shown in Figure 6.9 where a torque r acts at the pivot of a rigid rod of 
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unit length and a velocity sensor vy  measures the vertical velocity of the free end. Now 
vy  is determined by Q together with the angle 0 by the equation 

vy  = Q cos 0 	 (6.60) 

and Q is collocated with T. 
This suggests the following definition: 

Definition 1 

Given a vector of n inputs u and n collocated outputs yc, the vector of n outputs y is said 
to be quasi-collocated with u if 

y = Q(x)yc (6.61) 

and Q(x) is an n x n non-singular matrix which is dependent only on system states. 
The situation is also described by the bond graph of Figure 6.10. In particular, if 

the left-hand SS imposes the angular velocity Q onto the system, then the causality of 
the right-hand SS is determined. 

This leads to an alternative definition: 

Definition 2 

Given an acausal bond graph including set of n SS elements representing n collocated 
source-sensor pairs and a further set of n SS elements; then the outputs corresponding 
to the latter set are quasi-collocated with the inputs corresponding to the former if the 
inverted causality of the former set implies the causality of the latter set without choosing 
the causality of any I and C elements. 

The following algorithm can be used for inverting systems with quasi collocated 
sensor-actuator pairs 

6.5.1 Algorithm 

1. Create the corresponding system with collocated sensors. 

2. Find the inverse of this new system using Algorithm 6.3 with input uct = yc  and 
output y  = u 

3. The inverse of the quasi-collocated system is then given by substituting 

uci = Q(x) r ul (6.62) 

where uI = y 
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6.5.2 Example: two coupled rods 

In this example, the tip xy velocities are quasi-collocated with the joint torques as the 
joint velocities determine the tip xy velocities. The matrix Q(x) is given by Equation 
6.42 

6.6 FEEDBACK AND INVERSION 

Figure 6.11 A feedback system 

The notion of feedback and the notion of a system inverse are intimately connected. 
Consider the block diagram of Figure 6.11; the lower block G(s) represents the (N-
input, N-output) linear system to be inverted; the upper block K(s) represents a high-
gain controller. y, u and ÿ represent the (N-dimensional) system output, input and 
desired output respectively. 

In the particular case that 

K(s) --= 1
E 

H(s)-1 

w(s) 	
G c(s) = [(11(s)+ G(s)]-1 	 (6.64) 

If € is small then 

Gc(s) G(s)-1 	 (6.65) 

Thus, in this rather naive sense, feedback can be used to approximately invert a system. 
Another way of looking at the inverting property of feedback is to note that the 

negative feedback control system is designed to make the error signal ê (Figure 6.11) 
small. That is 

ê ~0 
	

(6.66) 

and so 

Y ^ÿ 
	

(6.67) 

u 
K(s) 

G(s) 

(6.63) 

where H(s) is an invertible N x N matrix, the closed-loop system can be written as 

u(s) 
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Thus u is the input signal required to make the output of G approximately follow the 
desired signal ÿ. Unlike the previous argument, this does not rely on the linearity of the 
system G. 

Of course, for e # 0, Gc(s) is not necessarily a stable approximation to G(s)-1  in 
the sense that the finite poles of Gc(s) approximating the infinite poles of G(s)-1  do not 
necessarily have negative real parts. Choosing H(s)-1  to give a stable closed-loop transfer 
function Gc(s) is an important issue in multivariable control theory (Maciejowski, 1989); 
but further discussion of this is beyond the scope of this paper. 

6.6.1 Bond graph proportional control 

SS 
A 

u 

R  

A 
e u 

	 1 Y \ 
u 

R 

A 
u e 

SS 	\ 0 
Y Y 

Figure 6.12 Bond graph proportional control 

Instead, for the purposes of illustration, the special case where 

H(s) = I 	 (6.68) 

where I is the N x N unit matrix, is considered. In this case, the bond graph of the 
approximate inverse system corresponding to this particular feedback control, can be 
constructed. As expected, this procedure is simplest for a system with collocated source-
sensor pairs. 

In this case, the bond graph of the inverse system can be converted into that of the 
approximate inverse system for the particular controller given by Equation 6.68 where 
inputs and outputs are naturally paired. Each `SS' element with effort output is replaced 
by the left-hand diagram of Figure 6.12; each `SS' element with flow output is replaced 
by the right-hand diagram of Figure 6.12. In both cases, the R element has constitutive 
relation 

ë ÿ- y 
u= _ 	 

E 	e 
(6.69) 

though in the former case u is an effort, and in the latter a flow. 
In the limiting case when e = 0, the causality of the R component reverses and the 

R component can be removed from the diagram. Each diagram then reverts to a single 
SS component, and the original inverse system is recreated. 

The situation is more complicated for systems with non-collocated sensors. The 
diagrams in Figure 6.13 correspond to a system where each input and output pair (the 
pairing is not so obvious in this case, however) have opposite causality: the left-hand 
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R 	 R 
/ 

A 	 A 
e u 	 u e 

Y 	 Y 

Figure 6.13 Bond graph proportional control - non collocated 

diagram corresponds to an inverse system with effort input and flow output; the right-
hand diagram corresponds to an inverse system with flow input and effort output. In 
each case, signals, or active bonds (Section 3.3.6), are used to buffer the system input 
and output. In this case, the limiting situation when c = 0 is not causally possible. 

6.6.2 Example: two coupled tanks 

R:rc 	 SS:s2 

SS:sl 	/1 1:fc l 

\ 

1:f1 ~ 0:p2----7 1:f2 0:p1-7 / 

[ [ / 
C:cl R:rl C:c2 	R r2 

Figure 6.14 Two coupled tanks with collocated control: bond graph 

A proportional controller for Pi is appended to the two coupled tanks of Figure 6.3 to 
give Figure 6.14. As fi and pi are collocated, the controller of Figure 6.12 is used. 

The controller gain corresponds to the conductance of the component labelled re and 
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is given by Equation 6.69, rewritten as 

fi=e=
pi — pi 

E 	E 

System inversion 

(6.70) 

The corresponding closed-loop transfer function relating f1  (as output) to 251  (as input) 
is 

Gc(s) __ G11 (G21 
 

(6.71) 

where 

g2  + (9(r1a1  + a1  r2  + r2a2))s + rlalr2a2s2  
Gil(s) = 

	

	 (6.72) 
(92(rí + r2  + c)) + (9(r lalE  + rlr2a2 + a1r2E  + r 2a2E))s + r1a1r2a2Es2 

2
r2  

G21(s) — (92(r1 + r2  + E)) + (9( r1a1E + r1 
9 

a2 + a1r2E + r2a2E))s  + r1a1r2a2Es2 `6.73)  

Notice that setting E = 0 gives the transfer function of the corresponding system 
inverse given by Equations 6.33 and 6.34. 

R rc 	 0:p2c 	SS:s2 

n 	\ n 
SS:sl 	/

I 
l:fc 

 

0:p1-7  1:f1--7  0:p2 	, 1:f2 

/ 	[ 	[ 
C:cl 	R:rl 	C:c2 	R:r2 

 

Figure 6.15 Two coupled tanks with collocated control: bond graph 

A proportional controller for p2 is appended to the two coupled tanks of Figure 6.3 to 
give Figure 6.15. In this case the controlled output p2 and the input fi are not collocated, 
so the controller of Figure 6.13 is used. 

The controller gain corresponds to the conductance of the component labelled rc and 
is given by Equation 6.69, rewritten as 

fi = 
e 

= 
P2 —  P2  

E 	E 

The corresponding closed-loop transfer function relating f1  (as output) to P2  (as input) 
is 

Gc(s) = I G111 
`G21 J 

(6.74) 

(6.75) 



Feedback and inversion 	 175 

where 

G11(S) —2 g2  + (g(alrl + ai  r2  +  r2a2))s + a1r1r2a2s2 	
2 

(g (r2 + E)) + (gE(a1r1 + (47'2 + r2a2 ))s + a1r1r2a2Es 

(;21(s) = (
g 2(r2 + E)) + (gE(a1r1 + al  r2  + r2a2))s + a1 r1r2a2Es2  

Notice that setting E = 0 gives the transfer function of the corresponding system 
inverse given by Equations 6.58 and 6.59. This verifies the identity between control and 
inversion at E = O. 

g 2r2 

(6.76) 

(6.77) 
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An extrusion process 

SUMMARY 

• A procedure for developing a bond graph model from a hierarchical word bond 
graph is described. 

• A combined energy and pseudo bond graph model of a plasticating extruder is 
developed. 

• State equations and the steady state model of the process are derived from the 
bond graph. 

7.1 INTRODUCTION 

The motivational example described in Chapter 1 gave a descriptive model of an extrusion 
process used for manufacturing plastic coated cable. In this chapter, the modelling 
techniques described in Part I of this book are used to model the plasticating extruder 
which is the major sub-system of the plastic-on-wire extrusion process. 

The extrusion process may be represented hierarchically, and, in this discussion, the 
plasticating extruder is modelled using two nested levels of hierarchy. A set of rules used 
for hierarchical modelling is described in Section 7.2 and these are used to build the 
models, and thence aggregate the complete model to a `flat' bond graph. 

A bond graph model of the process is developed as the core model from which the 
state equations may be derived for simulation purposes, together with the more common 
steady state model used for predicting machine throughput. In addition, a frequency-
response analysis model may be easily derived either directly from the bond graph model 
or as a subsequent transformation from the state space model. 

7.2 RULES FOR BUILDING HIERARCHICAL WORD BOND GRAPHS 

The modelling concepts described in Part I of this book can be summarised into a set of 
rules which permit bond graph sub-models to be re-used in a hierarchical model. The 
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rules are based on a `top-down' analysis of a large system, although real modelling often 
iterates between `top-down' and` bottom-up' approaches. 

1. Generate the word bond graph representing the major components of the system 
to be modelled. 

2. Decompose each complex node (sub-model) in the word bond graph into a further 
word bond graph, or `flat' bond graph, as appropriate. 

3. Repeat step 2 until the largest node in each word bond graph can be easily modelled 
using a bond graph. 

4. For each sub-model so produced, formulate the acausal bond graph (or re-use 
sub-models from a library). 

5. Define all constitutive relations in each sub-model using symbolic parameters. 

6. Test each sub-model individually, to verify its behaviour. 

7. Repeat steps 4 to 6 until all acausal sub-models have been generated and tested. 

8. Aggregate all sub-models into a `flat' bond graph of the complete hierarchical word 
bond graph. 

9. Apply required inputs to the complete bond graph. 

10. Apply the causal initiations appropriate to the required derived model. 

11. Follow causal propagation rules to obtain the ordered equations for the derived 
model. 

7.3 A PLASTICATING EXTRUDER 

A descriptive model of this industrial application was developed in Section 1.3 (Chapter 
1), to illustrate the need for a core model representation. In this case study, a hierarchical 
word bond graph is developed for this system following the development process described 
in Section 7.2. Due to the complexity of the extrusion process, significant effort could be 
expended developing a detailed model (Tadmor et al., 1974; Reber et al., 1973; Parnaby 
et al., 1973), but in this example, the bond graph developed is a simple exploratory model 
suitable for understanding the basic processes. In particular, the model represents the 
final metering section of the extruder where all the polymer is molten, although similar 
models may be cascaded to represent the feed and transition sections of the extruder. 
The resulting `flat' bond graph is then analysed, using the algorithm detailed in Chapter 
3 to model the steady state performance, as would be required to predict the thickness 
of polymer extruded onto electrical wire. 
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7.3.1 Developing the hierarchical word bond graph 

At the highest level of abstraction, a plasticating extruder consists of the following sub-
systems: 

• d.c. motor, 

• heated extrusion barrel, 

• extrusion screw, 

• extruded polymer, 

• die. 

These sub-systems are inter-connected to give the word bond graph shown in Fig-
ure 7.1, where the `SS' elements are drawn to indicate the major inputs and outputs of 
the system without imposing causal constraints. 

SS -~ D C 	Extruder 	Polymer / Die / SS 
motor 	screw 	 sub-model 

SS -7 
Heated 
barrel 

Figure 7.1 Word bond graph of plasticating extruder 

Following the method of Section 7.2, shows that the only word bond node which can 
usefully be further decomposed into another word bond graph is the polymer sub-model. 
The polymer node may be modelled as two separate but interactive processes in the 
expanded word bond graph (Figure 7.2) for the full model. 

SS -7 D.C. 
motor 

SS 

 

Extruder 

   

Polymer 
hydraulic 
sub- odel 

Polymer 
thermal 

sub-model 

_7 Die / SS 

    

 

screw 

Heated 
barrel 

Figure 7.2 Expanded word bond graph of plasticating extruder 
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7.3.2 Combined energy and pseudo bond graph model 

As for any engineering design, there are decisions to be made on trade-offs between 
alternative approaches, and in this case, the main decision is whether to use an energy 
bond graph or a pseudo bond graph. 

For the d.c. motor, the energy bond graph model described in Section 2.4.3 is ap-
propriate, since it describes the transduction between electrical and rotational energy 
domains most effectively. Since we are particularly interested in polymer mass flow rates 
through the extruder, and can linearly control the power input to the barrel heater, the 
pseudo bond graph appears most appropriate when modelling the polymer and heater 
sub-systems. Thus possible variables for the hydraulic sub-model are pressure (effort) 
and mass flow rate (flow), while those for the thermal sub-model are temperature and en-
thalpy flow rate respectively. The mass of polymer in the modelled section of the extruder 
is then the hydraulic state variable. The enthalpy state variable of the polymer results 
from enthalpy flows from the heated barrel sub-system, and from the viscous shearing 
action of the screw in the polymer, together with the nett enthalpy flows as polymer 
passes through the extruder. It can be seen that the hydraulic-enthalpic (heated tank) 
sub-model described in Section 2.7.2 is suitable for modelling the polymer sub-system, 
where the hydraulic capacitance is replaced by a capacitance representing the compress-
ibility of the polymer. However, this would result in a stiff system model, and since 
most extruder models assume the polymer is incompressible, the chosen model drops 
this capacitance and assumes constant mass of polymer in the barrel control volume. 
Using this assumption the hydraulic model can revert to an energy bond graph where 
the bond variables are pressure and volume flow rate. 

Since the extrusion screw sub-model interfaces between the d.c. motor energy bond 
graph and the polymer pseudo bond graph, this sub-model must contain the transforma-
tions between the variables on the input bond whose product is power, and those chosen 
for convenience in the pseudo bond graph. Figure 7.3 shows the acausal bond graph of 
the extruder screw. 

I:js 

Torque 	 tt 

velocity w s 1 
0--)77 	 1 TF —~  

:k 

ts Iws 

Pressure 

Volume 	rate 

Temperature 
RS 
:rs 

enthalpy flow rate 

Figure 7.3 A causal sub-model of extruder screw 

It can be seen that the bond variables on the bonds connected to the left-hand 1-
junction are torque (effort) and angular velocity (flow). The energy conserving conversion 
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to pressure and volume flow rate is modelled using the transformer TF:k, giving 

t t  
pressure = 

k 
and 	 (7,1) 

volume f lowrate = wsk 	 (7.2) 

where the transformer ratio k is calculated from the internal barrel radius R, the inner 
screw radius r and the screw pitch P as 

k = (R2 — r2)P 

2 

and tits  is given in radians/sec. 
Polymer inertia is assumed insignificant at this point due to the low translational 

velocity of polymer through the extruder. 
The second transformation to temperature and enthalpy flow rate provides the in-

terface between the energy bond graph and the pseudo bond graph. This is achieved by 
an unconventional application of a two-port `RS' element, where the enthalpy flow rate 
is given by 

dhs  
= 

dt 	
tsws 

and the temperature is determined by the sub-system into which the enthalpy flows. 
The other external contribution of enthalpy flow to the polymer is from the elec-

trical heaters around the barrel, as illustrated by the bond graph sub-model shown in 
Figure 7.4. 

Polymer 	̂ Enthalpy 

temperature 	I ` flow rate 

1

r

---7  R.rb 

 
Electrical 	 Ambient temperature 
power -7 0 / 1  

1,/ 	

I 	Enthalpy flow rate 

C:ch 	R rh 

Figure 7.4 Sub-model of barrel heater sub-system 

The input and output bonds on this bond graph have known causalities, as illustrated. 
The input flow source supplies electrical power - this is applied as a constant a.c. voltage 
to a resistive heater, with power controlled by linearly pulse-width modulating the on/off 
switching. The electrical power is sourced directly into the thermal capacitance ch of 
the heater. There are two effort inputs, the polymer temperature and the ambient 
temperature, which are needed to calculate the enthalpy flows into the polymer and into 
the extruder environment, respectively. r& models the thermal resistance of the barrel 

(7.3) 
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between the heater and the polymer, while rh models the thermal resistance between the 
heater and its environment. 

The last sub-system to be modelled is the polymer flow through the extruder die, 
and is shown in Figure 7.5. 

R:rd 

I:Id 
Polymer 

/ 	inertia 
Pressure 

 

Volume 
flow rate 

\ Output mass 
flow rate 

Figure 7.5 A causal bond graph of polymer extrusion through die 

At the end of the barrel the molten polymer is forced through a screen filter and 
thence through the die resulting in a very high shear friction loss rd. 

Taking the control volume approach to calculating flow inertia (Karnopp and Rosen-
berg, 1975), the inertia of the polymer extruded from the die is given by: Id = â , 
where p is the density of the polymer, l is the length of the die channel, and a is the 
cross-sectional area of the die. 

The large reduction in cross-sectional area of the polymer flow as it passes through 
the die results in a rapid increase in linear velocity, such that polymer inertia Id becomes 
a significant element. The output mass flow rate is a signal which is measured (by 
inference) from the cross-sectional area of the cooled polymer extrusion which may be 
subject to closed-loop control. 

These five sub-systems have been aggregated in the bond graph illustrated in Fig-
ure 7.6, where causality has been completed as shown. The complete bond graph has 
been slightly simplified by including the motor armature friction-  and moment of inertia 
with the corresponding parameters rs  and js  for the screw, since the latter are the dom-
inant effects. The bonds on the graph have been numbered for reference purposes, e.g. 

ei = em . 
The polymer (melt) temperature is shown as an additional output, as this variable 

is normally measured and automatically controlled by varying the electrical power into 
the barrel heaters. 

In the bond graph of Figure 7.6, the dissipators r, and rd represent irreversible energy 
dissipation due to shearing of the polymer. For rd, this energy passes out of the extruder 
and is dissipated in the environment, so a conventional R element is used. For r„ (the 
viscous friction of polymer moving through the barrel) and r,, the energy dissipated 
becomes an enthalpy flow into the thermal capacitance of the polymer, via RS elements. 
The constitutive equations for rs  and rd are given by Kurihara and Kimura (1985) as 

e7 = rs(Tm)f7 = r,s(T,,,,)wsand 
e12 = rd(Tm,)f12 = rd(Tm)kws 	 (7.4) 
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Figure 7.6 Bond graph of extruder metering section 

since the polymer volume flow rate y = kw,. 
The viscous friction has the constitutive equation cm = rv(Tm)flo = r„ (T„i )kw, 

where r(Tm ) indicates the dependence of the viscosity and shear dissipation on polymer 
temperature, and Tm = T21 = h21/(cpm) where m is the mass of polymer melt in the 
barrel section, and cp is the specific heat of the polymer. 

The electrical heater sub-model gives equations relating enthalpy flow and tempera-
ture. 

125 	Pin 

T26 	Th = h26l(cphmh) 
127 	(Th — Ta)/rh 
130 	(Th — Tm )/rb 
126 	125 -127 -130 (7.5) 

The enthalpy equations for the melt polymer are 

119 = elsfis/ri = T;vpcp 

120 = e7f7 = rs(Tm)ws 
122 = e23/15/ro = Tmvpcp 
124 = e10110 = rv(Tm)v

2 
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f32 = 130 
121 = 119 + 120 - 122+124+132 (7.6) 

Hence the state equations can be obtained from the bond graph by propagating 
causality through the bond graph, first for the mechanical-hydraulic sub-model and then 
for the enthalpic syb-model 

e2 = em  — iara  — ws/9d 	 (7.7) 

Based on our assumption of incompressibility of the polymer, the volume flow rate 
through the die is linearly related to the screw speed state variable ws. Thus the non-
state variable 113  resulting from the polymer inertia Id results in a linear modification 
to the state equation for the screw torque 

e6(Js + k 2Id)/Js = ia/gd — ws(rs + k2(r„  + rd)) 	 (7.8) 

The enthalpic state equation obtained from the heater equations 7.5 is 

126 = Pin — (Th — Ta)/rh — (Th — Tm)l rb 
	

(7.9) 

and from polymer equations 7.6 

121 = kw3pen(TT — Tm) + rsw82  + r„ke ws + (Th — Tm)l rb 
	

(7.10) 

The dynamic response of the system (to changes in screw speed, for example) may 
be obtained by applying appropriate parameter values in these state equations. 

7.3.3 Deriving the steady state model 

For this example, we wish to derive the steady state equations for the system, in order 
to predict the output mass flow rate and the melt temperature for a given set of input 
conditions. This is achieved using the algorithms described in Chapter 3, where the first 
step - generating the dynamic model with integral causality - has been performed in the 
preceding section. Replacing energy stores by source-sensors u1  to u5, we get the steady 
state bond graph shown in Figure 7.7, where u5  = 0 since Id has derivative causality, 
and the outputs to source-sensors 

w1 = w2 = w3 =w9=0 

Since causality for the steady state bond graph is identical to that for the state 
Equation derivation, the steady state model re-uses the state Equations 7.7 to 7.10, 
with the source-sensor outputs set to zero 

wl = 0 = em  — ia ra  — ws/9dand 

w2 = 0 = ia/gd — ws(rs + k2(rv + rd)) 

Hence 

emJd _ ws 	
( 1  + ra9d(rs + k2(r„  + rd)) 

(7.11) 

(7.12) 
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SF:1 in1-7 2 02771 1128 2~ SE:Ta 

126   

SS:u4=Th R rh 

Figure 7.7 Steady state bond graph for extruder 

From the heater state Equation 7.9 

w4 = 0 = Pin — (Th — TaVrh — (Th — Tm)/rb (7.13) 

and from the polymer state Equation 7.10 

W3 = 0 

= kwspcp(T' — Tm) + rsws + r„k2w; + (Th — Tm)/rb 	 (7.14) 

Hence, 

_ Ta + Pinrh + (kwspcnT: + rsws + r„k2ws)(rh + rb) 	 (7.15) Tm 	
1 + kws pcp(rh + rb) 

Note that since r3, r„ and rd relate to the polymer viscosity, they are all temperature 
dependent, and thus Equations 7.12 and 7.15 must be solved iteratively. In practice, the 
temperature Tm is maintained approximately constant by automatic control loops, and 
thus the polymer viscosity and, therefore, rs, r,, and rd are also approximately constant. 

Equations 7.3, 7.12 and 7.15 are therefore used to optimise the extruder design for 
a given maximum throughput, such that the melt temperature is maintained by work 
heat, and the electrical input P,, is minimised. 

The variable of interest for calculating the mass flow output of the extruder is the 
volume flow rate through the die 

f14=fii=fs= kfs 
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i.e. 

outputrnassflowrate = p(R2 — r2 )Pws /2 

where ws  is given by Equation 7.12. 
Thus the extruded diameter of plastic on the wire may be calculated as a function 

of the output mass flow rate, and adjusted by controlling the angular velocity of the 
extruder screw. 

This example has indicated how hierarchical bond graph models can be generated 
and how a variety of mathematical models can be derived using the procedures described 
in this book. In particular, the method given in Chapter 5 was used for deriving a steady 
state model. The model generation and analysis was performed entirely systematically, 
ensuring that the procedures are well suited to encoding as computer algorithms. 
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Process systems 

SUMMARY 

• The application of bond graphs to the modelling process engineering systems is 
discussed. 

• The advantages of automatic model generation in this context are illustrated. 

• Model-based approximation (Chapter 5) is illustrated in this context). 

8.1 INTRODUCTION 

Compared with other branches of engineering, process engineering is characterised by the 
complexity of the dynamic models associated with it and the difficulty of obtaining these 
models. It is all the more important, then, to have systematic techniques for describing, 
manipulating and communicating such models. 

Rather than concentrate on developing specific models for specific situations, it is 
more worthwhile in the long run to develop generic techniques which can then be applied 
to develop specific models in a more efficient way. However, applying these techniques to 
process engineering systems has proved more troublesome than other domains and it has 
taken a concerted effort involving collaboration between chemical engineers and control 
engineers to make progress. Early results are reported in conference papers (MacKenzie 
et al., 1991; MacKenzie et al., 1993). 

This chapter provides an introduction to the bond graph technique in the context of 
process engineering. 

As discussed in more detail in Section 8.2, this chapter is careful to distinguish 
between simulation and modelling. Thus simulation code (in, for example ACSL or 
FORTRAN), is not regarded as being system model, but rather a derived representation 
of a system which can, in principle, be automatically generated from a higher-level system 
representation: the system bond graph. 

The book by Franks (1972) is an important milestone along the road to systematic 
modelling techniques. Although Franks' book tends to equate modelling with simulation, 
it nevertheless makes important contributions in: 
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• representing system structure using diagrams to show the interconnection of system 
dynamics together with the flow of computation in system simulation; 

• emphasising the importance of (computational) causality: the order in which si-
multaneous differential equations must be solved to accomplish effective numerical 
simulation; 

• classification of component subsystems. 

As noted in Chapter 5, bond graphs provide a basis for, model-based system approx-
imation. This is illustrated here (Section 8.3) in the context of process engineering. 

Section 8.2 introduces and surveys the bond graph technique in the context of au-
tomatic modelling of process engineering systems. The techniques are illustrated by a 
sequence of examples of increasing complexity: 

• two open tanks of incompressible liquid connected by a flow resistance (Section 
8.4) 

• the previous example extended by the addition of a heater to each tank (Section 
8.5) 

• a liquid-liquid extraction process (Section 8.6) 

In each case, additional derived models generated including time responses of the non-
linear and linearised systems and frequency responses of the linearised systems. 

Some of this material has appeared in the literature (MacKenzie et al., 1991; MacKen-
zie et al., 1993). 

8.2 MODELLING OF PROCESSES USING BOND GRAPHS 

Using the standard bond graph approach (Karnopp and Rosenberg, 1975; Rosenberg and 
Karnopp, 1983; Karnopp et al., 1990), variables describing quantities relevant to process 
engineering are divided into effort and flow variables. Some possibilities are given in 
Table 8.1 

Domain Effort Units Flow Units 
1 Hydraulic Pressure Pa Volume flow rate m3s-1  
2 Thermal Temperature K Entropy flow rate WK-1  
3 Hydraulic Pressure Pa Mass flow rate kgs-1  
4 Thermal Temperature K Enthalpy flow rate WK-1  

Table 8.1 Effort and flow variables in process engineering 

The first two choices have the property that the product of the effort and flow vari-
ables is power and thus lead to true bond graphs (Karnopp et al., 1990); the latter two 
choices do not have this property and thus lead to pseudo bond graphs (Karnopp and 
Rosenberg, 1975; Rosenberg and Karnopp, 1983; Karnopp et al., 1990). The advantage 
of true bond graphs is that they can be readily coupled (via bond graph transformers) 
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to other energy domains; the advantage of the latter is that they correspond to standard 
process engineering practice. Following Karnopp (Karnopp, 1978), the pairs 3 and 4 will 
be used in the rest of this chapter. 

The standard bond graph junctions may be used in either case: 

• At 0 junctions, the effort variables are common and the flows sum (algebraically) 
to zero. 

• At 1 junctions, the flow variables are common and the efforts sum (algebraically) 
to zero. 

8.2.1 Hydraulic domain 

R elements 

Pl 	 P 

f 

Figure 8.1 Short pipe: schematic 

Figure 8.2 Short pipe: bond graph 

R elements correspond to flow resistance. In this chapter, two simplifying assumptions 
are made: 

1. the flow is dependent on pressure difference; 

2. momentum effects can be neglected. 

Thus the flow through the short pipe in Figure 8.1 is represented by the junction - R 
combination in Figure 8.2. 

The assumptions leading to Figure 8.2 do not imply a linear CR but rather that 

f = (l)(p1 - p2) (8.1) 

where 0  is a (possibly non-linear) function of its argument. A linear CR is considered 
in Section 8.4.2, and a non-linear CR is considered in Section 8.4.5. More complex 
situations are given by Karnopp (1978). 
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C elements 

m 

fi f2 

P 
Figure 8.3 Tank: schematic 

C 

r 
P I 

p 0 
f 1 

fl - f2 

P 

f2~ 

Figure 8.4 Tank: bond graph 

The dynamics of chemical processes are, in this chapter, due to C elements whereby a flow 
is integrated to produce an effort. The simplest of these C elements treated here is the 
open-topped tank of Figure 8.3 with one inflow fi and one outflow 12 . The corresponding 
bond graph appears in Figure 8.4. 

Using the mass conservation principle, the total tank mass holdup in at time t is 

described by 

t m(t) = fo fl(T ) — f2(r) dT + mo 

where mo is the holdup at time t = O. Equation 8.2 is true by definition; but the 
constitutive relationship relating the mass holdup to the effort variable (pressure) is 
dependent on the tank geometry 

p = p(m) 	 (8.3) 

For example, as discussed in Section 8.4, a tank with uniform cross-section a would 
have a CR 

p = g m 	 (8.4) 
a 

A more complex situation arises when the pressure is partially due to vapour trapped 
in the space above the liquid. This pressure depends on temperature and so the corre-

sponding CR is modulated by the thermal domain. 

(8.2) 
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8.2.2 Thermal domain 

R elements 

f 

v 

R 

T fh 
T 1 1 
~ 1 

fh 	fh 

Figure 8.5 Thermal pipe: bond graph 

In the context of the examples treated here, enthalpy flow is a transport phenomenon: 
heat is transported by the flow of a substance (Karnopp, 1978). Thus a well insulated 
pipe containing a substance with specific enthalpy h flowing at a rate of f kgs-1 has an 
associated enthalpy flow of 

fh=H = hf 	 (8.5) 

The specific enthalpy may be written as 

h = cpT 	 (8.6) 

where the specific heat c, may be a function of temperature; so 

fh = 
	

(8.7) 

where 
1 

rT = f 
	

(8.8) 

This situation is similar to that of the flow resistance: the flow variable (enthalpy 
flow (fh) depends on the effort variable T; but there are two differences: 

1. the flow variable depends on the upstream effort T rather than the difference 
between the up- and downstream efforts, 

2. and the `resistance' rT depends on the flow from a different domain. 

The corresponding bond graph in Figure 8.5 thus has two differences from that of 
Figure 8.2: 

1. the right-hand power bond is replaced by a signal bond which does not transmit 
the upstream effort, 

2. and the resistance is modulated from the hydraulic domain. 
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C elements 

fh 1 f h2 

T 
~ 

fh2 

Figure 8.6 Thermal capacity: bond graph 

In an analogous way to mass conservation, the energy conservation principle can be 
applied to a well-mixed substance to deduce that total enthalpy holdup H in the tank 
of Figure 8.3 at time t is described by 

c 

H(t) = Jo fhi(T ) — fh2( T)dT + Ho (8.9) 

where fhl is the inflow of enthalpy, fh2 is the outflow of enthalpy and Ho is the holdup at 
time t = 0. As before, Equation 8.9 is true by definition; but the constitutive relationship 
relating the enthalpy holdup to the effort variable (temperature) is dependent on the mass 
of the substance and the thermodynamic relationships. 

T= 	1 H 
cp m 
	 (8.10) 

Once again, this is similar to the hydraulic case except that the C element is modulated 
from another domain. This is depicted in Figure 8.6. Section 8.5 expands on these 
concepts. 

In general, some care should be taken when using modulated C components as energy 
and/or mass conservation is not automatically enforced. However, when used with care, 
this representation is useful as it explicitly shows the linkages between the C components 
in each domain. 

8.2.3 Dissolved substances 

Domain Effort Units Flow Units 

5 Transport Concentration mol kg-1 solute flow rate kg/sec 

Table 8.2 Effort and flow variables in process engineering: concentration 
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As mentioned in Section 8.2.2, enthalpy carried by a liquid is just one example of a trans-
port phenomenon. Another example arises when dilute substances with concentration c, 
are carried by a liquid. If m, is the mass of the ith substance dissolved in mass M of the 
liquid then 

Mi 
Ci = 

M 
(8.11) 

The appropriate effort and flow variables are given in Table 8.2. 

R elements 

f 

R 

c. 	f. 

C. 

-7 1 

f 	f 
i 	 i 

Figure 8.7 Concentration flow: bond graph 

Similarly to Equation 8.5, the flow fi of the mass of each dissolved substance is 

fi = lei 
ri  

(8.12) 

where 

1 
ri = 

J 
(8.13) 

and f is the flow of the liquid. As in Section 8.2.2, the corresponding bond graph appears 
in Figure 8.7. 

C elements 

In a similar way to that in Section 8.2.2, mass conservation (of the ith dissolved sub-
stance) in the tank of Figure 8.3 gives 

mi(t) = J fil(T) — fi2(T) dr  + mio (8.14) 
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V 

ci il f i2 
ci 	ci 

0 	 I 
f il 	f i2 

Figure 8.8 Concentration capacity: bond graph 

where fil  is the inflow of substance i, fi2  is the outflow of substance i and mio  is the 
holdup at time O. As before, Equation 8.14 is true by definition; but the constitutive 
relationship relating the (solute) mass holdup to the mass of the substance gives the CR 

1  ci = 

	

	 (8.15) mi 

Once again, this is similar to the hydraulic case except that the C element is modulated 
from another domain. This is depicted in Figure 8.8. 

Section 8.6 expands on these concepts. The transport of gases in liquids is treated 
in Chapter 9. 

8.3 SYSTEM APPROXIMATION 

Although the `correct' model of a system may be high-order, it may be useful to approx-
imate the system by one of lower order for a number of reasons: 

• to comprehend the system behaviour; 

• to obtain better numerical properties - the high order system may be numerically 
stiff; 

• to give simpler control system design. 

Chapter 5 gives a more general discussion of system approximation; this chapter focuses 
on specifically process engineering aspects. 

In the linear case, one approach is to derive the full state equations for the system and 
apply some standard model reduction algorithm to these equations; this is a black-box 
approach to model reduction. In contrast, this chapter considers a model-based approach 
to order reduction. 

Two distinct approaches to simplifying systems are illustrated here: 

• 	removing small capacities; 

• 	removing small resistances. 
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8.3.1 Removing small capacities 

As discussed in Section 5.3, if part of a process has a relatively small mass or thermal 
capacitance (holdup) it seem reasonable to remove it. As illustrated in Section 8.4.7, 
this can lead to an algebraic constraint between two variables. One approach is to just 
generate the corresponding equations and, in the case of simulation, allow the DAE solver 
to sort out any problems. 

Alternatively, such algebraic constraints may be made explicit by replacing the ca-
pacity by a source of the same causality, and measuring the source input. 

The resulting set of equations will have 

• one additional input: the source output. 

• one additional output: the source input. 

By construction, the computational causality will be unchanged by this procedure. 
The additional system input (source output) is then defined by the requirement that 

the corresponding system output (system input) is zero: there is no net flow into the 
capacity (holdup). This additional constraint forms an additional algebraic equation. 

8.3.2 Removing small resistances 

As discussed in Section 5.3, if part of a process has a relatively small mass or thermal 
resistance it seem reasonable to remove it. Once again, this leads to constraints between 
variables and typically constraints between states. In bond graph terms, a constraint 
between states leads to derivative causality: the corresponding component acts as a 
differentiator rather than an integrator. A example appears in Section 8.4.6. 

As discussed in Chapter 4, the corresponding equations are constrained-state ordinary 
differential equations. 

8.4 EXAMPLE: TWO COUPLED TANKS 

8.4.1 Description 

The system depicted in Figure 8.9 consists of two uniform open tanks containing an 
incompressible liquid. The fluid enters the left-hand tank, flows between the tanks, and 
leaves the second tank via short pipes which restrict the flow. 

Assumptions 

• The liquid inertia may be neglected; 

• A unique pressure (relative to atmospheric pressure) can be defined at the base of 
each tank; 
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~ 

m 1 

P2 
m 2 

fo 
	

f1 	 f2 

Figure 8.9 Coupled tanks: schematic 

• The left-hand inflow is driven by an ideal flow source. 

A number of variations on this theme are presented in the following subsections. 

8.4.2 Linear flow resistance 

, 1:f0-7  0:p1-7 1:fl-7 	1:f2 

L 	L 	L 	l~m,L 
R:rO 	C cl 	R:rl 	C:c2 	R:r2 

Figure 8.10 Coupled tanks (flow input): bond graph 

This section presents the simplest version of the coupled tank system leading to linear 
system equations. 

Assumptions 

1. The left-hand inflow is determined by a flow source of strength fokgs-1; 

2. The CR relating mass flow to pressure for each pipe is linear. 

The first assumption leads to the causal bond graph of Figure 8.10. Notice that the 
left-hand flow resistance has no effect on the flow - it merely adds to the back pressure 
acting on the flow source. 

S:sO 	 
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CRs 

1. Each tank, being uniform, has a linear CR relating state (mass) to pressure 

9 
P2 = a,  mZ 

2. By assumption, each pipe acts as a linear resistance to flow 

AP, = rZfz 	 (8.17) 

where Opt is the pressure drop across each pipe 

Using the modelling tools MTT (Gawthrop, 1995) referred to in Chapter 4, a number 
of representations can be automatically derived from the bond graph of Figure 8.10. As 
illustration, the following representations are derived: 

• differential-algebraic equations, 

• descriptor matrices, 

• step response, 

• frequency response. 

System differential-algebraic equations 

X 
— ( m2  ) ; y = ( P2 ) ; u = ( fo ) 

il  = (— ((a2xi — aix2 )g — a2airiui)) 
(a2airi) 

(—((r1  + r2)aix2 — a2 r2xi )g) 

(a2alr1r2) 

yl = 
(9x2)  

a2  

Descriptor matrices of the linearised system 

A 
 = C

(-9)  
(aire) 

(air' ) 
g 

 
(ri a2) 

(— Sr1+r2)9)  
rla2r2) 

(8.21) 

B  — \ 0 / 
(8.22) 
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(8.16) 

i2 = 

(8.18) 

(8.19) 

(8.20) 

C= (0 â2 ) 	 (8.23) 

D = ( 0 ) 	 (8.24) 
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Transfer function 

g2 r2  
G(s)

__ 
g 2  + (g(airi + air2 + a2r2))s + aia2rir2s2  (8.25) 

As expected, this system has second order transfer function (Equation 8.25). Because of 
the flow source, ro  does not appear. 

System properties 

10c  

10' 

System time constants as r_1 varies 

10 

10-  
10' 	 10' 	 10° 	 10' 	 10°  

Figure 8.11 Coupled tanks: time constants 

Having converted the system equation into Matlab state matrix form, the properties of 
the system can be analysed. For example, the effect of r1  (the inter-tank flow resistance) 
is investigated. Figure 8.11 shows (on a logarithmic scale) the effect of r1  on the two 
system time constants. Decreasing the value of r1  gives one decreasing time constant and 
one time constant corresponding to one tank with area al  + a2. An increasing value of 
r1  gives one increasing time constant (tending to that of an integrator) and one tending 
to that of the second tank. 

a1  = a2  = r2  = 1 (8.26) 

The step response for r1  = 0.1, 1 and 10 appears in Figure 8.12, and the corresponding 
frequency response (in Nyquist form) in Figure 8.13. 
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System step response r_1 = 0.1, 1, 10 

0.9 
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2 

Figure 8.12 Coupled tanks: step response 

System frequency response r_1 = 0.1, 1, 10 

Figure 8.13 Coupled tanks: frequency response 

Steady-state properties 

As discussed in Section 5.6, steady-state properties can be deduced by replacing storage 
components (in this case C components) by appropriate SS components. 

The corresponding bond graph appears in Figure 8.14. The corresponding steady-
state transfer function is 

G(s) = r2 	 (8.27) 



P 
m 2   	2 

f2  

f0 
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S:sO I 	/ 1:f0 	0:p1-71:f1-7 0:p2 	 

	

[ 	1/ 	/ 
R:rO 	SS:cl 	R rl 

Figure 8.14 Coupled tanks - steady-state: bond graph 

This could also be obtained by setting s = 0 in Equation 8.25. 

8.4.3 No back pressure 

ai  

m 1  

Figure 8.15 Coupled tanks (no back-pressure): schematic 

The tanks appearing in Figure 8.15 are the same as those appearing in Figure 8.9, but 
they are connected in a different way. Unlike the tanks in Figure 8.9, the pressure in the 
second tank does not affect the inter-tank flow fl . 

The corresponding bond graph in Figure 8.16 has one change with respect to Figure 
8.16: the appropriate bond (that between fl and p2) is replaced by a signal. 

Process systems 

/ 1:f2 

M:ml 

SS:c2 	R:r2 



Descriptor matrices of the linearised system 

A 
 = ~

(-9),  
(alrl~ 

(a i) 

B — \0/ 

0 

(-9)  
(a2r2) 
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S:sO ( 	/ 1:f0 	0:p1 	/ 1:f1 	0:p2-7 1:f2 

	

L 	 1/ 	
[ 
~ 

M:ml 
/ 

	[ 

R:rO 	C cl 	R rl 	C:c2 	R:r2 

Figure 8.16 Coupled tanks (no back-pressure): bond graph 

System differential-algebraic equations 

x— (m2); y=(P2); 2l=(f0) (8.28) 

(—(gxi — airiui))  

(alrl) 
( — (a1r1x2 — a2r2x1)g) 

(airia2r2) 

(9x 2)  

a2 

~1 = 

i2 = 

y1 

(8.29) 

(8.30) 

(8.31) 

(8.32) 

C = ( 0 â2 ) 	 (8.33) 

D = ( 0 ) 	 (8.34) 

Transfer function 

92r2
( 	) G(s) = 	 8.35 

g2 + (g(r2a2 + airi))s + r2a1r1a2s2 

8.4.4 Pressure input 

This section illustrates an important feature of bond graphs: the representation does not 
depend on the causality of the input source although the resulting equations do change. 

The system is identical to that of Section 8.4.2 except that 
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S:sO 	~ 1:f0~ O:pl—~ l:fl ~ O:p2~ 1:f2 

L 	L 	L 	L M :ml 

R:rO 	C cl 	R:rl 	C:c2 	R:r2 

Figure 8.17 Coupled tanks (pressure input): bond graph 

1. The left-hand on flow is driven by a pressure source. 

The bond graph appears in Figure 8.10. The inflow is now imposed by the input flow 
resistance. 

System differential-algebraic equations 

x — 
m2 ) ; y = (p2) ;  u = ( fo ) 

( — (((ro + ri)a2xi — roaix2)9 — a2 ri ai ui )) 

(roa2riai) 
( —((ri + r2)aix2 — a2 r2xi )g) 

(a2riair2) 

yi = (9x2)  
a2 

(8.38) 

Descriptor matrices of the linearised system 

(—(ro+rl )9) 	9 

A = 	(rorlal) 	(rla2) 	 (8.39) 

	

~ 	( — (rl+T2)9)  

	

(rial) 	(rla2r2) 

B = (~) 	 (8.40) 

C= (0 	) 	 (8.41) 

D = (0) 	 (8.42) 

Transfer function 

G( s) 92 r2 
(8.43) (92(r2 +ro+rl))+(B(r2roal+r2roa2+r2rl a2+rorlal ))s +r2rorlala2s2 

The transfer function, though still second order, now depends on ro. 

xl 

x2 = 

(8.36) 

(8.37) 
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8.4.5 Non-linear flow resistance 

The bond graph reflects structure, not properties. This is illustrated in this section 
by replacing the CR of the resistors in the example of Section 8.4.2 by a non-linear 
relationship; the bond graph is unchanged but the definition of flow resistance in the CR 
file changes. 

CR 

Equation 8.17 is replaced by 

Apz = r:f? 

System differential-algebraic equations 

x= (~~
2
1 ); Y= (P2); u =(fo) 

22 

( — (0(a2x1 — alx2)g) 
- V(ri)1(ai)V(a2)10.))

( ✓(r1)✓(al)✓(a2)) 	 
( (2)✓((a2x1 — alx2)g)  — ✓(x2)✓(rl)✓(a1)✓(g)) 

(NAr2)✓(r1)✓(a1)✓(a2)) 

yl = 
(gx2)  

a2 
(8.47) 

The states are unchanged, but the equations contain square roots due to the CR (Equa-
tion 8.44) being used with flow as output. 

Steady-state properties 

S:sO I 	/ 1:f0 	O:pl, 1:f1 	O:p2 	, 1:f2 

M:ml 

R:rO 	SS:cl 
	

R:rl 
	

SS:c2 	R r2 

Figure 8.18 Non-linear coupled tanks - steady-state: bond graph 

(8.44) 

(8.45) 

(8.46) 

As discussed in Section 5.6, steady-state properties can be deduced by replacing storage 
components (in this case C components) by appropriate SS components. 



G(s) = 	 292r2fo 
g2  + (29fo(airi + air2 + a2r2))s + 4aia2rir2fós2  (8.56) 
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The corresponding bond graph appears in Figure 8.14. The corresponding steady- 
states (with constant flow fo) are 

20  = 
(alfp (ri +r2))  

(a2r2 9 
(8.48) 

fó)  
9 

u0 =( fo ) 

z yo=(r2fo ) 

Linearised system state matrices 

(-9)  

	

_ ((2airifo) 	2rlfoa2 	 (8.51) A 9 
 

(—(ri +7'2)9)  

	

(2a1 ri fo) 	(2rifoa2r2 

(01)B = 	 (8.52) 

C = (0 â ) 	 (8.53) 

D = ( 0 ) 	 (8.54) 

The non-linear state equations can be linearised about a steady state. In this case, the 
steady-state corresponds to a constant inflow of fo  giving the same flow through each 
resistor. Differentiating the CR gives an equivalent resistance of 

ôzpti 

Linearised system transfer function 

(8.49) 

(8.50) 

aft 
= 2 for; 	 (8.55) 

This is reflected in the A matrix of the linearised system. 

This is the same as that of Equation 8.25 except that each resistance is multiplied by 
2fo. 

System properties 

Figure 8.19 shows the steady-state pressure output as a function of fo. Figure 8.20 shows 
the linearised system time constants as a function of fo. The system responses to a 10% 
change in flow are shown in Figure 8.21 for fo  = 0.1, 1, 10. The corresponding frequency 
responses appear in Figure 8.22. 
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Steady—state pressure as f_0 varies 
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Figure 8.19 Coupled tanks (non-linear): steady-state pressure 

System time constants as f_0 vanes 

Figure 8.20 Coupled tanks (non-linear): time constants 

8.4.6 Approximate system: zero resistance 

As indicated in Section 8.4.2, a small valve of the inter-tank resistance r1  leads to two 
widely different time constants. Such a system is said to be `stiff' and is difficult to 
simulate numerically. 

From the modelling point of view, it is then of interest to investigate the effect of 
removing the resistance between the tanks. As discussed in Chapter 5, a zero resistance 
must have effort output - this requirement is imposed by the appropriate causal stroke 
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System step response f_0 = 0.1, 1, 10 
18 

16 

14 

12 

10 

8 

6 

4 

2 

0 
0 
	

2 
	

3 
	

4 
	

5 
	

6 
	

7 
	

8 
	

9 
	

10 

Figure 8.21 Coupled tanks (non-linear): step response 

System frequency response 1_0 = 0.1, 1, 10 

Figure 8.22 Coupled tanks (non-linear): frequency response 

in Figure 8.23. The effect of removing the inter-tank resistance is that the causality 
of either the left or right tank C element must be reversed; Figure 8.23 constrains the 
left-hand tank to have integral causality by the appropriate causal stroke. 

Essentially, removing the resistance constrains the two tank pressures, and hence 
states, to be algebraically related. 

P1 = P2 

m1 m2 

al 	a2 

(8.57) 

(8.58) 
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1:f1 O:p2-----7  1:f2 ,1:f0 S:sO' 	 O:pl--7  , , 

\ M:ml 
/ / 

R:rO 	C cl 	R:r1 	C:c2 	R:r2 

Figure 8.23 Coupled tanks (zero resistance): bond graph 

System differential-algebraic equations 

x=(mi); 

z1 

y1 	= 

Descriptor 

E = 

A = 

fl 
 — 

C =(â 

D = (0) 

z=(m2); y= (P2); u= (Ai) 

((u1 — zi)air2 — gxi) 

(8.59) 

(8.60) 

(8.61) 

(8.62) 

(8.63) 

(8.64) 

(8.65) 

(8.66) 

(8.67) 

(a2x1) 

(air2) 

of the linearised system 

—1 
1 
0 

al  

(gx1) 
al  

matrices 

1 	0 	0 
0 	1 	0 
0 	0 	0 

(-9) 	0 
(air2) 

0 	0 
az 	—1 al 

1l 
(O

l 
0 

0 	0) 

The result of removing the intertank resistance is to make one state into a non-state 
one possibility is given in Equation 8.59. 
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Constrained-state equations 

Constrained-state equations are considered in Chapter 4, Section 4.10. In this case the 
constrained-state equations are 

Xl = 
(—(gx i — arr2u1)) 	 (8.68) 

(al r2 ) 

yl = 
(gxi ) (8.69) 
al 

E— ((ai+a2)) 
a~ 	1 

The E matrix weights the state in proportion to the total area divided by the area of 
the tank corresponding to the system state. As E is non-singular, the system can also 
be rewritten as the ODE of Equation 4.26 

~r = 
(—(gxi — alr2u1)) 

((ai + a2)r2) 

yl = 
(gxi)  
a1 

Transfer function 

gr2  G(S) _ 
g + (r2(ar + a2))s 

The transfer function has been reduced to that of a first-order system with time constant 
corresponding to one tank with area al + a2 . 

System properties 

Figure 8.24 compares the step response if the reduced system with that of the original 
system with r1 = 0.1. Figure 8.25 gives the corresponding frequency responses. 

8.4.7 Approximate system: zero capacity 

In contrast to Section 8.4.6, the coupled tanks are approximated by removing a capacity 
rather than a resistance. Thus the second tank is assumed to be small and the corre-
sponding bond is removed from the diagram. Following Section 8.3, the capacity of the 
second tank is replaced by an effort pressure source. 

(8.70) 

(8.71) 

(8.72) 

(8.73) 
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Reduced-order system step response 
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Figure 8.24 Coupled tanks (zero resistance): step response 

Reduced-order system frequency response 

Figure 8.25 Coupled tanks (zero resistance): frequency response 

System differential-algebraic equations 

x= (Int ); w=(m2); y=(P2); u=(fo) 	 (8.74) 

ii = (—(gx>. — vl al  — alrlul))  
(airi) 

(8.75) 
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S:sO I 	/ 1:f0 	 1:f2 

~ 
M:m1 

i 
R:rO 	C cl 
	

R rl 	SS:c2 	R r2 

Figure 8.26 Coupled tanks (zero capacity): bond graph 

0 = ( — ((r1 + r2)viai — gr2x1))  
(8.-6) 

(alrlr2) 

yl = vl 	 (8•77) 

Descriptor matrices of the linearised system 

E 
_ 1 0 

0 0 

	

(-9) 	i 

	

A = ( (airl) 	r1 

9 	(— r1+r2))  

	

(alrl) 	r0.2) 

B — 
\0/ 

(8.78) 

(8.79) 

(8.80) 

C=(0 1) 

D = (0) 

(8.81) 

(8.82) 

Transfer function 

gr2  _ G(s) 	g 
+ (al (r2 + rl))s 

The reduced system is thus first order with a time constant corresponding to the first 
tank capacity and the sum of the two flow resistances r1 and r2 

8.5 EXAMPLE: TWO STIRRED-TANK HEATERS 

8.5.1 Description 

This example corresponds to that in Section 8.4.2 but with the addition of thermal 
effects. With reference to Figure 8.27, the first tank is heated by an element generating 
qW. The inlet temperature is to, and the specific heat of the liquid is taken as c p Jkg-1 

(8.83) 
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1 	 f2  

9 

Figure 8.27 Stirred-tank heaters: schematic 

Two tanks (Figure 8.27) of uniform cross-sections al  and a2  contain masses ml  and 
m2  of water at temperatures t1, and t2 . The manipulated inputs are the mass inflow fo  
and heat input q; the inflow temperature to  is a disturbance. The levels ll  and l2  in each 
tank and the temperatures t i  and t2 are the outputs. The state vector corresponds to 
the mass and enthalpy holdups: 

7711

_ m2 
X 	

hi 
h2 

 
=u 

where mt is the mass and h, is the enthalpy stored in tank i. The input vector is 

(fo1 

	

to l 	 (8.85) 

and the output vector is 

G:)
y =   (8.86) 

The flow rates ft  are given by 

	

ft = kt4pt 	 (8.87) 

where Opt is the pressure across each pipe and ft is the mass flow rate. The dotted 
signals indicate that the thermal resistors are modulated by mass flow rates and the 
thermal capacities by tank masses (states). 

Assumptions 

1. The flow is one way (left to right) 

2. There is no heat loss from the tank. 

1 1 12  

(8.84) 

m h 
11 

The bond graph in Figure 8.28 represents this system. The bond graph junctions 
and components have been labelled as in Table 8.3. 
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S'q 

Figure 8.28 Stirred-tank heaters: bond graph 

Label Physical equivalent 
f0 Common flow of mass: from source sO, through pipe, into tank 
fl Common flow of mass: to source sl, through pipe, from tank 
h0 Common flow of enthalpy: from source sO, through pipe, into tank 
hl Common flow of enthalpy: to source sl, through pipe, from tank 
pl Common pressure at: end of input pipe, base of tank end of output pipe 
tl Common temperature at: end of input pipe, within tank, end of output pipe 
sO flow source: input mass flow rate f; 
sl flow source: output mass flow rate f 
sOt effort source: input temperature T; 
q flow source: input input heat flow q 
rO, rOt Flow and thermal resistances: input pipe 
rl, rlt Flow and thermal resistances: output pipe 
cl, clt Flow and thermal capacities: tank 
1 measurement: level in tank 
T measurement: temperature of liquid in tank 

Table 8.3 Bond graph notation 

8.5.2 The system equations 

The bond graph of Figure 8.28 is causally complete and therefore leads to a set of ordinary 
differential equations. These are 

_ l — ((a2z1 — a
/
1x2)9k1 — a2alul)) 
(a2ai) 

214 

S:sOI • 1:f01 	•O:p1 

R:rO 

i  

C•c1 

'r 
R:rOt 	C clt 

~1 

Process systems 

11111 	•O:p2 	~ 1:f2 

M:t 



Example: 

X2 

X3 

X4 

yl 

P2 

where 

x = 

Two stirred-tank heaters 	 215 

( — ((k1 + k2)alx2 — a2kixi)g) 
= 

(a2a1) 
(—((a2xi — ai x 2)gki x 3 — (cpulu2 + u3)a2alxl)) 

(a2 ai x i ) 
(((a2 kix3 — alk2x4)xl — kla1x2x3)9) 

= 
(a2alxl) 

X2 

(8.88) 

(8.89) 

ti 
	 (8.90) 

4 

= 	(a2P) 
X4 

= 

(m1 

( m2 
h2 

(cpx2) 

; y= ( t2); u= 

Notice that the first two of equations 8.88 (representing hydraulics) are linear, whereas 
the second two of equations 8.88 (representing thermal effects) are non-linear. 

8.5.3 Linearised system 

Following the procedures in Section 4.12, the non-linear system of equations 8.88 can be 
linearised about the steady state given by 

X0 = 

uo — 

PO — 

to give the 

A = 

(al fo (kl +k2 )) 

matrices. 
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(8.95) 

(8.96) 

(8.97) 

8.5.4 Simulation 

This system can be simulated using the following numerical values expressed in suitably 
scaled units) 

	

al 	5 

	

a2 	10 

	

k; 	1 

	

p 	1 

	

cp 	4.180 

	

g 	9.81 	 (8.98) 

The simulation diagram is: 
The non-linear system was simulated with initial state 

(7,
ml 	0.1 
2 _ 0.1 
l 	 0 

The system input was constant 

fo 	1 
u=It0 I= 	0 	 (8.100) 

q J 	100 

The linearised version was simulated at the same time and with the same inputs. 
The system was linearised with respect to 

o 	1 
u= ft 	

f 

	

10) 	 (8.101) 

4`  

Note that the system is set up in such a way that the linearised system (in state-space 
form) operates on deviation variables. 

The system inputs where varied in a stepwise fashion as shown in Figure 8.30. The 
values of the input were 

fo 	1 
u = to = 0 	 (8.102) 

q 	5 

X= (8.99) 

h2 	 0 
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Figure 8.29 Two stirred-tank heaters: non-linear simulation diagram 
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Figure 8.30 Two stirred-tank heaters: non-linear simulation - inputs 

from time 0 to time 5; 

(fto) 
	1 

u = o = 0 
q 	10 

(8.103) 
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Figure 8.31 Two stirred-tank heaters: non-linear simulation - level 
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from time 5 to time 10; and 
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012 	  

0.1 -  

Figure 8.32 Two stirred-tank heaters: non-linear simulation - temperature 

thereafter. 
The resulting responses of the two outputs 

y = \ is / 
	 (8.105) 
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appear in Figures 8.31 and 8.32. 
In each case, the dashed line represents the non-linear result and the firm line the lin-

earised response. The pressure response to flow is, of course linear, but the corresponding 
temperature response in non-linear. The non-linear response is a good approximation 
when the system is close to the steady-state corresponding to the linearised model; the 
approximation is poor away from these steady-states. 

8.5.5 The approximate system 

S:sO~ 	~0:p1 	\I 111 	0:p21 1:f2 

R:rO 	C cl 	R:rl 	C:c2 	R•r2 
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T1TTT  
S:sOt~ 1:h0 	. O:tl ~ 1 hl 

 
0:t2-11:h2 

~q 	
~ 1:h3/ \Ma 

Figure 8.33 The approximate system: bond graph 

As in Section 8.4.6, the system is approximated by one where the inter-tank flow resis-
tance is zero. In Figure 8.33 this is accomplished by imposing effort causality on the 
inter-tank resistance (and setting the corresponding resistance to zero). This constrains 
the two mass states to be equal (as al = a2). Again, Figure 8.33 ensures that the state 
associated with the first tank has integral causality. 

In addition, the two thermal states are constrained to be equal by including the 
additional resistance rt into Figure 8.33. In the previous section, effectively rt = oo, in 
this section rt = O. 

System differential-algebraic equations 

~ 
Rrt 

2 = 
: 

In2 	12 
 

( hl ) ; z = ~ h2 ) ; Y 	(t2) , u 	
q 

 (ti 
(8.106) 

2l = ((u1 — zl)al — g1c2x1) 
al 



al Xl = (
— (9k2x1 -- alai)) (8.110) 

il = (ai  + a2) 

(—(gk2xi  — aiul )) (8.115) 

((ePUlu2 + u3)a1 — gk2x2) (8.116) 

(8.117) 

(8.118) 

i2  = 	(al  + a2)  

xl 

y1 = (alP) 

X2 

Y2 = (cnxl) 
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i2 ((e0/0u2 + u3 — z2)al — gk2x2) 
al  

(8.107) 

zl  = 

z2 = (8.108) 

xl 
y1 

= (alp) 
x2  

Y2 = 	 (cpxi) 
(8.109) 

System constrained-state equations 

As in Section 4.10, the system equations can be rewritten in constrained-state form as 

i2 	
((ePU1u2 + u3)a1 — gk2x2) —  

X1 

Yi = (alP) 

x2 

Y2 = (ePx1) 

a1 

(8.112) 

(8.113) 

C 

nl+  — 	a2 
E 	al 

0 
(8.114) 

As E is non-singular, the system can also be rewritten as the ODE 
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Figure 8.34 Two stirred-tank heaters: approximate simulation - level 
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Figure 8.35 Two stirred-tank heaters: approximate simulation - temperature 

8.5.6 Simulation 

This system (in constrained-state form) can be simulated as in Section 8.5.4. 
The approximate system was simulated with initial state 

_ m + m2 _ 0.2 
X (hi i  + h,2 	0 

and the same input as before. 

(8.119) 
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The resulting response of the two outputs 

y= (1t22) 

	
(8.120) 

appear in Figures 8.34 and 8.35. 
In each case, the dashed line represents the exact system and the firm line the ap-

proximate system. 

8.6 EXAMPLE: LIQUID-LIQUID EXTRACTION 

8.6.1 Description 

Figure 8.36 Liquid-liquid extraction: schematic 

Figure 8.36 is a highly stylised representation of a three-stage liquid-liquid extraction 
process. Each of the three tanks contains the immiscible liquids water and kerosene, and 
each of these liquids has the same solute dissolved in it. The purpose of the process is 
to remove the solute from the kerosene and hence add it to the water. Kerosene flows 
at a constant rate fk from left to right, and water flows at a constant rate f,,, from right 
to left; it is assumed that the mass of water and kerosene in each tank does not vary 
with time. The input and output concentrations in the solute in kerosene are xo and x3 
respectively; the input and output concentrations of the solute in water are yo and y3 
respectively. 

The solute diffuses from the kerosene to the water in each tank so that xo > x3 and 
Y3 > Yo.  

Assumptions 

1. The holdups of water and kerosene are constant. 

2. The solute diffuses from kerosene to water at a rate proportional to the concentra- 
tion difference= k; -w, fkwì 	

r1 
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Figure 8.37 Liquid-liquid extraction: bond graph 

The bond graph in Figure 8.37 represents this system. The bond graph junctions 
and components have been labelled as in Table 8.4. The flow of solute between the tanks 
is modelled as in Section 8.2.3; there is no need for hydraulic modelling as the water 
and kerosene holdups are assumed constant. The flow of solute between the water and 
kerosene is modelled using the usual R element. 

8.6.2 The system equations 

The bond graph of Figure 8.37 is causally complete and therefore leads to a set of ordinary 
differential equations. These are 

_ ((Cku2 — x1 )rrkCwul — Cwx1 + Ckx6) 

(rCwCk) 
((x 1 —   x 2 )rTkC.w 9l,l — C,w x 2 + Ckx5) 

(rcwCk) 

xl 

2 



x5 = 
(rcwck) 

((x5 — x6)rCkrwu3 + Cwxl — Ckx6) 

((x4  - x5 )rCkrwu3  + Cw x2 - CkxS) 

i6 = 
(rCwCk) 

(8.121) 
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Label Physical equivalent 
fk Kerosene flow 
fk Common flow of kerosene though system 
xo Input concentration of solute dissolved in kerosene 
rk0 , ... , rk3 R modulated by fk 
k10 , ... , k13 Flow of solute dissolved in kerosene 
ckl 	, ... , ck3 Holdup of solute dissolved in kerosene kl , ..., k3  
k01 , ... 
X3 

, k03 Concentration of solute dissolved in kerosene 
Output concentration of solute dissolved in kerosene 

kwl , 
rl 	, 	... 

... , kw3 
, r3 

Flow of solute from kerosene to water 
Resistance to flow of solute from kerosene to water 

fw  Water flow 
wk Common flow of water though system 

Yo Input concentration of solute dissolved in water 
rw0 , ... 
ww10 

, rw3 
, ... 	, k13 

R modulated by fw  
Flow of solute dissolved in water 

cwl , ... 
w01 , 
y3  

, cw3 
... , w03 

Holdup of solute dissolved in water w1, ..., w3  
Concentration of solute dissolved in water 
Output concentration of solute dissolved in water 

Table 8.4 Bond graph notation 

23 	
((x2 — 23)rrkcw 2ll — Cw x3 + Ckx4) 

= 	
 

(/ 	
(rcwck) 

((Cot4 — x4)rckrwu3 + C.Wx3 — ckx4) 
x4 = 

(rCwCk) 

X3 
yl = — 

ck 
x6  

Y2 = - 
Cw 

where 

x = 

/k1N 

k2 
k3  

w1 

W2 

; y = 
x3 
y3 

. Zl = 
; 

fk 

xo 

fw 
Yo 

\w3/ 

Notice that equations 8.121 are non-linear. 

(8.122) 

(8.123) 
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SUMMARY 

• The application of bond graphs to the modelling of human anaesthetic drug uptake 
is discussed. 

• The advantages of automatic model generation in this context are illustrated. 

9.1 INTRODUCTION 

Models for the uptake of anaesthetic drugs, based on physiological data, were developed 
some 30 years ago by Mapleson (1964) and further developed Mapleson (1973) and Davis 
and Mapleson (1981). The strength of these models is that they are not empirical, but 
rather they are built on quantitative physiological information (for example the "standard 
man" (Mapleson, 1964)). They thus not only lead to accurate computer simulations but 
also enhance understanding and explanation in terms of the underlying quantitative 
physiological processes. The first version of Mapleson's model was based on a passive 
electrical analogue, but later versions were based on computer simulation code. 

This chapter shows that bond graphs provide an alternative, and powerful, modelling 
technique. In particular, the modelling procedures discussed in Chapter 8 are appropriate 
here. For brevity, attention is focussed on inhaled, rather than injected, drugs. 

A wider discussion of the use of bond graphs in the life sciences is given by LeFèvre 
(1995). 

9.2 COMPONENT MODELS 

9.2.1 Variables 

As in process engineering (Chapter 8), pseudo bond graphs are used in this chapter; thus 
the variables used by the specialists in the field can be freely used. 

As discussed by Mapleson (Mapleson, 1964) the tension of a gas dissolved in a liquid 
is defined as the partial pressure of that gas within a gas in equilibrium with the liquid. 
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Effort Units Flow Units 

Tension atm mass flow rate m3s-1  

Table 9.1 Effort and flow variables in pharmacokinetics 

As he says `... there are certain advantages in working in terms of ... tension rather tl.an 
concentration, because all tensions in the blood and tissues all tend toward the same 
value - the tension in the inspired tissue.' For these reasons, it is natural to use tension 

as the effort variable. Following (Mapleson, 1973) an appropriate unit is atmospheres 
- i.e. pressure expressed as a percentage of atmospheric pressure. Tension may then 
be re-expressed in any other units by multiplying by atmospheric pressure expressed in 

those units. 
The concept of partial pressure is based on the approximation that the properties of 

one gas do not change when mixed with a second gas. In particular, the mass M of a 
gas with density (at a given temperature and pressure) p within a container of volume 
V and at a tension (partial pressure) T is 

M = pVT 	 (9.1) 

This approximation no longer holds when a gas is dissolved in a liquid. This leads to the 
notion of the partition coefficient a between a gas and a liquid defined as `the ratio of 
the concentrations in the two phases when they are in equilibrium' (that is at the same 
tension) (Mapleson, 1964). Thus Equation 9.1 becomes 

M = .\pVT 	 (9.2) 

It is convenient to define a normalised mass m as the ratio of the mass M to that of a 

unit volume of the gas (at the corresponding temperature and pressure) 

m  = M 	 (9.3) 

Equation 9.2 then becomes 

m = ÀVT 	 (9.4) 

As in in Chapter 8, the appropriate flow variable is mass flow. In this context, the 
inhaled gas dissolves in the blood and is then transported to the various body organs. If 
the volumetric blood flow is Q, the transported flow Q9  of dissolved gas is 

Q = .VTQ 	 (9.5) 

9.2.2 Components 

The human body contains organs and tissues perfused by a flow of blood. If the blood and 
tissue drug tensions differ, then the drug flows between the blood and the corresponding 
tissue; the tissues store the drug, the blood both stores and transports the drug. This 
quite complicated system may be approximated by dividing the body into pools , each 

containing drug at a given tension and arteries and veins which transport the drug 

between pools (Mapleson, 1973). 
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C elements 
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Qg= Qgl - Qg2 
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Qg2 

Figure 9.1 Pool model 

As in Section 8.2.2, a pool is a C element storing the mass of the dissolved gas m as an 
integral of the net flow Q9 = Qgl — Q92 

t m(t) = J Q9(T)dT 	 (9.6) 

The corresponding effort variable, tension T, is then given by Equation 9.4 as 

1 
T = —

c
m 	 (9.7) 

where 

c = AV 	 (9.8) 

The corresponding bond graph appears in Figure 9.1. 

R elements 

S Qb 

R 
/ 

T Qg 

T ~ 

Qg 

 

Qg 

Figure 9.2 Artery/vein model 

Similarly, arteries and veins can be modelled as in Section 8.2.2 as R elements where the 
flow Q9 is given in terms of the upstream tension T as 

Q9 = rT 	 (9.9) 
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where the equivalent resistance r is given by 

1 
= AQ 

 
(9.0) 

The corresponding bond graph appears in Figure 9.2; as in Section 8.2.2, the R elemen is 
modulated (by the blood flow Q) and the active bond renders the gas flow Q9  independent 
of the downstream tension. 

9.3 SIMPLE PHARMACOKINETIC MODELS 

Lungs 

Body. 

 

  

Figure 9.3 A simple pool model 

As an initial illustration, consider the very simplified model of drug uptake outlinf in 
Figure 9.3. It is to be interpreted as follows: 

• the lungs inhale and expire (but do not store) the drug; 

• the arteries carry blood (containing drug at a tension; corresponding to the lungs) 
from the lungs to the body with flowrate Q; 

• the body is composed of a single lump of tissue; 

• the tension of the drug contained in the blood perfusing the body tissue i: in 
equilibrium with that tissue, and also stores the drug ; 

• the blood perfusing the body is lumped into one pool; 

• blood in the vein and artery carry, but do not store the drug. 

These interpretations are not obvious from Figure 9.3; in contrast the correspondng 
bond graph has a precise and unambiguous interpretation. Two bond graph models vili 
be considered: 

• an active model containing active bonds; 

• a passive model containing no active bonds. 
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9.3.1 Active model 

S:t0 

0 ti 

1:tbvK 

R:rbv 

OTtb E—~ 1:fba 

M:yb 
C:cb 	R:rb 

Figure 9.4 A simple pool model: bond graph 

Component label Component type Associated physical variable 
ti Common tension junction Lung tension TL 
tb Common tension junction Body tension TB 
tO Source Inspired tension Tt = TL 
cb C Quantity of drug stored in body 
fba Common flow junction Arterial drug flow (lung-body) 
rb R Arterial drug flow (lung-body) 
fbv Common flow junction Venous drug flow (body-lung) 
rbv R Venous drug flow (body-lung) 

Table 9.2 A simple pool model: bond graph labels 

The bond graph of Figure 9.4 gives a precise and unambiguous representation of Figure 
9.3. The interpretation of the bond graph components is given in Table 9.2. Following 
Section 9.2.2. each of the two R components has an equivalent resistance (Equation 9.10) 

1 
r = ~Q 	 (9.11) 

and the C component include the drug stored in both the perfusing blood and the tissue 
and thus has the equivalent capacity (Equation 9.8) 

c = Ve + t Vt (9.12) 

where Ab and At are the partition coefficients of the blood and tissue respectively and V5 
and Vt are the volumes of the blood and tissue respectively. 
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An alternative approach to modelling would be to explicitly include separate C com-
ponents for the blood and tissue pools; this would have the advantage of allowing exam-
ination of the effect of dropping the assumption of tissue/blood tension equilibrium. 

This bond graphs represents a linear system; and the bond graph is causally complete 
and contains no C or I components with derivative causality. So the system has an 
ordinary differential equation representation (Section 4.9) on the form of Equation 4.14 

= Ax+Bu 
y = CX + Du 

In this particular case the matrices are all scalar and given by 

x =(ti); y = (tb); u = (to ) 

A=( 1-11 ) 
~~brbl 

B =( 6) 

C =( ) 

D=(0) 

As discussed in Section 4.13, the corresponding transfer function representation is 

G(s) _ 
1 

(9.19) 
1 + C6rbS 

For this very simple case, then, the dynamic system relating inspired tension to body 
tension is a first-order lag with time-constant r = crb = abv~ ~,v~  

9.3.2 Passive model 

Component label Component type Associated physical variable 

ti 
tb 
tO 
cb 
fb 
rb 

Common tension junction 
Common tension junction 
Source 
C 
Common flow junction 
R 

Lung tension TL 
Body tension TB 

Inspired tension T, = TL 
Quantity of drug stored in body 
Net arterial/venous drug flow (lung-body) 
Net arterial/venous drug flow (lung-body) 

Table 9.3 A simple pool model: passive bond graph labels 

The bond graph of Section 9.3.1 (Figure 9.4) contains active components associated with 
the R components. However, in this simple case, an entirely passive (no active bond) 
model is possible. This is because the bond graph of Figure 9.4 has special properties: 

• the two R elements (rb and rbv) have the same value; 

(9.13) 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

(9.18) 
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S:tO 

J  
0 ti 

0_tb / 	I 1:fba 

M:yb 	 
C:cb 	R:rb 

Figure 9.5 A simple pool model: passive bond graph 

• the flows through the two resistors are connected between the same two zero junc-
tions. 

The net flow into the pool represented by cb is thus 

"G g  = 
T
(TL - TB) (9.20) 

The passive bond graph of Figure 9.5 thus has exactly the same properties as that 
of Figure 9.4: the flow through the R components is given by Equation 9.20. 

9.4 A DETAILED PHARMACOKINETIC MODEL 

A diagrammatic representation of how an inhaled drug perfuses the body tissue and 
organs appears in Figure 9.6. Like many domain-specific diagrams, Figure 9.6 is again 
ambiguous and imprecise without additional domain-specific information. It is to be 
interpreted as follows: 

• the lungs inhale and expire the drug; 

• the lungs also store the drug, and therefore have an associated (gaseous) pool with 
volume V; 

• the arteries carry blood (containing drug at a tension corresponding to the lungs) 
from the lungs to the tissues with flowrate Q; 

• the blood perfusing the tissues is lumped into four pools: 

— brain (volume Vb) 
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Figure 9.6 Inhaled drug perfusion 

— viscera (volume V„) 

— lean (volume V1) 

— fat (volume Vj). 

• some blood does not perfuse any tissue; this is lumped into the pool labeled shunt 
with volume Vs; 

• the flow of blood in the artery (and vein) associated with the five pools (four tissue 
and one shunt) is a fixed percentage of the blood flow in the lung artery; 

• the veins carry blood (containing drug at a tension corresponding to each tissue) 
from the each tissue to the lungs; 

• the tension of the drug contained in the blood perfusing each tissue is in equilibrium 
with that tissue, and also stores the drug; 

• blood in the veins and arteries carry, but do not store, the drug. 

The bond graph of Figure 9.7 shows a passive representation of the more complex 
system; it is an extension of the bond graph of Figure 9.5 and may be used in place of 
the corresponding active version for the same reasons as those given in Section 9.3. The 
components corresponding to the lung and brain are given in Table 9.4; the components 
corresponding to the viscera, lean, fat and shunt pools have suffix v,l,f and s respectively. 

There are two main differences compared to the model of Section 9.3.2: 

• the lung model includes the storage of drug in the lung tissue and 

• the body is subdivided. 
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Figure 9.7 A detailed pharmacokinetic model: bond graph 

As in Section 9.3.2, the system has an ordinary differential equation representation 
(Section 4.9) on the form of Equation 4.14 

i = Ax+Bu 
y = CX + Du 

O:ta 

\ 

(9.21) 
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Component label Component type Associated physical variable 
u Source Inspired tension Ti 
ti Common tension junction Lung tension TL 
fi Common flow junction Net drug flow into lung 
ci C Quantity of drug stored in lung 
tb Common tension junction Brain tension Tb 

tO Source Inspired tension Ti 
cb C Quantity of drug stored in brain 
fb Common flow junction Net arterial/venous drug flow (lung-brain) 
rb R Net arterial/venous drug flow (lung-brain) 

Table 9.4 A detailed pharmacokinetic model: bond graph labels 

But the state, output and input vectors are now 

X= 

/mt\ 
mb 
m„ 
mi 
mf 

;y= 

/ ti \ 
tb 

t v 

ti 

tf 

; u=(to) 

and the corresponding matrices are given by 

(9.22) 

\ts / 
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(9.25) 
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The expressions have been simplified by substituting 

1 	
~xóx~L kx = — = 

rx 

where A5 is the partition coefficient of the pool s, Sx is the fraction of the blood flow 
perfusing tissue s and Q is the total blood flow 

VS 

Q— 

_ 

Th 

where Vs is the heart stroke volume and Th the heartbeat interval. 
The capacity cx of each pool is 

ea = AxVx + Aó7ood7V 

where VT is the tissue volume and 7x is the fraction of the total blood volume associated 
with each pool. 

Where s is the appropriate subscript. 

Pool Volume Vs Flow fraction Sx Volume fraction 7x Partition Coeff. A5 
Lung 0.6 — 
Brain 0.0007 0.000086 0.000055 0.46 
Viscera 6.2 0.63 0.399 0.46 
Lean 39.2 0.131 0.131 0.46 
Fat 12.2 0.04 0.111 1.40 
Shunt 0.0 0.199 0.126 0.46 

Table 9.5 A detailed pharmacokinetic model: data 

The total blood volume V, the heart stroke volume VS and the heartbeat interval Th 
are 

V = 5.4 "litres"; Vs = 0.108 "litres"; Th = 1 "s". (9.30) 

This linear system was simulated with the data in Table 9.5 corresponding to a 
`standard man' (Mapleson, 1964) breathing 75% N2O at atmospheric pressure of 760 
mmHg for two minutes and air for the rest of the time. 

Figures 9.8, 9.9 and 9.10 show the drug tension in the lung, brain and the other 
tissues respectively. These graphs closely resemble those given by Mapleson (1964). 

The broad picture is that the tensions increase whilst N2O is breathed in, and then 
they decrease. In this case, it is the brain tension which determines depth of anaesthesia; 
the fact that this takes a long time to decay is of concern in the context of post-operative 
recovery. The reason is that the time constants associated with two of the pools — the 

(9.27) 

(9.28) 

(9.29) 
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Figure 9.8 A detailed pharmacokinetic model: lung tension 

Brain tissue tension 

Figure 9.9 A detailed pharmacokinetic model: brain tension 

fat and the lean tissues — are long; drug continues to leak out of these for an extended 
period. 

Many other representations can be generated. For example, the magnitude and phase 
of the frequency-response relating the input tension to brain tension (Figures 9.11 and 
9.12). For example, this could form the basis of a frequency-domain control design. 



Brain tension: frequency response magnitude 
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Figure 9.10 A detailed pharmacokinetic model: other tissue tensions 

Figure 9.11 A detailed pharmacokinetic model: frequency-response magnitude 

9.5 AN APPROXIMATE PHARMACOKINETIC MODEL 

As discussed in Chapter 5, bond graphs provide a convenient way of approximating 
dynamic systems; this section shows how the six pool model may be reduced to a four pool 
model by lumping together the fat/lean and the viscera/shunt pools. This is achieved 
in Figure 9.13 by forcing the pools in each pair to have a common tension via the bonds 
associated with the two additional junctions. 

In this case, the bond graph has some C elements with derivative causality. As in 
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Brain tension: frequency response phase 
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Figure 9.12 A detailed pharmacokinetic model: frequency-response phase 

Section 4.10 (Equation 4.55), the system may be described by constrained-state equations 
of the form 

Eæ = Ax + Bu 
y = Cx+Du (9.31) 

where 
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Figure 9.14 An approximate pharmacokinetic model: lung tension 

Brain tissue tension: approx model 

Figure 9.15 An approximate pharmacokinetic model: brain tension 
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(9.37) 
C,, 
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The same effect could be obtained by creating a new model with the appropriate 
pools lumped together; however, the approach taken here is more direct and does not 
require remodelling. 

Once again, this linear system was simulated with the data in Table 9.5 corresponding 
to a `standard man' (Mapleson, 1964) breathing 75% N2O at atmospheric pressure of 
760 mmHg for 4 minutes and air for the rest of the time. 

Figures 9.14 and 9.15 show the drug tension in the lung and brain, respectively shown 
in fi-m lines for the approximate model and dashed lines for the detailed model. As far 
as ling and brain tensions are concerned, the approximate model is adequate. 

9.6 A MORE DETAILED PHARMACOKINETIC MODEL 

Venous 	Arterial 	, 
pool 	 pool  

Figure 9.16 A more detailed pharmacokinetic model 

The models considered in the previous sections assume that the storage of drug in the 
blood is associated with the individual tissue pools. The more complex model of Maple-
son (1973) has separate pools for the blood. This can be important as there may be 
a significant delay introduced by the artery and vein. There are a number of ways of 
extending the model in this way, one of which appears in Figure 9.16. The arterial and 
the venous blood each have a separate pool; each of which is divided into two equal 
portions. 
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Because the tissue pools no longer connect to a single pool (the lung) it is no longer 
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Component label Component type Associated physical variable 
u 
ti 

Source 
Common tension junction 

Inspired tension T, 
Lung tension TL 

ci C Quantity of drug stored in lung 
apl Common flow junction Drug flow from lung 
vpl Common flow junction Drug flow into lung 
apcl, apc2 C Quantity of drug stored in arterial pools 
vpcl, vpc2 C Quantity of drug stored in venous pools 
ap3 Common flow junction Drug flow in artery 
vp3 Common flow junction Drug flow in vein 
tb Common tension junction Brain tension T6 
tO Source Inspired tension T; 
cb C Quantity of drug stored in brain 
fb Common flow junction Arterial drug flow to brain 
rb R Arterial drug flow to brain 
fbv Common flow junction Venous drug flow from brain 
rbv R Venous drug flow from brain 

Table 9.6 A more detailed pharmacokinetic model: bond graph labels 

Blood tension at lung: P model 

Figure 9.18 A more detailed pharmacokinetic model: lung tension 

possible to use a passive bond graph. 

The bond graph of Figure 9.17 shows an active representation of the more detailed 
system; it is an extension of the bond graph of Figure 9.7. It is topologically similar to 
Figure 9.16. 

Table 9.4 gives a description of the bond graph components; the components corre-
sponding to the viscera, lean, fat and shunt pools have suffix v,l,f and s respectively. 

Once again, this linear system was simulated with the data in Table 9.5 corresponding 
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Brain tissue tension: P model 

Figure 9.19 A more detailed pharmacokinetic model: brain tension 

Brain tension: frequency response magnitude 

Figure 9.20 A more detailed pharmacokinetic model: frequency-response magnitude 

to a `standard man' (Mapleson, 1964) breathing 75% N2O at atmospheric pressure of 
760 mmHg for 4 minutes and air for the rest of the time. Figures 9.18 and 9.19 show the 
drug tension in the lung and brain, respectively shown in firm lines for the more detailed 
model and dashed lines for the detailed model. The effect of the redistribution of the 
blood in the model is to somewhat delay the responses. 

Figures 9.20 and 9.21 show the magnitude and phase of the frequency-response relat-
ing the input tension to brain tension for the more detailed model. The increased phase 
lag in Figure 9.21 as compared to that in Figure 9.12 has implications for control system 
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Figure 9.21 A more detailed pharmacokinetic model: frequency-response phase 

design. 
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Mechanical and robotic systems 

SUMMARY 

• The systematic construction of dynamic models of mechanical systems composed 
of interconnected rods is introduced. 

• The automated modelling of three-dimensional manipulators is discussed. 

10.1 INTRODUCTION 

There are a number of ways of obtaining the equations of motion of mechanical systems. 
The purpose of this chapter is to illustrate how bond graphs provide a systematic way 
of describing mechanical systems and their corresponding dynamics. The seminal paper 
in this area is that of Karnopp (Karnopp, 1969), and extensions appear in a recent text 
book (Karnopp et al., 1990). 

A key notion, introduced by Karnopp (Karnopp, 1969), is that of the representation of 
geometric transformations by bond graph (energy conserving) transformers. This enables 
bond graphs to be written down from geometric considerations; the power conservation 
automatically implies the forces corresponding to the velocities. 

These ideas are illustrated by examples in which mechanical systems are built up 
from masses, springs and dampers connected by rigid rods. The exposition is initially 
restricted to two dimensional motion; but Section 10.6 extends the ideas to three dimen-
sional motion. 

10.2 TWO-DIMENSIONAL MOTION: THE RIGID ROD 

The rigid rod of Figure 10.1, moving in the plane, is a standard component of mechanical 
systems. The three significant locations on the rod are the two tips and the centre of 
mass. The tips are significant because they define the connections to the rod; the centre 
of mass is significant because the equations of motion are most conveniently written 
there. The rigid rod thus acts as a constraint between these three spatial locations. 
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é va 

Figure 10.1 A rigid rod 
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Figure 10.2 A rigid rod: bond graph 

Motion is considered with respect to an absolute coordinate system: vx and vy are 
the components the velocity of one tip with respect to this coordinate system; Vx and 
Vy are the components of the velocity of the other tip; i and ÿ are the components the 
velocity of the centre of mass. These three locations share the same angular velocity 
à = va = Va . The distance from the first tip to the centre of mass is 11, and the distance 
from the second tip to the centre of mass is is l2. 

The kinematics of the rod are expressed by the equations 

2 = vx — vxa 
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= vy + vya 
Vxa 

Vy = y + Vya 

Where vxa , vya , Vs„ and Vya  are the velocity components due to the angular velocity 
â given by the transformation equations 

vxa  = ll  cosa ie 
vya  = ll  sin a à 
Vxa  = 12  cosa â 
Vya  = l2  sin a ix 	 (10.2) 

The dynamics of the rod are given by the three (Newton-Euler) equations 

0 fx  x = 
m 

y = 
ofy 
m 

= 
- r 	

(10.3) 

where m and J are the mass and inertia of the rod respectively and A f x  and 0 fy  are 
the net forces acting in the x and y directions at the centre of mass and Ar is the net 
torque acting at the centre of mass. 

The corresponding bond graph appears in Figure 10.2. The area within the dotted 
box represents the rod itself, the six external bonds indicate how connections are made 
to the rod. 

• There are three I components labelled `mx', `my', and `j'; these implement the 
three dynamic Equations 10.3. 

• There is one C component labelled `c' this has zero stiffness and thus does not 
effect the system behaviour, but its corresponding integrated flow variable q is 

/ t 
q  = J

ix(e)de = a + qo 
0 

(10.4) 

If initialised in such a way that qo  = 0, q = a and thus provides a modulating 
signal for the transformers. 

• There are three 1-junctions labelled `dx', 'dy', and 

— These three 1-junctions carry the three velocities associated with the centre 
of mass: i , g, and a. 

— These three 1-junctions each compute the net effort acting on the correspond-
ing I element (0 f x , A f y  and Or ). 

• There are four 0-junctions labelled Ix', 'fy', `Fx', 'Fy'. 

— These four 0-junctions carry the x and y components of the force associated 
with the upper and lower parts of the rod. 

(10.1) 
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— These four 0-junctions imply the four kinematic equations 10.1. 

• There are four transformers labelled 'cl', `sl`, `c2' and `s2'. 

— These four transformers imply the four transformation Equations 10.2. 

These four transformers, by power conservation, also imply the corresponding 
force transformations. 

— These four transformers are each modulated by a (generated by the zero-
stiffness compilance labelled `c'). 

This basic two dimensional building block may be used to construct dynamic systems 
in various ways as illustrated in the following examples. 

10.3 A SIMPLE PENDULUM 

Figure 10.3 A simple pendulum 

Figure 10.3 shows a simple pendulum made by attaching the upper end of the rod to a 
fixed rigid body via a frictionless hinge. A torque may be applied to the upper end of 
the pendulum. For simplicity in this example take 11  = 12 = 1. A gravity force u1  = f9  
acts at the centre of mass in a vertically downward direction. 

Because the pendulum is a special case of the rod, the bond graph (Figure 10.4) 
is the same as that of the rod but with additional components to take account of the 
constraints implied by the attachment. In particular: 

• Zero velocity sources are attached to junctions `vx' and 'vy' to indicate that the 
upper tip is fixed in the horizontal and vertical directions. 

• Zero force sources are attached to junctions `Vx' and 'Vy' to indicate that the 
lower tip has no forces acting on it. 
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Figure 10.4 A simple pendulum: bond graph 

• A force source (with half arrow pointing outwards) is attached to junction `dy to 
indicate that gravity is acting in the negative y direction at the centre of mas:. 

• A force source is attached to junction `va' to indicate the applied torque at he 
hinge. 

Only one of the three I elements may have integral causality, the one correspondng 



A simple pendulum 	 251 

to the rotation has been chosen in Figure 10.4. 
The corresponding differential-algebraic equation (Section 4.7) is 

x= ( a ~ ) ; z = (j ; y = (a) ; u= (fa) 

xl = — ((u1 + .22 ) sin (x2 )l — cos (x2)/ii — u2) 

3 

xl 

21 

22 

yl = 

( – cos (x 2)lmxl ) 

7 
(sin (x 2 )lmxi ) 

xi 

3 

(10.7) 

(10.8) 

These equations are linear in the non-state derivative i, terms and so may be rewritten 
in constrained-state form (Section 4.12) as 

X1 = —(sin (x2 )lui — u2 ) 	 (10.9) 

(10.5) 

(10.6) 

xi 
yl = — 

3 

( (i+12 m) __ 
E 	Ó Ol 

1 

Not surprisingly, the E matrix essentially converts the inertia j about the centre of mass 
to the inertia j +- ml 2 about the tip. The equation is non-linear due to the gravity force 
ui . The differential-algebraic equation may be linearised about a = 0 ; â = 0 to give the 
linear descriptor equation (Section 4.10) with matrices 

E_ 

1 0 0 0 0 0\ 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0/ 

(10.13) 

A= 

/ 0 —lui 0 0 I O\ 
0 	0 0 0 0 i 

	

0 	0 	0 0 1 0 

	

0 	0 	0 0 0 1 
Him) 0 —1 0 0 0 J 

	

\ 0 	0 	0 —1 0 0 / 

(10.14) 



252 	 Mechanical and robotic systems 

B= 

/0 1\ 
0 0 
0 0 
0 0 
0 0 

\0 0/ 

(10.15) 

C=( 0 0 0 0 0) 	 (10.16) 

D=(0 0) 	 (10.17) 

The corresponding transfer function is 

G11(s) = 0 	 (10.18) 

+8  
G12(s) =  lut  + (j + 127452  

(10.19) 

Notice that the transfer function relating gravity to angle is zero; the gravity term u1  
appears as a modulation in the transfer function relating torque to angular velocity (â). 

The bond graph of Figure 10.4 has integral causality on the angular momentum 
inertia. In fact, there are three possible causalities associated with the inertias: corre-
sponding to integral causality on each of the three inertias in turn. 

The corresponding differential-algebraic equation (Section 4.7) is 

x= (
hh 
ax ); z= ( hâ ); y =(a); u= ( T9 ) (10.20) 

xl = 

i2 = 

((ui+z1)  sin (x2)1—u2+z2) 
(cos (s2 )/) 

( — x1)  
(cos (x 2)lm) 

(10.21) 

(— sin (x2)x1 ) 
z1  = cos(x2 ) 

(-7x1)  z2 = 	 (10.22) 
(cos (x2 )lm) 

y1 = 	
(—x1) 	 (10.23) 

(cos (x2)lm) 

These equations are linear in the non-state derivative z; terms and so may be rewritten 
in constrained-state form (Section 4.12) as 

X1 
= (sin(x2 )lu1  —  u2) 	 (10.24) 

(cos (x2)d) 
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Figure 10.5 A simple pendulum: bond graph with different causality 
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(10.25) 
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(10.26) 
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(7+12rn) 	((J+12rn.) sin (x2)x i )  

E = ((cos (x2 ) 212,0 	(cos(x2)3 12 m) 
0 	 1 

(10.27) 

Thus the change in causal pat ern gives a cartesian state-space description in place of 
the polar state-space description. The same system has quite different representations 
at this level. However, the resultant linearised transfer function is identical. 

10.3.1 A simple pendulum with bob 

There are variations on this theme. For example, a bob of mass mb and small dimension 
(and thus zero inertia) could be added to the lower tip. Figure 10.6 is identical to 
Figure 10.4 except that the two lower force sources have been replaced by I components 
corresponding to the x and y velocities of the bob, and a third input u3 = fb has been 
added in the form of an additional source labelled F_b in Figure 10.6. 

The corresponding differential-algebraic equation (Section 4.7) is 

x = 

hx 

( a ); z= mbx 
; y=(a); u= 

mby fg 

T 

f5 

(10.28) 

(10.31) 

Again, these equations are linear in the non-state derivative zi terms and so may be 
rewritten in constrained-state form (Section 4.10) as 

Xl = —((u1 + 2u3) sin (x2)1 — u2) 	 (10.32) 

xl 
X2 = 

7 
(10.33) 
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Figure 10.6 A simple pendulum with bob: bond graph 

yi = 

E= 

(10.34) 

(10.35) 

This time, the equivalent inertia is j + ml2 + mb(21)2. 
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Linearised about a = 0 ; à = 0, the system transfer function is 

G11(s) = 0 

+s 

systems 

(10.36) 

(10.37) 

(10.38) 

G12(s) = (l(ui  + 2u3)) + (j + l2m  + 412mb)s2  

G13(s) = 0 

Again, the transfer functions relating the gravity terms (u1  and u3) to angular velocity 
(a) are zero, but both u1  = gm and u3  = gmb modulate the transfer function relating T 

to angular velocity (à). 

10.3.2 Inverted pendulum and cart 

Figure 10.7 Inverted pendulum 

Figure 10.7 shows an inverted pendulum comprising a uniform rod of mass m and length 
21 attached to a cart of mass mc  via a frictionless pivot. Figure 10.8 shows the bond 
graph. The basis of this bond graph is that of the rod of Figure 10.1 with the bond graph 
of Figure 10.2. The x velocity of the lower end of the pendulum shares the velocity of 
the cart, so the I element m_c is added to the corresponding 1:junction V_x. The y 
velocity of the lower end of the pendulum is zero, so a zero flow source V_y is attached 
to the corresponding 1:junction V_y. The there is no torque acting at the lower end of 
the pendulum so a zero effort source F_a is added to the corresponding 1:junction V_a. 

The upper end of the rod has no applied forces or torques - the appropriate zero 
effort sources are added to junctions v_x, v_a and v_y. As before, the inertia of the rod 
about its centre is 3m/2. 

The expressions in the following equations have been simplified by substituting 
m 

P = — m 

The corresponding differential-algebraic equation (Section 4.7) is 

hx 	
(f 

x= (h„,);  z= ( h  ; y=(a); u=_  \Î / a 

(10.39) 

(10.40) 
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/
—
/
(u2 

(( 	
+ z2) 

x2 = 

	

	ui + Zi) sin (x3) + (u2 + z2) cos (x3))1 
(3x2 )  

(l2pmc) 
x3 (10.41) 
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z1 

Z2 

_ (-3 sin (x3)xz) 

_ (-(3 cos (x3)x2 - lxl )) 
(IP) 

(10.42) 

(3x2)  
yl = 

(l 2Pmc) 

Again, these equations are linear in the non-state derivative i, terms and so may be 
rewritten in constrained-state form (Section 4.10) as 

X1 = —u2 

X2 = (sin (x3)u1 + 

(3x2) 

cos (x3)u2)1  

(-3cos(x3)) (3sin(x3)x2 ) 

(10.44) 

(10.45) 

(10.46) 

(10.47) 

(10.43) 

X3 = 
(l2Pmo 

(3x2) 
y1 = 	2  

(l Pmc) 

(p+1) 
P 

E_ 	(—cos (x3 )l) 
(lP) 

(— (3(p-1)cos(x3)2 -4p)) 
(lP) 

(3(p-1) sin (x3) cos (x3 )x2 ) 

P p P 

0 	 0 	 1 

Linearised about a vertical, stationary pendulum and cart, the system transfer func-
tion is 

Gil (s) = 0 

- 3s G12(s) = 
	

  
(39mc(P  + 1)) + (lm=(-P  - 4))s2 

(10.49) 

(10.50) 

10.4 A DOUBLE PENDULUM 

Figure 10.9 shows a double pendulum made from the simple pendulum by attaching a 
further rod to the lower tip of the first rod using a frictionless revolute joint. This ;oint 

constrains the velocities of the lower tip of the upper rod and the upper tip of the lower 
rod (in both x and y directions) to be the same; there is no constraint on the relative 
angles of the two rods. For simplicity, the rods are taken to be uniform and of length 2l. 
The inertia j about the centre is thus 

j = -3 	 (10.51) 
3 

The relative angle 02 of the second rod with repect to the first is the difference of the 
absolute angles al and 02 

(10.43) 

Bz = 02 - al 	 (10.52) 
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Figure 10.9 A double pendulum 

Figure 10.10 shows the corresponding bond graph. A copy of the single rod bond 
graph has been appended to that of the simple pendulum and connected by two bonds 
which ensure that the velocities of the lower tip of the upper rod and the upper tip of 
the lower rod match in both x and y directions; a zero junction and corresponding (zero) 
torque source (f_a2) has been added 

Again, zero-force sources have been added at the lower tip of the lower rod. 
The corresponding differential-algebraic equation (Section 4.7) is 

x = 

h1 
a1 

h2 

( 

a2 

; z= /IT

h~

x 

hy 

hy 

( 
fi 
l ; y=(a); u— 

\Tl /  f2 
(10.53) 

~1 —((u1 + 2u3 + z2 + 2z4 ) sin (x2 )1 — (.Z1 + 2z3) cos (x2 )1 — u2 ) xi 
2 

X3 = -((u3 + z4 ) sin (x4) — cos (x4)i3)/ 
24 X3 

(10.54) 
9 

z1 = 
( — cos (x2 )lmxi ) 

9 
(sin (x2)lmxi ) 

Z2 = 

z3 = 
(—(2 cos (x2)x1 + cos (x4)x3)lm) 

Z4 = 
((2 sin (x2 )x1 + sin (x4)x3)lm) 

(10.55) 
7 

X3 
Y1 = — (10.56) 

3 
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Figure 10.10 A double pendulum: bond graph 

Again, these equations are linear in the non-state derivative z; terms and so may be 
rewritten in constrained-state form (Section 4.10) as 

Xi = —((ui 2u3) sin (x 2)1 — u2) 	 (10.57) 
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xl 
X2 = 

7 

X3 = — sin (x4)/u3 

X3 
X4 = 

~ 

X3 
yl = — 

7 
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(10.58) 

(10.59) 

(10.60) 

(10.61) 

16 	0 	6c1 	681x3 
0 	1 	0 	0 _ 

	

E 6e1 —6s1 x1 4 	0 
0 	0 	0 	1 

The following substitutions have been made to simplify the equations 

ml2 

3 
02 	a2 — a1 
C2 = cos 02 

82 = sin 02 

Linearised about al = a2 = al = ef 2 = 0, the system transfer function is 

G11(s) = 0 

+ — 6s3 
G12(S) = 

9g 2m + 28g1ms2 + 28js4 

G13(S) = 0 

(10.62) 

(10.63) 

(10.64) 

(10.65) 

(10.66) 

Again, the transfer functions relating the gravity terms (ui and u3) to angular velocity 
(a) are zero, but both u1 = gm and u3 = gmb modulate the transfer function relating r 
to angular velocity (â). 

A variation on this theme arises by fixing a rotational spring at the joint between 
the two rods; the corresponding bond graph is given in Figure 10.11. The 0-junction 
labelled `fa,2' gives the relative angle 0 = a2 — al across the new C component labelled 
c representing the spring with compliance c. 

This gives an additional state corresponding to the spring displacement 0. The three 
angular states 0, a1 and a2 are not, at first sight, independent. However, the initial 
conditions on the three corresponding compliances are independent so these three states 
are not, in fact, dependent. The corresponding differential-algebraic equation (Section 
4.7) is 

hl 	
h 

al 	hx 	 fl 
x= 0 ; z = hy 

);y=;u=(rj 

 
h2 

 
h 	 f2 

Y 

(10.67) 

a2 
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Figure 10.11 A double pendulum with spring: bond graph 
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Xi 

7 
(x1 - x4)  

(-((u3 + z4) sin (x 5 )cl — cos (x 5)c/3 — x3)) 

 

C 
X4 

- 
(10.68) 

zi 

z2 

Z3 

Z4 

(— cos (x2)lmxi ) 

(sin (x2)lmxi) 

(—(2 cos (x2 )xi + cos (x 5 )x4)lm) 

((2 sin (52)51 + sin (x5 )x4)lm) _ 	
.1 

(10.69) 

Yi = 
54 

(10.70) 

Again, these equations are linear in the non-state derivative z; terms and so may be 
rewritten in constrained-state form (Section 4.10) as 

~r 3 

X4 

(—((ui + 2u3)s2n(x 2)cl — cu2 + x3)) 
X1 = 

(3x1)  
X2 = (12m

) 

(3(xi - X4)) 
X3 = 	

(l2m) 

(10.71) 

(10.72) 

(10.73) 

X4 = 
(—(sin(x 5 )clu3 — x3)) 

c 
(10.74) 

(3x4) 

X5 = (l2m) 

(3x4)  
yi = (12 m) 

E11 	16 
E14 	6(sin(x2)sin(x5) + cos(x2)cos(x5)) 

E15 	6(sin(x2)cos(x 5 ) — sin(x 5)cos(x2))x4 

E22 	1 

E33 	1 
E91 	6(s2n(x2)s2n(x 5 ) + cOs(x2)cOs(x5)) 

(10.75) 

(10.76) 
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E42 = 

E44 = 
E55 = 

— 6(sin(x 2)cos(xs ) — sin(x s )cos(x 2))xl  
4 
1 	 (10.77) 

(10.78) 

(10.79) 

Linearised about a l  = 02  = B = IX1 = â2  = 0, the system transfer function is 

Gil(s) = 0 	 (10.80) 

( ) _ 
	 +s + —6cjs3  

(10.81) 
G12 

s 	
(gm(9cgj + 41))+ (4j(7cglm + 8))s2  + 28cj2s4 	

10.81 

G13(s) = 0 	 (10.82) 

10.5 A TWO-LINK MANIPULATOR 

Figure 10.12 A two-link manipulator 

Manipulators composed of rigid links connected by revolute joints are usually analysed 
via recursive Newton-Euler or Lagrange techniques (Paul, 1981; Fu et al., 1987; Craig, 
1989). However, bond graphs provide an alternative technique (Anex and Hubbard, 
1984; Tiernego and Bos, 1985; Gawthrop, 1991) which is particularly attractive when 
actuator characteristics are to be modelled. The motion of manipulators in three dimen-
sions is discussed in Section 10.6. 
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This Section considers the two-link manipulator depicted in Figure 10.12 composed 
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of two uniform rigid links of length 21 moving in a horizontal plane. The joint anges 01  
and 02  are 

01 = al 
02 = a2  — al  (10.83) 

The bond graph is similar to that of the double pendulum of Section 10.4 e:ccept 
that: 

• there are no gravity terms (the manipulator moves in a horizontal plane), 

• torques are applied at each joint and the corresponding joint velocities measured. 

The corresponding differential-algebraic equation (Section 4.7) is 

x= 

xl 

i2 

x3 

x4 

zl 	= 

22 	= 

23 	= 

24 	= 

yl 

Y2 

h1  

hl 2 
a2  

( Z1 
xl  

= 

= 
23  

= 
7 

-,(s2n(x 4 )l,Z'4  

(—cos(x 2 )lmxl ) 

; z= 

+ 223)cos(x 2)l 

hx  

1 ) ; u= 
(T1/ 

) 

	

by 	y= ( B
2  

	

x 	 T2 

by  

— ( Z 2  + 2Z4)s2n(x 2 )1 + ul — u2 

— cos(x4)1i3— ZL2 ) 

(10.84) 

(10.85) 

(10.86) 

(10.87) 

7 
(sin(x2)lmxl ) 

7 
( — (2cos(x 2)xi  + cos(x 4)x3)lm) 

7 
((2sin(x2)x1  + sin(x4)x 3)lm) 

7 

xi  
= 

(—(x1 — 23)) = 

Again, these equations are linear in the non-state derivative z, terms and so may be 
rewritten in constrained-state form (Section 4.10) as 

Xl = — U2 

Xi  
Xz= -  

7 

X3 = U2  

(10.88) 

(10.89) 

(10.90) 
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X3  
X4 = 

x l  
yl = 

(-(Xi - X3)) 

	

6c1 	6s1  x3 

	

0 	0 

	

4 	0 

	

0 	1 

have been made to simplify the equations 

yz = 
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(10.91) 

(10.92) 

(10.93) 

(10.94) 

(10.95) 

7 

16 	0 
_ 	0 	1 

E 	
6c1 	— 6s1 x1  
0 	0 

The following substitutions 

ml2  = 

3 
02 	= 	a2 —al  

C2 	= 	cos 02  

S2 	= 	sin 02 

As discussed in Section 10.8, the components of the E matrix may be related to the 
inertia, centrifugal and Coriolis matrices of conventional robotic theory (Paul, 1981; Fu 
et al., 1987; Craig, 1989). Notice that E depends on the relative angle a2  — ai  = B as 
well as the angular momenta h1  and h2(Gawthrop, 1991). 

Linearised about a1  = 0; a2  = Bo, the corresponding transfer function is 

— 1 

+(j(9 cos (00)2  — 16))s 

(3 cos (Be) + 2) 

+(2j(9 cos (00 )2  — 16))s 

(3 cos (00) + 2) 

+(2j(9 cos (00 )2  — 16))s 

(-3 cos (Be) — 5) 

+(j(9 cos (00)2  — 16))s 

This depends on the angle 00  about which the system is linearised. 
The notion of an inverse system is much used in robotics, for example in computed 

torque control (Paul, 1981; Fu et al., 1987; Craig, 1989). The methods of Chapter 6 can 
be used in this context. The system inputs and outputs are collocated and repesented 
by the two SS elements. The inverse system is thus given by reversing the causality on 
these two components as in Figure 10.14. All of the I components now have derivative 
causality and the two remaining states correspond to the two angles al  and a2. 
The corresponding differential-algebraic equation (Section 4.7) is 

1

1 

 

(hhx

l 	(— 
(al

); z = x  ; y= ( 	
; u— 	\ Bz) 

 (10.100) 

G11(s) _ 

G12(S) = 

G21(S) = 

G22(s) _ 

(10.96) 

(10.97) 

(10.98) 

(10.99) 

hy 
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±2 = U1+ u2 	 (10.101) 

z1 	—cl lmu1 

z2 = Si /772U1 

Z3 = ~ul 
z4 = —((u1 + u2)c2 + 2c1u1 )lm 
z5 = ((u1 + u2 )s2 + 2s1u1)lm 
Z6 = (u1 + u2).i (10.102) 

yl = — ((zl + 2 4)c11 — (z2 + 2.4) sin (x1)/ — 821z5 + c21z4 — z3 — z6) 
Y2 = 821z5 — c21zZ4 + z6 	 (10.103) 

Linearised about al = 0; a2 = Bo, the corresponding transfer function is 

Gil (s) = —6 sin (0o)ju2 + (4j(3 cos (Bo) + 5))s 	 (10.104) 

G12(s) _ (-6 sin (Bo)j(ui + u2 )) + (2j(3 cos (00) + 2))s 	 (10.105) 

G21(s) = 6 sin (8o)jui + (2j(3 cos (00) + 2))s 	 (10.106) 

G22(s) = +4js 	 (10.107) 

This depends on the angle Bo about which the system is linearised. This transfer function 
matrix is of the form 

G(s) = Js 	 (10.108) 

where J is a 2 x 2 inertia matrix. The ijth element of this matrix corresponds to the 
torque on the ith joint needed to give unit acceleration on the jth joint when the other 
joint has zero velocity. 

• J22 corresponds to the inertia of the outer member when the inner member is fixed; 
this is independent of Bo and corresponds to the inertia of a uniform rod of mass 
m and length I pivoted about its end (3m12 ). 

• J11 corresponds to the inertia of both members about the first joint when the 
second joint is fixed. This is a function of the (fixed) second joint angle Bo and 
varies from a maximum of 8 x 3mí2 when Bo = 0 to a minimum of 2 x 3m12 when 
Bo = lr . The former corresponds to a uniform rod of length 4l and mass 2m 
pivoted about one end; the latter corresponds to a uniform rod of length 21 and 
mass 2m pivoted about one end. 
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10.6 THREE-DIMENSIONAL MOTION 

This section describes the metamodelling of robots moving in three dimensions. 
Within this context, two configurations are modelled: a three degree of freedom 

manipulator with three revolute joints approximating the PUMA, and a three degree of 
freedom manipulator with two revolute joints and one prismatic joint approximating the 
Stanford arm. 

A paper (Gawthrop, 1991) described how robot equations in the standard form corad 
be derived from bond graph models. This chapter provides a simpler approach. The 
chapter highlights the following aspects of the metamodelling approach in the context of 
robotics: 

• systematic creation of a three-dimensional manipulator model; 

• automatic generation of different derived models including: 

— simulation code, 

— the M, V and G matrices of the conventional robot equations, 

— transfer functions corresponding to dynamic models linearised about arbitary 
joint angles; 

• symbolic, numeric and mixed symbolic/numeric models. 

A bond graph gives a causality-free system representation in that, although it implies 
constaints on the possible causalities of the system components, it does not specify which 
of the possible causalities is to be used. This flexibility can be used to give alternative 
causal representations of the same system; the choice between these alternatives depends 
on the use to which the representation will be put. In this context (robotics) there are 
three considerations underlying this choice: 

1. the need to obtain physical insight into the manipulator dynamics; 

2. the need to generate effective simulation code; 

3. the need to compare the equations with the standard robot equation (Craig, 1989): 

M(e)ë + V(e, é) + G(0) = r 	 (10.109) 

In this case, it turns out that the first consideration leads to a causal pattern satisfying 
the other two considerations. In particular, in the context of manipulators witl. DC 
drives, we believe that the correct intuitive view of such a manipulator is summarised 
as: a manipulator is a set of DC motors coupled to a mechanism. 

There are a number of reasons for this view: 

1. If the motors are coupled to the mechanism via a high-ratio gearbox the mechanism 
appears to have relatively small inertia as viewed from the motor (Craig, 1989); 
thus the dynamics are dominated by the motors. 

2. It is natural to think of the system state in terms of the motor velocities and 
positions; in the rigid case, this state determines the position and velocity of each 
link of the mechanism. 
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3. From the control point of view, it is nice to view the system as a set of collocated 
sensors and actuators: the motor angular velocities and drive torques. 

4. Control, simulation and understanding of a set of uncoupled motors is easy: the 
dynamics are simple linear ordinary differential equations corresponding to a set 
of double integrators. Adding the rest of the system (the mechanism) is thus a 
(nonlinear) perturbation about this simple case. As well as yielding a clear intuitive 
insight into robot dynamics, it also gives rise to well-posed simulation code. 

10.7 UNCOUPLED MOTORS 

As background to the rest of the chapter, consider a set of ideal motors viewed as ideal 
torque sources driving an inertia. Given the above discussion, each motor has two states 
associated with it: the ith motor has a state comprising the angle Oi and the angular 
velocity 0;. However, from the point of view of systematic system modelling, states 
should be either integrated effort or integrated flow variables. Thus an alternative state 
comprises the angle 0, (an integrated flow) and the angular momentum hi = ii0i (an 
integrated effort). 

Component label Component type Associated physical variable 
dtl, dt2, dt3 
il, i2 i3 
cl, c2, c3 
sl, s2, s3 

Common velocity junctions 
Inertia components 
Compliance component 
Source-sensors 

Motor angular velocities 01, 02, 03 
Motor inertias: states h1, h2 , h3 
Provides the joint angle 02 
Torques 71, r2 , 73 
and velocities wt , w2i w3 

Table 10.1 Motors: bond graph labels 

Figure 10.15 gives the bond graph of three ideal uncoupled motors regarded as torque 
sources driving an inertia. The notation appears in Table 10.1. The C elements supply 
the angles of each motor as a state: as they have zero stiffness they do not affect the 
dynamics. The corresponding equations are 

h = T 

O = l~l h 

(10.110) 

(10.111) 

where /in is a diagonal matrix and Im.ii = ii 

10.8 ROBOT-FORM EQUATIONS 

Given the view of a robot expressed above ( a manipulator is a set of DC motors coupled 
to a mechanism), the next step in deriving a general form of robot equations is to consider 
the effect of attaching a mechanism to these otherwise uncoupled drives. Because of the 
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1  

SS:sl - l.dt1 

~ 
I:idl 

Figure 10.15 Uncoupled motors: Bond graph 

assumption of rigidity, the motion of the entire mechanism is completely constrained by 
the motion of the motors: the position and velocity of each part of the mechanism, given 
its geometry, is completely specified by the position and velocity of each motor. In other 
words, the robot dynamics may be described by the same states (motor angles 0, and 
angular momenta h; = itO) as the system of uncoupled motors. Thus the system state 
vector x can be written as 

x (10.112) 
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where h and 9 are vectors containing the angular momenta of the n motors and angles 
of the n joints respectively 

	

/ h1 \ 	f9 \ 

h = 	h; ; O = 	0 	 (10.113) 

	

\hn/ 	\ Bn/ 

Defining a vector z containing the momenta associated with all other I elements (the 
non-state), it follows from the preceding discussion that 

z = g(x) 	 (10.114) 

where g(x) is a (non-linear) function from the state to non-state. Taking derivatives, it 
follows that 

	

= G(x)i 	 (10.115) 

where 

G(x) = aa(~ ) (10.116) 

As discussed in the subsequent sections and elsewhere (Karnopp et al., 1990) (Gawthrop 
1991), the bond graph of the rest of the mechanism comprises I elements coupled by 
transformers modulated by joint angle and gyrators modulated by angular momenta and 
velocities. Hence, the dynamic equations describing the motor momenta (which were 
given by Equation 10.110) are of the form 

h = T + Ïz(x)z + Ì=(x) 	 (10.117) 

The equation for the joint angle (Equation 10.111) remains the same. 
It follows that the dynamic equations derived here are special cases of the constrained 

state form discussed in Section 4.10. 

E(x)x = f (x) + u 

where 

E = I2nx2n — ()G(x)  

Thus the 2n x 2n matrix E is of the special form 

E12 1 

Inxn /1 

(10.118) 

(10.119) 

(10.120) 

This can be rewritten as the standard robot Equation 10.109 

M(0) = Elllm 
	 (10.121) 

V(0,0) = E12 — fx 
	 (10.122) 
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Following Craig (1989), the V matrix can be rewritten as 

V(0, B) = B(0) [BB] + C(9) [0] 	 (10.123) 

where the Coriolis matrix B(6) (n x n(n — 1)/2) and the centrifugal matrix C(0) (n x n) 
depend only on B. [BB] is a n(n — 1)/2 vector of velocity cross products 

[6B] = [6162 6183 ... 6n_16rti 
T 

and [0] is an n x 1 vector of squared angular velocities 

[62] = [6i ... •2 ] T  

(10.124) 

(10.125) 

In the simple case considered in Section 10.7, the only non-zero matrix entries are 

Mll = il 
M22 = i2 

M33 = i3 (10.126) 

The rest of the models in this chapter can be considered as perturbations about this 
base case. 

10.9 GRAVITY EFFECTS 

Component label Component type Associated physical variable 
vx, vy 
mx, my 
s3 
sg, ig 

Common velocity junctions 
Inertia components 
Source-sensor 
Source-sensor, inertia 

Velocities vx, vy  of CM 
Momenta of mass centre px, py , 
Force and dispacement of transduce 
Source and unit inertia emulating gravity 

Table 10.2 Including gravity: bond graph labels 

Gravity can be included by the simple expedient suggested by Craig (1989): that is, the 
gravity-free manipulator is supposed to be mounted in a lift accelerating upwards with 
an acceleration of g. As a simple example, consider the manipulator of Figure 10.16 with 
a simple prismatic joint (with parameter 03) set at a fixed angle 02 to the horizontal. 

In bond graph terms, this can be represented as in Figure 10.17 with the notation 
of Table 10.2. The source sg drives a unit mass ig with an acceleration of g. This ac-
celeration is transformed to x and y coordinates by the two transformers tgx (with gain 
sin(02 )) and tgy (with gain cos(02 )). The coupling is via signals so that the acceleration 
of the unit mass is not affected by the rest of the system. 

The corresponding differential/algebraic equations are 



= constant 

g 

~2 

23 

21 = 221 
Xi 

23 

= u2 (10.127) 
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Figure 10.16 Including gravity: schematic 

((sin (92)2323 + 2i )m) 
z1 = 

i3 
z2 = cos(02 )mx3 (10.128) 

y1 = 
Xi 

23 
(10.129) 

In constrained-state form they become 

XI = UI 

21 
X2 = 

23 

X3 = u2 

Xi 
y1 = 

23 

(10.130) 

(10.131) 

(10.132) 

(10.133) 
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0:fy 	 O:fx~ :dt3 

1:vgy 	 1:vgx  

/ 	 / 	C c3 

TF:tgy 	 TF:tgx 

SS:sg 	" 1.vg 	y I.ig 

Figure 10.17 Including gravity: Bond graph 

("''+t3) 0 sin (m 092) 
= Ó 1 0 

0 0 1 

where 

SS:s3 

(10.134) 

h3 
x = (03 ) ; z = 

h9 (py); y =(s3)+u—(
39 ) (10.135) 

Note that x3 = h9 = v9 , the momentum of the unit mass. 
Recalling Equation 10.118, 

E(x) = f(x) + u 	 (10.136) 



Three-dimensional 

The first equation 
the gravity matrix. 

In general, 

h 
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contains the term E13x3 = E13vy = E13g. Thus E13g is, in this case, 

following the notation developed previously, the state vector now becomes 

x= 

and thus 

x= 

B 
vg 

B 

(10.137) 

(10.138) 

Hence E gains an additional row and column and can be repartitioned as 

El1 	E12 E13 
E_ ~ 0 	Inxn O ) (10.139) 

0 	0 1 	/ 

Thus 

G(0) = E13g (10.140) 

Returning to this example, then, the robot matrices are 

M11 	= 	m+ i3 (10.141) 

G1 	= 	sin (02 )m (10.142) 

10.10 THREE-DIMENSIONAL MOTION AND EULER'S EQUATIONS 

The seminal paper on bond graph representation of three-dimensional rigid body me-
chanics is that of Karnopp (Karnopp, 1969); a more accessible account appears in a 
recent textbook (Karnopp et al., 1990). The main idea is that Euler's equations can be 
represented by a triangular bond graph structure. 

As discussed in the standard text books, the simplest version of Euler's equations oc-
cur when rigid body motion occurs about a fixed point. As discussed elsewhere (Karnopp, 
1969; Karnopp et al., 1990), this simple case can be represented by the bond graph of 
Figure 10.18. The main features of the bond graph appear in Table 10.3. 

wx, wy and wz are the three components of the absolute angular velocity referred to 
the instantaneous body axes. The fact that this is a moving coordinate system leads 
to the coupling between the three dynamic equations. The three dotted arrows indicate 
that the gain of the gyrator at each tip is the angular momentum at each tail. 

The Euler ring has been augmented with three source-sensors. With the causality 
shown in Figure 10.18, the effort (torque) sources are inputs (called u1 — u3) and the 
corresponding velocities regarded as outputs (called yi — y3). 

The corresponding dymamic equations are 



21 = (-((7z -.iy)x2x3 - ,7z,7yul))  

(.7z7y) 

22 = 
((7z - .7x)x1x3+ ,7z,7xu2)  

(.7zix) 

23 = 

 
(-((iy - ,7x)x1x2 - .7y.7xu3)) 

(7y7x) 

y1 

Y2 

y3 

Xi 

.ix 
X2 

X3 

7= 
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Figure 10.18 Euler ring: Bond graph 

Component label Component type Associated physical variable 
wx, wy, wz 
ix, iy, iz 
gx, gy, gz 

Common velocity junctions 
Inertia components 
Gyrators 

Angular velocities wx, wy, wz 
Angular momenta hx, hy , hz , 
Coupling due to rotation 

sx, sy, sz Source-sensors Torques rx, Ty, rzf velocities co,, wy , co, 

Table 10.3 Euler ring: bond graph labels 

(10.143) 

(10.144) 



l:wx 

1 

	

rW

x 	 Yx 

Ty 

y = CW 
) 

	

z 	 z 

The resultant equations are 

u = (10.145) 
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Figure 10.19 Euler ring alternative causality: bond graph 

In practice, a rigid body is normally connected to other objects as part of a system: 
thus the three angular motions are typically constrained and these equations would not 
have this causality. For example, Figure 10.19 shows another causal possibility: the 
angular velocities Wx, W, are fixed (driven by velocity sources) whilst the z-axis is driven 
as before. The inputs and outputs are now 

x1 = ( ix 	 + us 	 (10.146) 

zl = ixul 
Z2 = 7y u2 

( — ((.iy — iz)x1u2  

i z 

((.ix — iz)xlul +.ÎzZ2) 

7z 

y~ 

y2 

(10.147) 



:wx 

I:my  

I:mz 
~ --- 	
` 	

GY:gvx  

	  GY:gz 	  1.wy 	 l.vz 

l:wz 

GY:gy ~--, Litz  

SS:swz 	 SS:svy 

Ivy 

SS:svx 

~ 

	 GY:gvz 	I:vx 

GY:gvy 

280 	 Mechanical and robotic systems 

SS:swy 	 SS:svz 

Figure 10.20 Euler ring - translational motion: bond graph 

xi 
y3 = — 

7z 
(10.148) 

The more complex case occurs when motion is considered with respect to the (non-
stationary) centre of mass. The resultant bond graph (Karnopp et al., 1990) is given 
in Figure 10.20. The Euler ring has been augmented with three effort (force) sources 
(inputs) u1 — u3 and the corresponding velocities regarded as outputs yi — y3. The 
corresponding dymamic equations are 

SS:swx 

(-((iz - 7y)x2x3 - 7z7yu1))  

(iziy) 
((7z — 7 x)x1x3 + 7z7xu2)  

(7z7x) 

(-((7y - 7x)x1x2 - 7y7xu3)) 

(7y7x) 
((7yu4 — x2x6)7z + 7yx3x5)  

(7z7y) 
((7xu5 + x1x6)7z - 7xx3x4)  

(7z7x) 
- x1x5 ).ly +.ixx2x4)  

(7y7x) 

±1 

~2 = 

x3 

x4 

x5 

i6 
(Oxus 

(10.149) 
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Yl 
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Y2 
7y 
X3 
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7z 
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y4 

y5 

Ys 

X4 
_ 

m 
X5 

m 
X6 

m 
(10.150) 

Once again, when embedded in a manipulator bond graph, the bond graph fragment 
of Figure 10.20 normally has a different causality imposed upon it due to the constraint 
of being attached to other components. 

10.11 MODELLING A TWO-DEGREES-OF-FREEDOM PUMA 

Figure 10.21 2 DOF PUMA: schematic 

A simple two-degrees-of-freedom (but three-dimensional) manipulator appears in Figure 
10.21. This can be regarded as a simplified PUMA with the elbow and wrist locked at 
appropriate angles and zero joint offset. It is also similar to the example of Karnopp 
(Karnopp, 1969) also discussed by Hubbard (Anex and Hubbard, 1984). 

The second link, although moving in three dimensions, rotates about a fixed point: 
joint 2. Its dynamics are therefore determined by the Euler ring of Figures 10.18 and 
10.19. The first link is a simple one-dimensional rotating inertia coupled to the second 
link by a joint. The angular velocities of the second link about the x and y axes wx  and 
wy  are entirely determined by that of the first link w1  

ws  = sin 92w1  

wy  = cos02w1  

(10.151) 

(10.152) 
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Figure 10.22 2 DOF PUMA: Bond graph 

Hence the appropriate causality is that displayed in Figure 10.19. Notice that gravity 
cannot be included in this example using the method of Section 10.9 as the joint is 
assumed to be stationary. 

The corresponding bond graph appears as Figure 10.22 with notation in Table 10.3. 
The equations resulting from this Bond-Graph can be presented in many forms. 

Fistly, the equations can be derived in differential-algebraic form: a set of differential 
equations in the state x (Equation 10.112) and a set of algebraic equations giving the 
nonstate z in terms of the state x (Equation 10.114). These equations are 

_ ( — (((7x — jy ) cos (x4)x1x3 + 22 2122 ) sin (s4 ) — (n1 — 21 )22 21 + cos (x4)22 2123)) 
(2221 ) 



2l 
X2 = 

il  

3 — 
((7x — jy) Sin (24 ) cos (24)21 + 21u2) 

X  i2 

23  
X4 = - 

i2  

2l 
Yi = 

21  

(10.156) 

(10.157) 

(10.158) 

(10.159) 

(10.160) 

X1 = 	 (2221) 

( — ((7x - .Ìy) Sin (24) COS (24)2123 - i2 i1u1)) 
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Label Component type Associated physical variable 

dt1, dt2 Common velocity junctions Joint angular velocities Bl , 92  
wx, wy, wz Common velocity junctions Angular velocities wx, coy , wz  
it Inertia component Inertia of link 1 
ix, iy, iz Inertia components Principle angular momenta hx , hy , hz , 
gx, gy, gz Gyrators Coupling due to rotating coordinate system 

sl, s2 Source-sensors Torques r1i  r2; Angular velocities B1, 82  
tx,ty Transformers Transformations: eqns 10.151, 10.152 
c Compliance component Provides the joint angle 02  

Table 10.4 2 DOF PUMA: bond graph labels 

±2 
X I  

il 

23 ((?x — .iy) sin (24 ) cos (24)21 + (U2  — z4)21) 

22  1 23  
24  = - 

2 2  

(i121)  
21 

(sin (24).ix21 )  

/ 
2l 

(cos (24 )jy21 ) 
2l 

(7z 23) 

i2  

21 
y1 

zl - 

Z2  = 

Z3  

z4  

(10.153) 

(10.154) 

Y2 

2l 
23  

i2  
(10.155) 

These differential-algebraic equations may be rewritten in constrained-state form 
(Equation 10.118 as 
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Y2 = 

E_ 

X3 

2 2 

/ (sin (x4)2 7x+cos (x4)27 y +ii +71 ) 0 

1 

0 

0 

0 

0 

(i2+~~) 

Mechanical and robotic 

((7x —)y ) sin (x4 ) cos (x4 )xi ~ 

systems 

(10.161) 

(10.162) 0 

0 

0 

ì, 

0 

0 
1 

z2 

0 

Reordering the equations and using equations 10.121, 10.122 and 10.123 then gives 
the robot matrices as 

 (92 )2jx + cos (92 )2 jy + ii 4- il 	0 M = (sin 

 0 	 i2 + jj 	
(10.163) 

_ 	 0 	 0~ 	
(10.164) 

C 	—(jx —~y )  sin (92 ) cos (92 ) 0 	
10.164 

B — ( 2(ix — jy ) sin (92 ) cos (92)) 	
10.165 0 	 ( 	) 

The mass matrix M has two non-zero terms. M11 is the inertia of motor 1 (ii) + the 
inertia of link 1 about its axis (ji ) + two terms representing the effect of link 2 dependent 
on 02. The interpretation is clear when 02 = 0 or 92 = 2 • M22 is the inertia of motor 2 
(i2 + the inertia of link 2 about the joint 2 axis (je ). 

The centrifugal matrix C has one non-zero element C21 representing the additional 
torque acting at joint 2 due to the angular velocity of joint 1 0. This is zero when either 
02 = 0 or 02 = 2. The coriolis matrix B has one non-zero element B11 representing 
the additional torque acting at joint 1 due to both angular velocities. This is again zero 
when either 92 = 0 or 02 = 

10.12 MODELLING A STANFORD ARM 

The Stanford arm (see, for example the description by Wolovich (1987)) is depicted in 
Figure 10.23. It has one additional degree of freedom compared to model 1; there is a 
translational joint added. From the dynamic point of view, this means that the simple 
Euler ring cannot be used as the second link no longer has a fixed point. So Figure 10.24 
contains the more complex structure of Figure 10.20. In addition to the two rotational 
joints with angles 01 and 02 there is a prismatic joint with displacement 03. 

In addition to the transformers tx and ty, the transformers txy and tyx are also 
modulated, but this time by the prismatic joint displacement 93. 

Gravity is included as discussed in Section 10.9 
The corresponding robot matrices are 

( (m932 +i)cos(92)2 +sin(02)2 x+ii+l 	0 	0 
M= 	 0 	 m93+ i2 + 	0 	(10.166) 

0 	 0 	m + i3 



O. x/- l.d 	SSs3 

Jg T 
C: 3 

TF:tgy 	 TFtgx 

\í 
SSSg 	vg 	1 I.ig SSsI 

li3 

~ 

li2 

~ 

Modelling a Stanford arm 	 285 

Figure 10.23 Stanford arm: schematic 

Figure 10.24 Stanford arm: Bond graph 

C = 
0 

—(m83+jy.—jy ) sin (82 ) cos (82 ) 
cos (82 )2m83 

0 
0 

—m03 

0 
0 
0 

(10.167) 
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2(js  — jy ) sin (02 ) cos (02 ) cos (02 )2 m03 	0 
B= 	 0 	 0 	m03 ) 

0 	 0 	0 / 

0 
cos (02 )mO3  
sin (02)m 

G = 

(10.168) 

(10.169) 

The first two elements M11  and M22  are similar to that of Section 10.11. The inertia 
is, however, with respect to the mass-centre and so the term m03 appears to augment 
j y. The third element M33  is just the sum of the mass and the prismatic drive of link 3. 

Gravity does not affect joint 1, so G1  = 0. The second term G2  gives the moment 
about joint 2 due to gravity and the third term corresponds to the example of Figure 
10.16. 

10.13 MODELLING A THREE-DEGREES-OF-FREEDOM PUMA 

Figure 10.25 3 DOF puma: schematic 

An approximation to a three-degrees-of-freedom PUMA appears in Figure 10.25, and the 
corresponding bond graph in Figure 10.26. The lower part of the diagram is similar to 
that in Figure 10.24 (but without the prismatic joint); the upper part contains the double 
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Lid  

Figure 10.26 3 DOF puma: Bond graph 

Euler ring structure of Figure 10.20 connected to the lower part by a set of transformers 
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Component Value 
r2  0.068 
r3 0.143 
ii 0.35 
j2 0.53 
.i3 0.07 
il  1.14 
i2 4.71 
i3 0.83 
m2 17.4 
m3 6.04 
a2  0.4318 
a3 0.4331 

Table 10.5 PUMA: numerical values 

corresponding to the coordinate transformation occurring between links 2 and 3. 
Numerical values due to Armstrong et al. (1986) are given in Table 10.5 and were 

substituted for the symbolic values. The corresponding robot matrices are 

0.747c23 + 3.24 0 0 (0.194q3 + 
M= 	 0 0.745e3 + 6.65 0.374c3 + 0.194 I 	(10.170) 
 0 0.374c3 + 0.194 1.03 

C = C ((0.373c23  
0 0 	01 

+ 1.07c23 - 0.373) - (0.373c23 + 1.13)c3)s3 	O 	O I 	(10.171) 
-(0.0536e23 + 0.373)s3 0.374s3 	0 

bll 

 

-(0.194c23+ 0.373)323 	0 
B = 	0 

C 
0 -0.374s3 (10.172) 

0 

where 

0 -0.37433 

b11 = -((1.01c23 - 0.374)53 - 1.06C3S3 + 0.194C23523 + 0.373823) 	 (10.173) 

0 
G = 	0.864c23 + 3.79 (10.174) 

Because the full equations are somewhat complicated, the equations are displayed 
for the special case 

0.864e23 

02  = 0 	 (10.175) 
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Figure 10.27 Craig's example: bond graph 

10.13.1 Checking the models 

One way to check these models is to compare results with those in the textbooks. This 
is done for three simplifications of these models. 

If joint one of the three-degrees-of-freedom three-dimensional PUMA of Section 10.13 
is locked, then the remainder of the mechanism becomes a planar two-degrees-of-freedom 
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manipulator. This is studied in the standard textbooks (Craig, 1989; Fu et al., 1987). 
Craig (1989) studies such a configuration where the mass of each link is concentrated at 
the distal end whereas Fu et al. (1987) consider two uniform links with the same length 
but different masses. 

A joint can be locked by changing the causality of the corresponding source/sensor 
element to give a velocity source, and the corresponding velocity is then set to zero. This 
has been done in Figure 10.27. Using parameters corresponding to Craig (1989) gives 

M  _ ( (713 +m2)í2+2 cos (92)l213m3+ 13m3 + i2 
I\ 	 (cos (02 )/2  + í3)13m3 

0 	— sin (82 )1213m3  
( sin (02°)/2 /3m3 	0 

B  — ( _2sin(02)1213rn3 )  
0 

G — ((m3  + m2 )cos(8i )12  + cos(02 + Ol )l3m3) 

C = 

(cos (02  )12 + 13)13m3

) /3m3  + 23  
(10.176) 

(10.177) 

(10.178) 

(10.179) 
cos (82  + 01)13m3 

and using parameters corresponding to Fu et al. (1987) gives 

(10.180) 

G, = 	0 	—sin(02)l2l3m31 	 (10.181) 
Sin(02)1213m3 	0 	/I  

(_2sin(O2)1213m3)
B = (10.182) 

G  = ((m3 + m2)cos(8i  )12 + cos(02  + 9i  )13m3

)  cos(02 	
(10.183) 

+ 01 )13m3   

These correspond to the published results. 
If joint one of the three-degrees-of-freedom three-dimensional Stanford arm of Section 

10.12 is locked, then the remainder of the mechanism one again becomes a planar two-
degrees-of-freedom manipulator but with one prismatic and one revolute joint. This has 
been done in Figure 10.28. 

Using parameters corresponding to Craig (1989) gives 

M  = (m203 +z2+ ,7z 	0 1  
0 

	

	
(10.184) 

m2+ 13J 

c  = 
	°202 
	 (10.185) 

—m202  0 

B= 
 (

2m202 ) 	 (10.186) 
0 

Once again, these correspond to the published results. 

M 
_ ( (m3  + m2)12 + 2cos(02 )1213m3  + 13m3  + i2  

(cos(02)12 + 13)13m3 

(COS(92)12 + 13)131723 / 
/37)13 i3 
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Figure 10.29 Simulation diagram 

10.13.2 Linearised system equations 

For the purposes of control design, a linearised model is useful. This has been done for 
the PUMA model of Section 10.13 using the numerical parameters of Table 10.5 about 
the symbolic joint angles 01, 02 and 03. The corresponding transfer function is 

G12(s) = 0 

G13(s) = 0 

G14(s) = 0 

(10.188) 

(10.189) 

(10.190) 
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Figure 10.30 Joint angles 

G23(s) = 	
(-0.367c3 — 0.19) 

+• (c3 + 0.61,3 + 1.144 + 5.53)s 

(-2.31c3c23 — 2.634 — 0.705c23 — 1.19) 
G24(s) _ 	+(c3 + 0.61c3 + 1.144  + 5.53)s 

G31(s) = 0 

G32(s) 	(-0.366c3 — 0.19) 
+• (c3 + 0.61c3 + 1.144 + 5.53)s 

(1.11c3+ 0.732c3+  1.114 + 5.41) _ 
G33(s) 	

+(q+ 0.61,3+ 1.144 + 5.53)s 

G34 is too complex to be displayed here. 

(10.193) 

(10.194) 

(10.195) 

(10.196) 

(10.197) 
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Figure 10.31 Torques 

10.13.3 Simulation 

Simulation code suitable for Simulab was automatically generated for the three-degrees-
of-freedom PUMA model. An elementary simulation was created as in Figure 10.29. A 
step trajectory was applied, k p  = 100 and kd = 1. The output angle B and applied torque 
r are plotted in Figures 10.30 and 10.31. 

-20 	 
0 
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Control systems 

SUMMARY 

• The application of bond graphs to model-based control is discussed. 

• An illustrative example is given. 

11.1 INTRODUCTION 

Control has always been concerned with generic techniques, that is techniques which can 
be applied across a range of physical domains. 

The design of controllers, adaptive or non-adaptive, for linear systems requires a 
representation of the system to be controlled. For example, Bode and Nichols diagram 
designs requires a frequency-response representation; root-locus designs requires a pole-
zero representation; observer/state-feedback designs require a state-space representation; 
polynomial designs require a transfer-function representation. 

These representations are generic in the sense that they can represent (linearised) 
systems drawn from a range of physical domains including: mechanical, electrical, hy-
draulic and thermodynamic, and this is their strength. But, at the same time, these 
representations suffer from being abstractions of physical systems: the very process of 
abstracting the generic features of physical systems means that system-specific physical 
details are lost. Both the parameters and states of such representations are not easily 
related back to the original physical parameters of the system. 

This loss of system-specific physical detail is, perhaps, acceptable at the two extremes 
of knowledge about the system: the system parameters are completely known, or the sys-
tem parameters are entirely unknown. In the former case, the system can be translated 
into the representations mentioned above, and the physical system knowledge is trans-
lated into, for example, transfer function parameters. In the latter case, the system can 
be deemed to have one of the representations mentioned above and there is no physical 
system knowledge to be translated. 

However, in the case of partially-known systems the situation is not satisfactory. None 
of the above representations is particularly suited to including partial physical system 
knowledge and, in doing so, representations become problem specific, not generic. 
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Thus much of the current body of control achieves a generic coverage of application 
areas by having a generic representation of the systems to be controlled which are, 
however, not well suited to partially-known systems. This situation is unsatisfactory 
because for many dynamic systems there is a wealth of quantitative information available. 

This chapter proposes using an alternative approach which, whilst achieving a generic 
coverage of application areas, allows the use of particular representations for particular 
(possibly partially-known, possibly non-linear) systems. Instead of having a generic rep-
resentation of systems, we propose a generic method for automatically deriving system-
specific representations: this is based on metamodelling via bond graphs. 

In this chapter we will illustrate the use of the bond graph representation by intro-
ducing one aspect of our approach to model-based control namely model-based observer 
control. The basic ideas behind this are demonstrated in the application to a process 
engineering example, namely the level control of three coupled tanks using inferential 
measurement. The motivation for this approach comes from three areas: linear state-
space observer theory (Kwakernaak and Sivan, 1972; Kailath, 1980), inferential control 
(Joseph et al., 1978) (Parrish and Brosilow, 1985), and the application of bond graphs 
to observer design (Karnopp, 1979). 

The chapter is organised as follows. 

• Section 11.2 introduces model-based observers and discusses how they can be used 
for model-based observer control. 

• Section 11.3 gives the illustrative non-linear example from the field of process 
engineering. 

• Section 11.4 continues the example and shows how to augment the observer to 
include unknown disturbances. and 

• Section 11.5 concludes the chapter. 

The chapter is based on a conference paper by Gawthrop et al. (1992). 

11.2 MODEL-BASED OBSERVER (MBO) CONTROL 

The general scheme of model-based observer control is outlined in Figure 11.1. The 
different aspects of the approach are outlined below. 

• The block labelled `model' is a dynamic simulation model of the system to be 
controlled (labelled `system'). It will usually be non-linear. 

• The model has the same control input u as the system. Other system inputs which 
can be measured may also be applied to the model in the same way. 

• The measured outputs y of the system are compared with the corresponding model 
outputs ÿ  to create an error e. 

• Additional inputs are provided to this model, one for each state. In the case of 
process systems, these inputs are typically flows of mass or energy. 
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Figure 11.1 Model-based observer (MBO) control 

• The model has feedback applied to these additional inputs in such a way as to drive 
the error e to zero. 

• The controller generates the control signal n in terms of any internal signals gen-
erated within the model together with the setpoint. 

• If the model-based observer is working well, these internal signals will be the 
same or close to the corresponding (but possibly unmeasurable) internal signals 
generated within the system itself. 

The above desciptions are non-specific with regard to how individual objectives are 
achieved. There is the freedom to integrate within the structure any theory which will 
satisfy the control objectives. The process engineering example shows one particular 
implementation. 

11.3 A NON-LINEAR EXAMPLE: THREE COUPLED TANKS 

The MBO approach to model-based control is demonstrated by considering its appli-
cation to control of liquid level in three coupled tanks. The level in the middle tank 
has to be regulated using only the measurement of the level in the third tank and by 
manipulating the flowrate into the first tank. In this particular case, level is numerically 
equal to pressure, so that pressure and level control are, in this context, the same. 

11.3.1 The system 

The system shown in Figure 5.4 consists of three uniform tanks of incompressible liquid 
connected by pipes. Neglecting inertia effects, the pipes are modelled as pure, but non-
linear, resistances 

Ît = k 2  ✓OPi 	 (11.1) 
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Figure 11.2 Three coupled tanks 

where ft is the mass flow in the ith pipe and Opt is the corresponding pressure drop. 
The tanks are modelled as pure capacities 

Thi = fi-1 - ft 	 (11.2) 

pi = —
ai 

(11.3) 

where in is the liquid mass in the ith tank and pi is the corresponding pressure. 
It is assumed that 

• all constants are unity (this is for simplicity); 

• the only measurement is p3, the pressure (proportional to the level) at the base of 
tank 3; 

• the quantity to be controlled is p2i the pressure (proportional to the level) at the 
base of tank 2; 

• the only system control input is fo, the system inflow. This is limited to the range 
0 < fo < 10. 

M:p_l 	 M p_2 	 M p_3 

i 	 1 	 1 
S:sOf-----\ 1:f0 \0:p1 ~ l:fl `0:p2 ` 1:f2 \ 1:f3 NO:p3 

[ [ [ [ [ [ [ 
R r0 C cl R rl C:c2 R r2 C:c3 R:r3 

Figure 11.3 Three coupled tanks - bond graph 

The system is thus non-linear in two ways: the non-linear flow resistances and the 
constrained control signal. It is modelled by the bond graph of Figure 11.3. All symbols 
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on this bond graph are standard. On the other bond graphs the SS component denotes 
a collocated source-sensor pair. 

The system (differential) equations are 

ml 	Pl 
X = m2  ; y = 	P2 ; u = ( fo) (11.4) 

1723  P3 

xl = 	— (✓(xl — x2) — u1) 

x2  = 	V(xi  — x2 ) — V(x2 — x3) 

x3  = 	V(x2 — x3) — .\/(x3) (11.5) 

Y1 = 	XI 

Y2 = 	X2 

y3 = 	X3 (11.6) 

11.3.2 The model-based observer 

Figure 11.4 Three coupled tanks observer— schematic model 

The physical system corresponding to the model is shown in Figure 11.4. There are two 
differences compared with the system itself: 

• There are three additional inputs: the flows vl , y2  and y3. 

• All variables are available for measurement. 

The additional inputs provide a means of adjusting the model states (mz) towards the 
corresponding system states (mi). 
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fo 
e1 

vl 
V3 

xl = — (0x1 — x2) — 2l1 — 463) 

x2 = V (xl — x2) — ~
/
(x2 — x3) + U4

~3 = ✓(x2 — x3) — V (x3) + 7L5 

yl = x3 — u2 

Y2 = xl 
y3 = X2 

Y4 = X3 

The model-based observer is created from the model together with the feedback 

v = Koe 	 (11.10) 

where the error signal e is the difference between system and model outputs 

e = y — ÿ 	 (11.11) 

This is implemented using the part of the bond graph of Figure 11.5 with junction 
labelled `el'. 

There are many possibilities for designing the observer feedback gains. For exam-
ple, the observer gain K. may be designed (for example using pole-placement or LQ 

Figure 11.5 Three coupled tanks observer— bond graph model 

The model bond graph is given by Figure 11.5. The corresponding model equations 

(11.7) 

(11.8) 

(11.9) 
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theory (Kwakernaak and Sivan, 1972)) using a linearised model about the steady-state 
corresponding to an inflow fo 

3fó 
xo = 2.fó 

fó 

uo =(fo) 

3 fó 
Yo = fó 

fó 

The linearised model is of the form 

= AX + Bit 

= CX~- Dû, 

Where X, ÿ and ü are the state, output and input deviation variable and the matrices 
A, B, C and D are 

A= (11.17) 
2fo/ 
1 

0 (2fo) 
(-1) 

(2fo) 
0 

1 

fo 	(2fo) 
1 	(-1) 

(2fo) 	fo 

e.(0 (11.18) 
0 

1 	0 0 
C = 	0 	1 0 (11.19) 

0 	0 1 

0 
D = 0 (11.20) 

0 

x, refers to the ith component of the state corresponding to a steady state of the system. 
Note that although the feedback is linear, the observer itself is non-linear. Other 

designs, both linear and non-linear, would also be possible. 
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11.3.3 Control 

The purpose of the model-based observer is to drive the model states towards the system 
states; the purpose of the MBO control is to drive appropriate model variables towards 
desired setpoints. 

This latter objective may be achieved by any control law, linear or non-linear, acting 
on any variables available in the model (which are not necessarily available from system 
sensors). 

For this example, the control objective is to drive the pressure (proportional to the 
level) in tank 2 (p2 ) to 1.0. This is achieved using a cascade configuration making use of 
the observer variables pi  and p2  to generate the input flow fo. Note that neither pi  nor 
p2  can actually be measured. For this example, a proportional control was used on the 
inner (tank 1) loop and a proportional + integral control was used on the outer (tank 2) 
loop. 

11.3.4 Simulation 

Figure 11.6 The simulation diagram 

The bond graph toolbox MTT (Gawthrop et al., 1991a) was used to generate both 
system and model equations in a form suitable for Simulab. The simulation diagram 
appears in Figure 11.6. 
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No control 

Open-loop observer: States 

Figure 11.7 Open-loop observer, step input 

Closed-loop observer. States 

Figure 11.8 Closed-loop observer, step input 

Figures 11.7 and 11.8 show observer states (firm lines) and system states (dashed lines). 
For the purposes of illustration, all system states were initialised at values corresponding 
to a unit level in the first tank (the other levels being 3  ands respectively). The model 
state was initialised to zero. 
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Figure 11.7 shows the results with an open-loop observer (no feedback to the model) 
and no control. The inflow was set to fo  = 1. The model states eventually converge to 
those of the system because, in this particular case, the system is stable. Figure 11.8 
shows the effect of closing the observer loop: the model states converge to those of the 
system more rapidly. 

Observer errors 

Figure 11.9 Closed- and open-loop errors 

Figure 11.9 shows the observer error signal for the closed-loop (firm line), and open 
loop (dashed line). 

Closed-Loop control 

Figure 11.10 corresponds to an open-loop observer but with cascade control applied to 
the model. The second state of the observer (numerically equal to 252  in this case) is 
driven to the desired value of 1.0. But, because the observer is open-loop, this model 
state takes some time to converge to the corresponding system state. 

Figure 11.11 corresponds to a closed-loop observer to give the complete model-based 
observer control. Not only is the model state corresponding to p2 driven to the setpoint, 
but also the model states are driven towards the system states. 

Known disturbances 

In the control of most process engineering systems we are primarily concerned with 
the disturbance problem. In this particular system we will examine the rejection of a 
disturbance on the level (or liquid pressure) in the middle tank caused by a unit step 
leakage from the first tank initiated at time t = 10. In this section, it is assumed that this 
disturbance in known and therefore available to the model. Figure 11.12 corresponds to 
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Cascade control, open-loop observer. States 
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Figure 11.10 Open-loop observer, closed-loop control 
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Figure 11.11 Closed-loop observer, closed-loop control 

a closed-loop observer to give the complete model-based observer control. The controller 
is not making use of the measured disturbance signal, so there is a small tracking error 
at time 10. The control signal appears in Figure 11.13. 

The controller structure could be changed to take account of the measured distur-
bance as a feedforward term; but it is hardly necessary here. 
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Cascade control, closed-loop observer: States 
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Figure 11.12 Known disturbance 

Cascade control, closed-loop observer: Control signal 
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Figure 11.13 Control signal 

11.4 UNKNOWN DISTURBANCES 

The previous section assumed that the system disturbance was known; in this section it 
is assumed unknown and therefore not available to the model. Repeating the simulation 
depicted in Figure 11.12 but with the disturbance not supplied to the model gives Fig-
ure 11.14. The performance of the model-based observer is not good in the face of this 
unmeasured load disturbances; although the model state corresponding to p2  is driven 
towards the setpoint, the model states are too far from the system states to give satis- 
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Cascade control, closed-loop observer: States 
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Figure 11.14 Closed-loop observer, closed-loop control 

factory control. Perhaps the obvious reaction to this is to include an integral term in the 
MBO feedback. Though this will achieve our objective it is preferable to use a different 
approach if possible. Instead, we will use another well-known bit of control theory: the 
disturbance, as well as the process itself, must be modelled. In the case of the example 
used here, it is natural to model the disturbance as being caused by the level in a fourth 
tank which is subject to abrupt changes at unexpected times. The changes and the 
corresponding times are unknown and cannot be inputs to the model; nevertheless, they 
can be, in effect, deduced by the observer in the same way as unknown states. Moreover, 
because the change in the level of this additional level is transitory, the corresponding 
error will also be transitory. 

The bond graph of the corresponding augmented model appears in Figure 11.15. 
The additional (as compared to Figure 11.5) components model the disturbance. This 
additional subsystem is connected to the rest of the model by a signal bond to indicate 
that the disturbance does not depend on the process itself. 

The corresponding model equations are 

x = 

ml  
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Figure 11.15 Three coupled tanks with disturbance - model bond graph 

x4 = u6 	 (11.22) 

yl 
Y2 
y3 
y4 
ys 

= X3— u2 

= Xi 
= X2 
= X3 
= X4 (11.23) 

The result of using this augmented model with an unknown disturbance appears in 
Figure 11.16. Notice that, although the estimated state is in error immediately after 
the disturbance change at time 10, this is only transitory. The additional observer state 
tracks the disturbance. 

11.5 CONCLUSION 

A brief outline of the model-based observer approach to model-based control has been 
given. The focus has been on the observer rather than the controller, as control becomes 
relatively simple when all measurements are available. 

More work needs to be done in the following areas: 

• Use of more advanced control strategies such as GPC. 

• Application to more complex processes such as distillation. 

• A critical comparison, both theoretical and experimental, with other model-based 
approaches. 
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Figure 11.16 Unknown disturbance: augmented model 

The use of Bond graphs for model-based identification have been independently pre-
sented by two groups (Nagy and Ljung, 1991; Gawthrop et al., 1991b; Gawthrop et al., 

1993). When combined with the model-based observer control this provides the ba-
sis for automatic generation of adaptive control algorithms for partially-known systems 
(Gawthrop and Jones, 1992). 
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