123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680 |
- /* Intel(R) Gigabit Ethernet Linux driver
- * Copyright(c) 2007-2014 Intel Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms and conditions of the GNU General Public License,
- * version 2, as published by the Free Software Foundation.
- *
- * This program is distributed in the hope it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, see <http://www.gnu.org/licenses/>.
- *
- * The full GNU General Public License is included in this distribution in
- * the file called "COPYING".
- *
- * Contact Information:
- * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
- */
- #include <linux/if_ether.h>
- #include <linux/delay.h>
- #include <linux/pci.h>
- #include <linux/netdevice.h>
- #include <linux/etherdevice.h>
- #include "e1000_mac.h"
- #include "igb.h"
- static s32 igb_set_default_fc(struct e1000_hw *hw);
- static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
- /**
- * igb_get_bus_info_pcie - Get PCIe bus information
- * @hw: pointer to the HW structure
- *
- * Determines and stores the system bus information for a particular
- * network interface. The following bus information is determined and stored:
- * bus speed, bus width, type (PCIe), and PCIe function.
- **/
- s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
- {
- struct e1000_bus_info *bus = &hw->bus;
- s32 ret_val;
- u32 reg;
- u16 pcie_link_status;
- bus->type = e1000_bus_type_pci_express;
- ret_val = igb_read_pcie_cap_reg(hw,
- PCI_EXP_LNKSTA,
- &pcie_link_status);
- if (ret_val) {
- bus->width = e1000_bus_width_unknown;
- bus->speed = e1000_bus_speed_unknown;
- } else {
- switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
- case PCI_EXP_LNKSTA_CLS_2_5GB:
- bus->speed = e1000_bus_speed_2500;
- break;
- case PCI_EXP_LNKSTA_CLS_5_0GB:
- bus->speed = e1000_bus_speed_5000;
- break;
- default:
- bus->speed = e1000_bus_speed_unknown;
- break;
- }
- bus->width = (enum e1000_bus_width)((pcie_link_status &
- PCI_EXP_LNKSTA_NLW) >>
- PCI_EXP_LNKSTA_NLW_SHIFT);
- }
- reg = rd32(E1000_STATUS);
- bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
- return 0;
- }
- /**
- * igb_clear_vfta - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * Clears the register array which contains the VLAN filter table by
- * setting all the values to 0.
- **/
- void igb_clear_vfta(struct e1000_hw *hw)
- {
- u32 offset;
- for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
- hw->mac.ops.write_vfta(hw, offset, 0);
- }
- /**
- * igb_write_vfta - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: register offset in VLAN filter table
- * @value: register value written to VLAN filter table
- *
- * Writes value at the given offset in the register array which stores
- * the VLAN filter table.
- **/
- void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
- {
- struct igb_adapter *adapter = hw->back;
- array_wr32(E1000_VFTA, offset, value);
- wrfl();
- adapter->shadow_vfta[offset] = value;
- }
- /**
- * igb_init_rx_addrs - Initialize receive address's
- * @hw: pointer to the HW structure
- * @rar_count: receive address registers
- *
- * Setups the receive address registers by setting the base receive address
- * register to the devices MAC address and clearing all the other receive
- * address registers to 0.
- **/
- void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
- {
- u32 i;
- u8 mac_addr[ETH_ALEN] = {0};
- /* Setup the receive address */
- hw_dbg("Programming MAC Address into RAR[0]\n");
- hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
- /* Zero out the other (rar_entry_count - 1) receive addresses */
- hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
- for (i = 1; i < rar_count; i++)
- hw->mac.ops.rar_set(hw, mac_addr, i);
- }
- /**
- * igb_find_vlvf_slot - find the VLAN id or the first empty slot
- * @hw: pointer to hardware structure
- * @vlan: VLAN id to write to VLAN filter
- * @vlvf_bypass: skip VLVF if no match is found
- *
- * return the VLVF index where this VLAN id should be placed
- *
- **/
- static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
- {
- s32 regindex, first_empty_slot;
- u32 bits;
- /* short cut the special case */
- if (vlan == 0)
- return 0;
- /* if vlvf_bypass is set we don't want to use an empty slot, we
- * will simply bypass the VLVF if there are no entries present in the
- * VLVF that contain our VLAN
- */
- first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
- /* Search for the VLAN id in the VLVF entries. Save off the first empty
- * slot found along the way.
- *
- * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
- */
- for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
- bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
- if (bits == vlan)
- return regindex;
- if (!first_empty_slot && !bits)
- first_empty_slot = regindex;
- }
- return first_empty_slot ? : -E1000_ERR_NO_SPACE;
- }
- /**
- * igb_vfta_set - enable or disable vlan in VLAN filter table
- * @hw: pointer to the HW structure
- * @vlan: VLAN id to add or remove
- * @vind: VMDq output index that maps queue to VLAN id
- * @vlan_on: if true add filter, if false remove
- *
- * Sets or clears a bit in the VLAN filter table array based on VLAN id
- * and if we are adding or removing the filter
- **/
- s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
- bool vlan_on, bool vlvf_bypass)
- {
- struct igb_adapter *adapter = hw->back;
- u32 regidx, vfta_delta, vfta, bits;
- s32 vlvf_index;
- if ((vlan > 4095) || (vind > 7))
- return -E1000_ERR_PARAM;
- /* this is a 2 part operation - first the VFTA, then the
- * VLVF and VLVFB if VT Mode is set
- * We don't write the VFTA until we know the VLVF part succeeded.
- */
- /* Part 1
- * The VFTA is a bitstring made up of 128 32-bit registers
- * that enable the particular VLAN id, much like the MTA:
- * bits[11-5]: which register
- * bits[4-0]: which bit in the register
- */
- regidx = vlan / 32;
- vfta_delta = BIT(vlan % 32);
- vfta = adapter->shadow_vfta[regidx];
- /* vfta_delta represents the difference between the current value
- * of vfta and the value we want in the register. Since the diff
- * is an XOR mask we can just update vfta using an XOR.
- */
- vfta_delta &= vlan_on ? ~vfta : vfta;
- vfta ^= vfta_delta;
- /* Part 2
- * If VT Mode is set
- * Either vlan_on
- * make sure the VLAN is in VLVF
- * set the vind bit in the matching VLVFB
- * Or !vlan_on
- * clear the pool bit and possibly the vind
- */
- if (!adapter->vfs_allocated_count)
- goto vfta_update;
- vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
- if (vlvf_index < 0) {
- if (vlvf_bypass)
- goto vfta_update;
- return vlvf_index;
- }
- bits = rd32(E1000_VLVF(vlvf_index));
- /* set the pool bit */
- bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
- if (vlan_on)
- goto vlvf_update;
- /* clear the pool bit */
- bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
- if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
- /* Clear VFTA first, then disable VLVF. Otherwise
- * we run the risk of stray packets leaking into
- * the PF via the default pool
- */
- if (vfta_delta)
- hw->mac.ops.write_vfta(hw, regidx, vfta);
- /* disable VLVF and clear remaining bit from pool */
- wr32(E1000_VLVF(vlvf_index), 0);
- return 0;
- }
- /* If there are still bits set in the VLVFB registers
- * for the VLAN ID indicated we need to see if the
- * caller is requesting that we clear the VFTA entry bit.
- * If the caller has requested that we clear the VFTA
- * entry bit but there are still pools/VFs using this VLAN
- * ID entry then ignore the request. We're not worried
- * about the case where we're turning the VFTA VLAN ID
- * entry bit on, only when requested to turn it off as
- * there may be multiple pools and/or VFs using the
- * VLAN ID entry. In that case we cannot clear the
- * VFTA bit until all pools/VFs using that VLAN ID have also
- * been cleared. This will be indicated by "bits" being
- * zero.
- */
- vfta_delta = 0;
- vlvf_update:
- /* record pool change and enable VLAN ID if not already enabled */
- wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
- vfta_update:
- /* bit was set/cleared before we started */
- if (vfta_delta)
- hw->mac.ops.write_vfta(hw, regidx, vfta);
- return 0;
- }
- /**
- * igb_check_alt_mac_addr - Check for alternate MAC addr
- * @hw: pointer to the HW structure
- *
- * Checks the nvm for an alternate MAC address. An alternate MAC address
- * can be setup by pre-boot software and must be treated like a permanent
- * address and must override the actual permanent MAC address. If an
- * alternate MAC address is found it is saved in the hw struct and
- * programmed into RAR0 and the function returns success, otherwise the
- * function returns an error.
- **/
- s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
- {
- u32 i;
- s32 ret_val = 0;
- u16 offset, nvm_alt_mac_addr_offset, nvm_data;
- u8 alt_mac_addr[ETH_ALEN];
- /* Alternate MAC address is handled by the option ROM for 82580
- * and newer. SW support not required.
- */
- if (hw->mac.type >= e1000_82580)
- goto out;
- ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
- &nvm_alt_mac_addr_offset);
- if (ret_val) {
- hw_dbg("NVM Read Error\n");
- goto out;
- }
- if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
- (nvm_alt_mac_addr_offset == 0x0000))
- /* There is no Alternate MAC Address */
- goto out;
- if (hw->bus.func == E1000_FUNC_1)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
- if (hw->bus.func == E1000_FUNC_2)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
- if (hw->bus.func == E1000_FUNC_3)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
- for (i = 0; i < ETH_ALEN; i += 2) {
- offset = nvm_alt_mac_addr_offset + (i >> 1);
- ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
- if (ret_val) {
- hw_dbg("NVM Read Error\n");
- goto out;
- }
- alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
- alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
- }
- /* if multicast bit is set, the alternate address will not be used */
- if (is_multicast_ether_addr(alt_mac_addr)) {
- hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
- goto out;
- }
- /* We have a valid alternate MAC address, and we want to treat it the
- * same as the normal permanent MAC address stored by the HW into the
- * RAR. Do this by mapping this address into RAR0.
- */
- hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
- out:
- return ret_val;
- }
- /**
- * igb_rar_set - Set receive address register
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index: receive address array register
- *
- * Sets the receive address array register at index to the address passed
- * in by addr.
- **/
- void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
- {
- u32 rar_low, rar_high;
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32) addr[0] |
- ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
- /* If MAC address zero, no need to set the AV bit */
- if (rar_low || rar_high)
- rar_high |= E1000_RAH_AV;
- /* Some bridges will combine consecutive 32-bit writes into
- * a single burst write, which will malfunction on some parts.
- * The flushes avoid this.
- */
- wr32(E1000_RAL(index), rar_low);
- wrfl();
- wr32(E1000_RAH(index), rar_high);
- wrfl();
- }
- /**
- * igb_mta_set - Set multicast filter table address
- * @hw: pointer to the HW structure
- * @hash_value: determines the MTA register and bit to set
- *
- * The multicast table address is a register array of 32-bit registers.
- * The hash_value is used to determine what register the bit is in, the
- * current value is read, the new bit is OR'd in and the new value is
- * written back into the register.
- **/
- void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
- {
- u32 hash_bit, hash_reg, mta;
- /* The MTA is a register array of 32-bit registers. It is
- * treated like an array of (32*mta_reg_count) bits. We want to
- * set bit BitArray[hash_value]. So we figure out what register
- * the bit is in, read it, OR in the new bit, then write
- * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
- * mask to bits 31:5 of the hash value which gives us the
- * register we're modifying. The hash bit within that register
- * is determined by the lower 5 bits of the hash value.
- */
- hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
- hash_bit = hash_value & 0x1F;
- mta = array_rd32(E1000_MTA, hash_reg);
- mta |= BIT(hash_bit);
- array_wr32(E1000_MTA, hash_reg, mta);
- wrfl();
- }
- /**
- * igb_hash_mc_addr - Generate a multicast hash value
- * @hw: pointer to the HW structure
- * @mc_addr: pointer to a multicast address
- *
- * Generates a multicast address hash value which is used to determine
- * the multicast filter table array address and new table value. See
- * igb_mta_set()
- **/
- static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
- {
- u32 hash_value, hash_mask;
- u8 bit_shift = 0;
- /* Register count multiplied by bits per register */
- hash_mask = (hw->mac.mta_reg_count * 32) - 1;
- /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
- * where 0xFF would still fall within the hash mask.
- */
- while (hash_mask >> bit_shift != 0xFF)
- bit_shift++;
- /* The portion of the address that is used for the hash table
- * is determined by the mc_filter_type setting.
- * The algorithm is such that there is a total of 8 bits of shifting.
- * The bit_shift for a mc_filter_type of 0 represents the number of
- * left-shifts where the MSB of mc_addr[5] would still fall within
- * the hash_mask. Case 0 does this exactly. Since there are a total
- * of 8 bits of shifting, then mc_addr[4] will shift right the
- * remaining number of bits. Thus 8 - bit_shift. The rest of the
- * cases are a variation of this algorithm...essentially raising the
- * number of bits to shift mc_addr[5] left, while still keeping the
- * 8-bit shifting total.
- *
- * For example, given the following Destination MAC Address and an
- * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
- * we can see that the bit_shift for case 0 is 4. These are the hash
- * values resulting from each mc_filter_type...
- * [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- *
- * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
- * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
- * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
- * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
- */
- switch (hw->mac.mc_filter_type) {
- default:
- case 0:
- break;
- case 1:
- bit_shift += 1;
- break;
- case 2:
- bit_shift += 2;
- break;
- case 3:
- bit_shift += 4;
- break;
- }
- hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
- (((u16) mc_addr[5]) << bit_shift)));
- return hash_value;
- }
- /**
- * igb_update_mc_addr_list - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates entire Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
- void igb_update_mc_addr_list(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count)
- {
- u32 hash_value, hash_bit, hash_reg;
- int i;
- /* clear mta_shadow */
- memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
- /* update mta_shadow from mc_addr_list */
- for (i = 0; (u32) i < mc_addr_count; i++) {
- hash_value = igb_hash_mc_addr(hw, mc_addr_list);
- hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
- hash_bit = hash_value & 0x1F;
- hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
- mc_addr_list += (ETH_ALEN);
- }
- /* replace the entire MTA table */
- for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
- array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
- wrfl();
- }
- /**
- * igb_clear_hw_cntrs_base - Clear base hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the base hardware counters by reading the counter registers.
- **/
- void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
- {
- rd32(E1000_CRCERRS);
- rd32(E1000_SYMERRS);
- rd32(E1000_MPC);
- rd32(E1000_SCC);
- rd32(E1000_ECOL);
- rd32(E1000_MCC);
- rd32(E1000_LATECOL);
- rd32(E1000_COLC);
- rd32(E1000_DC);
- rd32(E1000_SEC);
- rd32(E1000_RLEC);
- rd32(E1000_XONRXC);
- rd32(E1000_XONTXC);
- rd32(E1000_XOFFRXC);
- rd32(E1000_XOFFTXC);
- rd32(E1000_FCRUC);
- rd32(E1000_GPRC);
- rd32(E1000_BPRC);
- rd32(E1000_MPRC);
- rd32(E1000_GPTC);
- rd32(E1000_GORCL);
- rd32(E1000_GORCH);
- rd32(E1000_GOTCL);
- rd32(E1000_GOTCH);
- rd32(E1000_RNBC);
- rd32(E1000_RUC);
- rd32(E1000_RFC);
- rd32(E1000_ROC);
- rd32(E1000_RJC);
- rd32(E1000_TORL);
- rd32(E1000_TORH);
- rd32(E1000_TOTL);
- rd32(E1000_TOTH);
- rd32(E1000_TPR);
- rd32(E1000_TPT);
- rd32(E1000_MPTC);
- rd32(E1000_BPTC);
- }
- /**
- * igb_check_for_copper_link - Check for link (Copper)
- * @hw: pointer to the HW structure
- *
- * Checks to see of the link status of the hardware has changed. If a
- * change in link status has been detected, then we read the PHY registers
- * to get the current speed/duplex if link exists.
- **/
- s32 igb_check_for_copper_link(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- bool link;
- /* We only want to go out to the PHY registers to see if Auto-Neg
- * has completed and/or if our link status has changed. The
- * get_link_status flag is set upon receiving a Link Status
- * Change or Rx Sequence Error interrupt.
- */
- if (!mac->get_link_status) {
- ret_val = 0;
- goto out;
- }
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- */
- ret_val = igb_phy_has_link(hw, 1, 0, &link);
- if (ret_val)
- goto out;
- if (!link)
- goto out; /* No link detected */
- mac->get_link_status = false;
- /* Check if there was DownShift, must be checked
- * immediately after link-up
- */
- igb_check_downshift(hw);
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!mac->autoneg) {
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
- /* Auto-Neg is enabled. Auto Speed Detection takes care
- * of MAC speed/duplex configuration. So we only need to
- * configure Collision Distance in the MAC.
- */
- igb_config_collision_dist(hw);
- /* Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = igb_config_fc_after_link_up(hw);
- if (ret_val)
- hw_dbg("Error configuring flow control\n");
- out:
- return ret_val;
- }
- /**
- * igb_setup_link - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
- s32 igb_setup_link(struct e1000_hw *hw)
- {
- s32 ret_val = 0;
- /* In the case of the phy reset being blocked, we already have a link.
- * We do not need to set it up again.
- */
- if (igb_check_reset_block(hw))
- goto out;
- /* If requested flow control is set to default, set flow control
- * based on the EEPROM flow control settings.
- */
- if (hw->fc.requested_mode == e1000_fc_default) {
- ret_val = igb_set_default_fc(hw);
- if (ret_val)
- goto out;
- }
- /* We want to save off the original Flow Control configuration just
- * in case we get disconnected and then reconnected into a different
- * hub or switch with different Flow Control capabilities.
- */
- hw->fc.current_mode = hw->fc.requested_mode;
- hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
- /* Call the necessary media_type subroutine to configure the link. */
- ret_val = hw->mac.ops.setup_physical_interface(hw);
- if (ret_val)
- goto out;
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- hw_dbg("Initializing the Flow Control address, type and timer regs\n");
- wr32(E1000_FCT, FLOW_CONTROL_TYPE);
- wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
- wr32(E1000_FCTTV, hw->fc.pause_time);
- ret_val = igb_set_fc_watermarks(hw);
- out:
- return ret_val;
- }
- /**
- * igb_config_collision_dist - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
- **/
- void igb_config_collision_dist(struct e1000_hw *hw)
- {
- u32 tctl;
- tctl = rd32(E1000_TCTL);
- tctl &= ~E1000_TCTL_COLD;
- tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
- wr32(E1000_TCTL, tctl);
- wrfl();
- }
- /**
- * igb_set_fc_watermarks - Set flow control high/low watermarks
- * @hw: pointer to the HW structure
- *
- * Sets the flow control high/low threshold (watermark) registers. If
- * flow control XON frame transmission is enabled, then set XON frame
- * tansmission as well.
- **/
- static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
- {
- s32 ret_val = 0;
- u32 fcrtl = 0, fcrth = 0;
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames is not enabled, then these
- * registers will be set to 0.
- */
- if (hw->fc.current_mode & e1000_fc_tx_pause) {
- /* We need to set up the Receive Threshold high and low water
- * marks as well as (optionally) enabling the transmission of
- * XON frames.
- */
- fcrtl = hw->fc.low_water;
- if (hw->fc.send_xon)
- fcrtl |= E1000_FCRTL_XONE;
- fcrth = hw->fc.high_water;
- }
- wr32(E1000_FCRTL, fcrtl);
- wr32(E1000_FCRTH, fcrth);
- return ret_val;
- }
- /**
- * igb_set_default_fc - Set flow control default values
- * @hw: pointer to the HW structure
- *
- * Read the EEPROM for the default values for flow control and store the
- * values.
- **/
- static s32 igb_set_default_fc(struct e1000_hw *hw)
- {
- s32 ret_val = 0;
- u16 lan_offset;
- u16 nvm_data;
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- if (hw->mac.type == e1000_i350) {
- lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
- ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
- + lan_offset, 1, &nvm_data);
- } else {
- ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
- 1, &nvm_data);
- }
- if (ret_val) {
- hw_dbg("NVM Read Error\n");
- goto out;
- }
- if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
- hw->fc.requested_mode = e1000_fc_none;
- else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
- NVM_WORD0F_ASM_DIR)
- hw->fc.requested_mode = e1000_fc_tx_pause;
- else
- hw->fc.requested_mode = e1000_fc_full;
- out:
- return ret_val;
- }
- /**
- * igb_force_mac_fc - Force the MAC's flow control settings
- * @hw: pointer to the HW structure
- *
- * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
- * device control register to reflect the adapter settings. TFCE and RFCE
- * need to be explicitly set by software when a copper PHY is used because
- * autonegotiation is managed by the PHY rather than the MAC. Software must
- * also configure these bits when link is forced on a fiber connection.
- **/
- s32 igb_force_mac_fc(struct e1000_hw *hw)
- {
- u32 ctrl;
- s32 ret_val = 0;
- ctrl = rd32(E1000_CTRL);
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc.current_mode" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and TX flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
- hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case e1000_fc_rx_pause:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case e1000_fc_tx_pause:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case e1000_fc_full:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- hw_dbg("Flow control param set incorrectly\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
- wr32(E1000_CTRL, ctrl);
- out:
- return ret_val;
- }
- /**
- * igb_config_fc_after_link_up - Configures flow control after link
- * @hw: pointer to the HW structure
- *
- * Checks the status of auto-negotiation after link up to ensure that the
- * speed and duplex were not forced. If the link needed to be forced, then
- * flow control needs to be forced also. If auto-negotiation is enabled
- * and did not fail, then we configure flow control based on our link
- * partner.
- **/
- s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = 0;
- u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
- u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
- u16 speed, duplex;
- /* Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (mac->autoneg_failed) {
- if (hw->phy.media_type == e1000_media_type_internal_serdes)
- ret_val = igb_force_mac_fc(hw);
- } else {
- if (hw->phy.media_type == e1000_media_type_copper)
- ret_val = igb_force_mac_fc(hw);
- }
- if (ret_val) {
- hw_dbg("Error forcing flow control settings\n");
- goto out;
- }
- /* Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
- &mii_status_reg);
- if (ret_val)
- goto out;
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
- &mii_status_reg);
- if (ret_val)
- goto out;
- if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
- hw_dbg("Copper PHY and Auto Neg has not completed.\n");
- goto out;
- }
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement
- * Register (Address 4) and the Auto_Negotiation Base
- * Page Ability Register (Address 5) to determine how
- * flow control was negotiated.
- */
- ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
- if (ret_val)
- goto out;
- ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
- if (ret_val)
- goto out;
- /* Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- * Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | E1000_fc_full
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected RX ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise RX
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->fc.requested_mode == e1000_fc_full) {
- hw->fc.current_mode = e1000_fc_full;
- hw_dbg("Flow Control = FULL.\n");
- } else {
- hw->fc.current_mode = e1000_fc_rx_pause;
- hw_dbg("Flow Control = RX PAUSE frames only.\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_tx_pause;
- hw_dbg("Flow Control = TX PAUSE frames only.\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_rx_pause;
- hw_dbg("Flow Control = RX PAUSE frames only.\n");
- }
- /* Per the IEEE spec, at this point flow control should be
- * disabled. However, we want to consider that we could
- * be connected to a legacy switch that doesn't advertise
- * desired flow control, but can be forced on the link
- * partner. So if we advertised no flow control, that is
- * what we will resolve to. If we advertised some kind of
- * receive capability (Rx Pause Only or Full Flow Control)
- * and the link partner advertised none, we will configure
- * ourselves to enable Rx Flow Control only. We can do
- * this safely for two reasons: If the link partner really
- * didn't want flow control enabled, and we enable Rx, no
- * harm done since we won't be receiving any PAUSE frames
- * anyway. If the intent on the link partner was to have
- * flow control enabled, then by us enabling RX only, we
- * can at least receive pause frames and process them.
- * This is a good idea because in most cases, since we are
- * predominantly a server NIC, more times than not we will
- * be asked to delay transmission of packets than asking
- * our link partner to pause transmission of frames.
- */
- else if ((hw->fc.requested_mode == e1000_fc_none) ||
- (hw->fc.requested_mode == e1000_fc_tx_pause) ||
- (hw->fc.strict_ieee)) {
- hw->fc.current_mode = e1000_fc_none;
- hw_dbg("Flow Control = NONE.\n");
- } else {
- hw->fc.current_mode = e1000_fc_rx_pause;
- hw_dbg("Flow Control = RX PAUSE frames only.\n");
- }
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- hw_dbg("Error getting link speed and duplex\n");
- goto out;
- }
- if (duplex == HALF_DUPLEX)
- hw->fc.current_mode = e1000_fc_none;
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = igb_force_mac_fc(hw);
- if (ret_val) {
- hw_dbg("Error forcing flow control settings\n");
- goto out;
- }
- }
- /* Check for the case where we have SerDes media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->phy.media_type == e1000_media_type_internal_serdes)
- && mac->autoneg) {
- /* Read the PCS_LSTS and check to see if AutoNeg
- * has completed.
- */
- pcs_status_reg = rd32(E1000_PCS_LSTAT);
- if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
- hw_dbg("PCS Auto Neg has not completed.\n");
- return ret_val;
- }
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement
- * Register (PCS_ANADV) and the Auto_Negotiation Base
- * Page Ability Register (PCS_LPAB) to determine how
- * flow control was negotiated.
- */
- pcs_adv_reg = rd32(E1000_PCS_ANADV);
- pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
- /* Two bits in the Auto Negotiation Advertisement Register
- * (PCS_ANADV) and two bits in the Auto Negotiation Base
- * Page Ability Register (PCS_LPAB) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- * Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | e1000_fc_full
- *
- */
- if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
- (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
- /* Now we need to check if the user selected Rx ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise Rx
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->fc.requested_mode == e1000_fc_full) {
- hw->fc.current_mode = e1000_fc_full;
- hw_dbg("Flow Control = FULL.\n");
- } else {
- hw->fc.current_mode = e1000_fc_rx_pause;
- hw_dbg("Flow Control = Rx PAUSE frames only.\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- */
- else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
- (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
- (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
- (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_tx_pause;
- hw_dbg("Flow Control = Tx PAUSE frames only.\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- */
- else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
- (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
- !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
- (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_rx_pause;
- hw_dbg("Flow Control = Rx PAUSE frames only.\n");
- } else {
- /* Per the IEEE spec, at this point flow control
- * should be disabled.
- */
- hw->fc.current_mode = e1000_fc_none;
- hw_dbg("Flow Control = NONE.\n");
- }
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
- pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
- wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
- ret_val = igb_force_mac_fc(hw);
- if (ret_val) {
- hw_dbg("Error forcing flow control settings\n");
- return ret_val;
- }
- }
- out:
- return ret_val;
- }
- /**
- * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Read the status register for the current speed/duplex and store the current
- * speed and duplex for copper connections.
- **/
- s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
- {
- u32 status;
- status = rd32(E1000_STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- hw_dbg("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- hw_dbg("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- hw_dbg("10 Mbs, ");
- }
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- hw_dbg("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- hw_dbg("Half Duplex\n");
- }
- return 0;
- }
- /**
- * igb_get_hw_semaphore - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- **/
- s32 igb_get_hw_semaphore(struct e1000_hw *hw)
- {
- u32 swsm;
- s32 ret_val = 0;
- s32 timeout = hw->nvm.word_size + 1;
- s32 i = 0;
- /* Get the SW semaphore */
- while (i < timeout) {
- swsm = rd32(E1000_SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
- udelay(50);
- i++;
- }
- if (i == timeout) {
- hw_dbg("Driver can't access device - SMBI bit is set.\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
- /* Get the FW semaphore. */
- for (i = 0; i < timeout; i++) {
- swsm = rd32(E1000_SWSM);
- wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
- /* Semaphore acquired if bit latched */
- if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
- break;
- udelay(50);
- }
- if (i == timeout) {
- /* Release semaphores */
- igb_put_hw_semaphore(hw);
- hw_dbg("Driver can't access the NVM\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
- out:
- return ret_val;
- }
- /**
- * igb_put_hw_semaphore - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- **/
- void igb_put_hw_semaphore(struct e1000_hw *hw)
- {
- u32 swsm;
- swsm = rd32(E1000_SWSM);
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
- wr32(E1000_SWSM, swsm);
- }
- /**
- * igb_get_auto_rd_done - Check for auto read completion
- * @hw: pointer to the HW structure
- *
- * Check EEPROM for Auto Read done bit.
- **/
- s32 igb_get_auto_rd_done(struct e1000_hw *hw)
- {
- s32 i = 0;
- s32 ret_val = 0;
- while (i < AUTO_READ_DONE_TIMEOUT) {
- if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
- break;
- usleep_range(1000, 2000);
- i++;
- }
- if (i == AUTO_READ_DONE_TIMEOUT) {
- hw_dbg("Auto read by HW from NVM has not completed.\n");
- ret_val = -E1000_ERR_RESET;
- goto out;
- }
- out:
- return ret_val;
- }
- /**
- * igb_valid_led_default - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
- static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
- {
- s32 ret_val;
- ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- hw_dbg("NVM Read Error\n");
- goto out;
- }
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
- switch (hw->phy.media_type) {
- case e1000_media_type_internal_serdes:
- *data = ID_LED_DEFAULT_82575_SERDES;
- break;
- case e1000_media_type_copper:
- default:
- *data = ID_LED_DEFAULT;
- break;
- }
- }
- out:
- return ret_val;
- }
- /**
- * igb_id_led_init -
- * @hw: pointer to the HW structure
- *
- **/
- s32 igb_id_led_init(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- const u32 ledctl_mask = 0x000000FF;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- u16 data, i, temp;
- const u16 led_mask = 0x0F;
- /* i210 and i211 devices have different LED mechanism */
- if ((hw->mac.type == e1000_i210) ||
- (hw->mac.type == e1000_i211))
- ret_val = igb_valid_led_default_i210(hw, &data);
- else
- ret_val = igb_valid_led_default(hw, &data);
- if (ret_val)
- goto out;
- mac->ledctl_default = rd32(E1000_LEDCTL);
- mac->ledctl_mode1 = mac->ledctl_default;
- mac->ledctl_mode2 = mac->ledctl_default;
- for (i = 0; i < 4; i++) {
- temp = (data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
- out:
- return ret_val;
- }
- /**
- * igb_cleanup_led - Set LED config to default operation
- * @hw: pointer to the HW structure
- *
- * Remove the current LED configuration and set the LED configuration
- * to the default value, saved from the EEPROM.
- **/
- s32 igb_cleanup_led(struct e1000_hw *hw)
- {
- wr32(E1000_LEDCTL, hw->mac.ledctl_default);
- return 0;
- }
- /**
- * igb_blink_led - Blink LED
- * @hw: pointer to the HW structure
- *
- * Blink the led's which are set to be on.
- **/
- s32 igb_blink_led(struct e1000_hw *hw)
- {
- u32 ledctl_blink = 0;
- u32 i;
- if (hw->phy.media_type == e1000_media_type_fiber) {
- /* always blink LED0 for PCI-E fiber */
- ledctl_blink = E1000_LEDCTL_LED0_BLINK |
- (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
- } else {
- /* Set the blink bit for each LED that's "on" (0x0E)
- * (or "off" if inverted) in ledctl_mode2. The blink
- * logic in hardware only works when mode is set to "on"
- * so it must be changed accordingly when the mode is
- * "off" and inverted.
- */
- ledctl_blink = hw->mac.ledctl_mode2;
- for (i = 0; i < 32; i += 8) {
- u32 mode = (hw->mac.ledctl_mode2 >> i) &
- E1000_LEDCTL_LED0_MODE_MASK;
- u32 led_default = hw->mac.ledctl_default >> i;
- if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
- (mode == E1000_LEDCTL_MODE_LED_ON)) ||
- ((led_default & E1000_LEDCTL_LED0_IVRT) &&
- (mode == E1000_LEDCTL_MODE_LED_OFF))) {
- ledctl_blink &=
- ~(E1000_LEDCTL_LED0_MODE_MASK << i);
- ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_MODE_LED_ON) << i;
- }
- }
- }
- wr32(E1000_LEDCTL, ledctl_blink);
- return 0;
- }
- /**
- * igb_led_off - Turn LED off
- * @hw: pointer to the HW structure
- *
- * Turn LED off.
- **/
- s32 igb_led_off(struct e1000_hw *hw)
- {
- switch (hw->phy.media_type) {
- case e1000_media_type_copper:
- wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
- break;
- default:
- break;
- }
- return 0;
- }
- /**
- * igb_disable_pcie_master - Disables PCI-express master access
- * @hw: pointer to the HW structure
- *
- * Returns 0 (0) if successful, else returns -10
- * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
- * the master requests to be disabled.
- *
- * Disables PCI-Express master access and verifies there are no pending
- * requests.
- **/
- s32 igb_disable_pcie_master(struct e1000_hw *hw)
- {
- u32 ctrl;
- s32 timeout = MASTER_DISABLE_TIMEOUT;
- s32 ret_val = 0;
- if (hw->bus.type != e1000_bus_type_pci_express)
- goto out;
- ctrl = rd32(E1000_CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- wr32(E1000_CTRL, ctrl);
- while (timeout) {
- if (!(rd32(E1000_STATUS) &
- E1000_STATUS_GIO_MASTER_ENABLE))
- break;
- udelay(100);
- timeout--;
- }
- if (!timeout) {
- hw_dbg("Master requests are pending.\n");
- ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
- goto out;
- }
- out:
- return ret_val;
- }
- /**
- * igb_validate_mdi_setting - Verify MDI/MDIx settings
- * @hw: pointer to the HW structure
- *
- * Verify that when not using auto-negotitation that MDI/MDIx is correctly
- * set, which is forced to MDI mode only.
- **/
- s32 igb_validate_mdi_setting(struct e1000_hw *hw)
- {
- s32 ret_val = 0;
- /* All MDI settings are supported on 82580 and newer. */
- if (hw->mac.type >= e1000_82580)
- goto out;
- if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
- hw_dbg("Invalid MDI setting detected\n");
- hw->phy.mdix = 1;
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
- out:
- return ret_val;
- }
- /**
- * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
- * @hw: pointer to the HW structure
- * @reg: 32bit register offset such as E1000_SCTL
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes an address/data control type register. There are several of these
- * and they all have the format address << 8 | data and bit 31 is polled for
- * completion.
- **/
- s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
- u32 offset, u8 data)
- {
- u32 i, regvalue = 0;
- s32 ret_val = 0;
- /* Set up the address and data */
- regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
- wr32(reg, regvalue);
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
- udelay(5);
- regvalue = rd32(reg);
- if (regvalue & E1000_GEN_CTL_READY)
- break;
- }
- if (!(regvalue & E1000_GEN_CTL_READY)) {
- hw_dbg("Reg %08x did not indicate ready\n", reg);
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
- out:
- return ret_val;
- }
- /**
- * igb_enable_mng_pass_thru - Enable processing of ARP's
- * @hw: pointer to the HW structure
- *
- * Verifies the hardware needs to leave interface enabled so that frames can
- * be directed to and from the management interface.
- **/
- bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
- {
- u32 manc;
- u32 fwsm, factps;
- bool ret_val = false;
- if (!hw->mac.asf_firmware_present)
- goto out;
- manc = rd32(E1000_MANC);
- if (!(manc & E1000_MANC_RCV_TCO_EN))
- goto out;
- if (hw->mac.arc_subsystem_valid) {
- fwsm = rd32(E1000_FWSM);
- factps = rd32(E1000_FACTPS);
- if (!(factps & E1000_FACTPS_MNGCG) &&
- ((fwsm & E1000_FWSM_MODE_MASK) ==
- (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
- ret_val = true;
- goto out;
- }
- } else {
- if ((manc & E1000_MANC_SMBUS_EN) &&
- !(manc & E1000_MANC_ASF_EN)) {
- ret_val = true;
- goto out;
- }
- }
- out:
- return ret_val;
- }
|