hcd.h 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855
  1. /*
  2. * hcd.h - DesignWare HS OTG Controller host-mode declarations
  3. *
  4. * Copyright (C) 2004-2013 Synopsys, Inc.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions
  8. * are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions, and the following disclaimer,
  11. * without modification.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 3. The names of the above-listed copyright holders may not be used
  16. * to endorse or promote products derived from this software without
  17. * specific prior written permission.
  18. *
  19. * ALTERNATIVELY, this software may be distributed under the terms of the
  20. * GNU General Public License ("GPL") as published by the Free Software
  21. * Foundation; either version 2 of the License, or (at your option) any
  22. * later version.
  23. *
  24. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25. * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26. * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28. * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29. * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30. * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31. * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33. * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35. */
  36. #ifndef __DWC2_HCD_H__
  37. #define __DWC2_HCD_H__
  38. /*
  39. * This file contains the structures, constants, and interfaces for the
  40. * Host Contoller Driver (HCD)
  41. *
  42. * The Host Controller Driver (HCD) is responsible for translating requests
  43. * from the USB Driver into the appropriate actions on the DWC_otg controller.
  44. * It isolates the USBD from the specifics of the controller by providing an
  45. * API to the USBD.
  46. */
  47. struct dwc2_qh;
  48. /**
  49. * struct dwc2_host_chan - Software host channel descriptor
  50. *
  51. * @hc_num: Host channel number, used for register address lookup
  52. * @dev_addr: Address of the device
  53. * @ep_num: Endpoint of the device
  54. * @ep_is_in: Endpoint direction
  55. * @speed: Device speed. One of the following values:
  56. * - USB_SPEED_LOW
  57. * - USB_SPEED_FULL
  58. * - USB_SPEED_HIGH
  59. * @ep_type: Endpoint type. One of the following values:
  60. * - USB_ENDPOINT_XFER_CONTROL: 0
  61. * - USB_ENDPOINT_XFER_ISOC: 1
  62. * - USB_ENDPOINT_XFER_BULK: 2
  63. * - USB_ENDPOINT_XFER_INTR: 3
  64. * @max_packet: Max packet size in bytes
  65. * @data_pid_start: PID for initial transaction.
  66. * 0: DATA0
  67. * 1: DATA2
  68. * 2: DATA1
  69. * 3: MDATA (non-Control EP),
  70. * SETUP (Control EP)
  71. * @multi_count: Number of additional periodic transactions per
  72. * (micro)frame
  73. * @xfer_buf: Pointer to current transfer buffer position
  74. * @xfer_dma: DMA address of xfer_buf
  75. * @xfer_len: Total number of bytes to transfer
  76. * @xfer_count: Number of bytes transferred so far
  77. * @start_pkt_count: Packet count at start of transfer
  78. * @xfer_started: True if the transfer has been started
  79. * @ping: True if a PING request should be issued on this channel
  80. * @error_state: True if the error count for this transaction is non-zero
  81. * @halt_on_queue: True if this channel should be halted the next time a
  82. * request is queued for the channel. This is necessary in
  83. * slave mode if no request queue space is available when
  84. * an attempt is made to halt the channel.
  85. * @halt_pending: True if the host channel has been halted, but the core
  86. * is not finished flushing queued requests
  87. * @do_split: Enable split for the channel
  88. * @complete_split: Enable complete split
  89. * @hub_addr: Address of high speed hub for the split
  90. * @hub_port: Port of the low/full speed device for the split
  91. * @xact_pos: Split transaction position. One of the following values:
  92. * - DWC2_HCSPLT_XACTPOS_MID
  93. * - DWC2_HCSPLT_XACTPOS_BEGIN
  94. * - DWC2_HCSPLT_XACTPOS_END
  95. * - DWC2_HCSPLT_XACTPOS_ALL
  96. * @requests: Number of requests issued for this channel since it was
  97. * assigned to the current transfer (not counting PINGs)
  98. * @schinfo: Scheduling micro-frame bitmap
  99. * @ntd: Number of transfer descriptors for the transfer
  100. * @halt_status: Reason for halting the host channel
  101. * @hcint Contents of the HCINT register when the interrupt came
  102. * @qh: QH for the transfer being processed by this channel
  103. * @hc_list_entry: For linking to list of host channels
  104. * @desc_list_addr: Current QH's descriptor list DMA address
  105. * @desc_list_sz: Current QH's descriptor list size
  106. * @split_order_list_entry: List entry for keeping track of the order of splits
  107. *
  108. * This structure represents the state of a single host channel when acting in
  109. * host mode. It contains the data items needed to transfer packets to an
  110. * endpoint via a host channel.
  111. */
  112. struct dwc2_host_chan {
  113. u8 hc_num;
  114. unsigned dev_addr:7;
  115. unsigned ep_num:4;
  116. unsigned ep_is_in:1;
  117. unsigned speed:4;
  118. unsigned ep_type:2;
  119. unsigned max_packet:11;
  120. unsigned data_pid_start:2;
  121. #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
  122. #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
  123. #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
  124. #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
  125. #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
  126. unsigned multi_count:2;
  127. u8 *xfer_buf;
  128. dma_addr_t xfer_dma;
  129. u32 xfer_len;
  130. u32 xfer_count;
  131. u16 start_pkt_count;
  132. u8 xfer_started;
  133. u8 do_ping;
  134. u8 error_state;
  135. u8 halt_on_queue;
  136. u8 halt_pending;
  137. u8 do_split;
  138. u8 complete_split;
  139. u8 hub_addr;
  140. u8 hub_port;
  141. u8 xact_pos;
  142. #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
  143. #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
  144. #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
  145. #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
  146. u8 requests;
  147. u8 schinfo;
  148. u16 ntd;
  149. enum dwc2_halt_status halt_status;
  150. u32 hcint;
  151. struct dwc2_qh *qh;
  152. struct list_head hc_list_entry;
  153. dma_addr_t desc_list_addr;
  154. u32 desc_list_sz;
  155. struct list_head split_order_list_entry;
  156. };
  157. struct dwc2_hcd_pipe_info {
  158. u8 dev_addr;
  159. u8 ep_num;
  160. u8 pipe_type;
  161. u8 pipe_dir;
  162. u16 mps;
  163. };
  164. struct dwc2_hcd_iso_packet_desc {
  165. u32 offset;
  166. u32 length;
  167. u32 actual_length;
  168. u32 status;
  169. };
  170. struct dwc2_qtd;
  171. struct dwc2_hcd_urb {
  172. void *priv;
  173. struct dwc2_qtd *qtd;
  174. void *buf;
  175. dma_addr_t dma;
  176. void *setup_packet;
  177. dma_addr_t setup_dma;
  178. u32 length;
  179. u32 actual_length;
  180. u32 status;
  181. u32 error_count;
  182. u32 packet_count;
  183. u32 flags;
  184. u16 interval;
  185. struct dwc2_hcd_pipe_info pipe_info;
  186. struct dwc2_hcd_iso_packet_desc iso_descs[0];
  187. };
  188. /* Phases for control transfers */
  189. enum dwc2_control_phase {
  190. DWC2_CONTROL_SETUP,
  191. DWC2_CONTROL_DATA,
  192. DWC2_CONTROL_STATUS,
  193. };
  194. /* Transaction types */
  195. enum dwc2_transaction_type {
  196. DWC2_TRANSACTION_NONE,
  197. DWC2_TRANSACTION_PERIODIC,
  198. DWC2_TRANSACTION_NON_PERIODIC,
  199. DWC2_TRANSACTION_ALL,
  200. };
  201. /* The number of elements per LS bitmap (per port on multi_tt) */
  202. #define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
  203. BITS_PER_LONG)
  204. /**
  205. * struct dwc2_tt - dwc2 data associated with a usb_tt
  206. *
  207. * @refcount: Number of Queue Heads (QHs) holding a reference.
  208. * @usb_tt: Pointer back to the official usb_tt.
  209. * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted
  210. * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP
  211. * elements (so sizeof(long) times that in bytes).
  212. *
  213. * This structure is stored in the hcpriv of the official usb_tt.
  214. */
  215. struct dwc2_tt {
  216. int refcount;
  217. struct usb_tt *usb_tt;
  218. unsigned long periodic_bitmaps[];
  219. };
  220. /**
  221. * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
  222. *
  223. * @start_schedule_usecs: The start time on the main bus schedule. Note that
  224. * the main bus schedule is tightly packed and this
  225. * time should be interpreted as tightly packed (so
  226. * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
  227. * instead of 125 us).
  228. * @duration_us: How long this transfer goes.
  229. */
  230. struct dwc2_hs_transfer_time {
  231. u32 start_schedule_us;
  232. u16 duration_us;
  233. };
  234. /**
  235. * struct dwc2_qh - Software queue head structure
  236. *
  237. * @hsotg: The HCD state structure for the DWC OTG controller
  238. * @ep_type: Endpoint type. One of the following values:
  239. * - USB_ENDPOINT_XFER_CONTROL
  240. * - USB_ENDPOINT_XFER_BULK
  241. * - USB_ENDPOINT_XFER_INT
  242. * - USB_ENDPOINT_XFER_ISOC
  243. * @ep_is_in: Endpoint direction
  244. * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
  245. * @dev_speed: Device speed. One of the following values:
  246. * - USB_SPEED_LOW
  247. * - USB_SPEED_FULL
  248. * - USB_SPEED_HIGH
  249. * @data_toggle: Determines the PID of the next data packet for
  250. * non-controltransfers. Ignored for control transfers.
  251. * One of the following values:
  252. * - DWC2_HC_PID_DATA0
  253. * - DWC2_HC_PID_DATA1
  254. * @ping_state: Ping state
  255. * @do_split: Full/low speed endpoint on high-speed hub requires split
  256. * @td_first: Index of first activated isochronous transfer descriptor
  257. * @td_last: Index of last activated isochronous transfer descriptor
  258. * @host_us: Bandwidth in microseconds per transfer as seen by host
  259. * @device_us: Bandwidth in microseconds per transfer as seen by device
  260. * @host_interval: Interval between transfers as seen by the host. If
  261. * the host is high speed and the device is low speed this
  262. * will be 8 times device interval.
  263. * @device_interval: Interval between transfers as seen by the device.
  264. * interval.
  265. * @next_active_frame: (Micro)frame _before_ we next need to put something on
  266. * the bus. We'll move the qh to active here. If the
  267. * host is in high speed mode this will be a uframe. If
  268. * the host is in low speed mode this will be a full frame.
  269. * @start_active_frame: If we are partway through a split transfer, this will be
  270. * what next_active_frame was when we started. Otherwise
  271. * it should always be the same as next_active_frame.
  272. * @num_hs_transfers: Number of transfers in hs_transfers.
  273. * Normally this is 1 but can be more than one for splits.
  274. * Always >= 1 unless the host is in low/full speed mode.
  275. * @hs_transfers: Transfers that are scheduled as seen by the high speed
  276. * bus. Not used if host is in low or full speed mode (but
  277. * note that it IS USED if the device is low or full speed
  278. * as long as the HOST is in high speed mode).
  279. * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
  280. * schedule that's being used by this device. This
  281. * will be on the periodic_bitmap in a
  282. * "struct dwc2_tt". Not used if this device is high
  283. * speed. Note that this is in "schedule slice" which
  284. * is tightly packed.
  285. * @ls_duration_us: Duration on the low speed bus schedule.
  286. * @ntd: Actual number of transfer descriptors in a list
  287. * @qtd_list: List of QTDs for this QH
  288. * @channel: Host channel currently processing transfers for this QH
  289. * @qh_list_entry: Entry for QH in either the periodic or non-periodic
  290. * schedule
  291. * @desc_list: List of transfer descriptors
  292. * @desc_list_dma: Physical address of desc_list
  293. * @desc_list_sz: Size of descriptors list
  294. * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
  295. * descriptor and indicates original XferSize value for the
  296. * descriptor
  297. * @unreserve_timer: Timer for releasing periodic reservation.
  298. * @dwc2_tt: Pointer to our tt info (or NULL if no tt).
  299. * @ttport: Port number within our tt.
  300. * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
  301. * @unreserve_pending: True if we planned to unreserve but haven't yet.
  302. * @schedule_low_speed: True if we have a low/full speed component (either the
  303. * host is in low/full speed mode or do_split).
  304. *
  305. * A Queue Head (QH) holds the static characteristics of an endpoint and
  306. * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
  307. * be entered in either the non-periodic or periodic schedule.
  308. */
  309. struct dwc2_qh {
  310. struct dwc2_hsotg *hsotg;
  311. u8 ep_type;
  312. u8 ep_is_in;
  313. u16 maxp;
  314. u8 dev_speed;
  315. u8 data_toggle;
  316. u8 ping_state;
  317. u8 do_split;
  318. u8 td_first;
  319. u8 td_last;
  320. u16 host_us;
  321. u16 device_us;
  322. u16 host_interval;
  323. u16 device_interval;
  324. u16 next_active_frame;
  325. u16 start_active_frame;
  326. s16 num_hs_transfers;
  327. struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
  328. u32 ls_start_schedule_slice;
  329. u16 ntd;
  330. struct list_head qtd_list;
  331. struct dwc2_host_chan *channel;
  332. struct list_head qh_list_entry;
  333. struct dwc2_hcd_dma_desc *desc_list;
  334. dma_addr_t desc_list_dma;
  335. u32 desc_list_sz;
  336. u32 *n_bytes;
  337. struct timer_list unreserve_timer;
  338. struct dwc2_tt *dwc_tt;
  339. int ttport;
  340. unsigned tt_buffer_dirty:1;
  341. unsigned unreserve_pending:1;
  342. unsigned schedule_low_speed:1;
  343. };
  344. /**
  345. * struct dwc2_qtd - Software queue transfer descriptor (QTD)
  346. *
  347. * @control_phase: Current phase for control transfers (Setup, Data, or
  348. * Status)
  349. * @in_process: Indicates if this QTD is currently processed by HW
  350. * @data_toggle: Determines the PID of the next data packet for the
  351. * data phase of control transfers. Ignored for other
  352. * transfer types. One of the following values:
  353. * - DWC2_HC_PID_DATA0
  354. * - DWC2_HC_PID_DATA1
  355. * @complete_split: Keeps track of the current split type for FS/LS
  356. * endpoints on a HS Hub
  357. * @isoc_split_pos: Position of the ISOC split in full/low speed
  358. * @isoc_frame_index: Index of the next frame descriptor for an isochronous
  359. * transfer. A frame descriptor describes the buffer
  360. * position and length of the data to be transferred in the
  361. * next scheduled (micro)frame of an isochronous transfer.
  362. * It also holds status for that transaction. The frame
  363. * index starts at 0.
  364. * @isoc_split_offset: Position of the ISOC split in the buffer for the
  365. * current frame
  366. * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
  367. * @error_count: Holds the number of bus errors that have occurred for
  368. * a transaction within this transfer
  369. * @n_desc: Number of DMA descriptors for this QTD
  370. * @isoc_frame_index_last: Last activated frame (packet) index, used in
  371. * descriptor DMA mode only
  372. * @urb: URB for this transfer
  373. * @qh: Queue head for this QTD
  374. * @qtd_list_entry: For linking to the QH's list of QTDs
  375. *
  376. * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
  377. * interrupt, or isochronous transfer. A single QTD is created for each URB
  378. * (of one of these types) submitted to the HCD. The transfer associated with
  379. * a QTD may require one or multiple transactions.
  380. *
  381. * A QTD is linked to a Queue Head, which is entered in either the
  382. * non-periodic or periodic schedule for execution. When a QTD is chosen for
  383. * execution, some or all of its transactions may be executed. After
  384. * execution, the state of the QTD is updated. The QTD may be retired if all
  385. * its transactions are complete or if an error occurred. Otherwise, it
  386. * remains in the schedule so more transactions can be executed later.
  387. */
  388. struct dwc2_qtd {
  389. enum dwc2_control_phase control_phase;
  390. u8 in_process;
  391. u8 data_toggle;
  392. u8 complete_split;
  393. u8 isoc_split_pos;
  394. u16 isoc_frame_index;
  395. u16 isoc_split_offset;
  396. u16 isoc_td_last;
  397. u16 isoc_td_first;
  398. u32 ssplit_out_xfer_count;
  399. u8 error_count;
  400. u8 n_desc;
  401. u16 isoc_frame_index_last;
  402. struct dwc2_hcd_urb *urb;
  403. struct dwc2_qh *qh;
  404. struct list_head qtd_list_entry;
  405. };
  406. #ifdef DEBUG
  407. struct hc_xfer_info {
  408. struct dwc2_hsotg *hsotg;
  409. struct dwc2_host_chan *chan;
  410. };
  411. #endif
  412. u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
  413. /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
  414. static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
  415. {
  416. return (struct usb_hcd *)hsotg->priv;
  417. }
  418. /*
  419. * Inline used to disable one channel interrupt. Channel interrupts are
  420. * disabled when the channel is halted or released by the interrupt handler.
  421. * There is no need to handle further interrupts of that type until the
  422. * channel is re-assigned. In fact, subsequent handling may cause crashes
  423. * because the channel structures are cleaned up when the channel is released.
  424. */
  425. static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
  426. {
  427. u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
  428. mask &= ~intr;
  429. dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
  430. }
  431. void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
  432. void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
  433. enum dwc2_halt_status halt_status);
  434. void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
  435. struct dwc2_host_chan *chan);
  436. /*
  437. * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
  438. * are read as 1, they won't clear when written back.
  439. */
  440. static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
  441. {
  442. u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
  443. hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
  444. return hprt0;
  445. }
  446. static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
  447. {
  448. return pipe->ep_num;
  449. }
  450. static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
  451. {
  452. return pipe->pipe_type;
  453. }
  454. static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
  455. {
  456. return pipe->mps;
  457. }
  458. static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
  459. {
  460. return pipe->dev_addr;
  461. }
  462. static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
  463. {
  464. return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
  465. }
  466. static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
  467. {
  468. return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
  469. }
  470. static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
  471. {
  472. return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
  473. }
  474. static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
  475. {
  476. return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
  477. }
  478. static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
  479. {
  480. return pipe->pipe_dir == USB_DIR_IN;
  481. }
  482. static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
  483. {
  484. return !dwc2_hcd_is_pipe_in(pipe);
  485. }
  486. extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
  487. extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
  488. /* Transaction Execution Functions */
  489. extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
  490. struct dwc2_hsotg *hsotg);
  491. extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
  492. enum dwc2_transaction_type tr_type);
  493. /* Schedule Queue Functions */
  494. /* Implemented in hcd_queue.c */
  495. extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
  496. struct dwc2_hcd_urb *urb,
  497. gfp_t mem_flags);
  498. extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  499. extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  500. extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  501. extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
  502. int sched_csplit);
  503. extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
  504. extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
  505. struct dwc2_qh *qh);
  506. /* Unlinks and frees a QTD */
  507. static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
  508. struct dwc2_qtd *qtd,
  509. struct dwc2_qh *qh)
  510. {
  511. list_del(&qtd->qtd_list_entry);
  512. kfree(qtd);
  513. qtd = NULL;
  514. }
  515. /* Descriptor DMA support functions */
  516. extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
  517. struct dwc2_qh *qh);
  518. extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
  519. struct dwc2_host_chan *chan, int chnum,
  520. enum dwc2_halt_status halt_status);
  521. extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
  522. gfp_t mem_flags);
  523. extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  524. /* Check if QH is non-periodic */
  525. #define dwc2_qh_is_non_per(_qh_ptr_) \
  526. ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
  527. (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
  528. #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
  529. static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
  530. static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
  531. static inline bool dbg_urb(struct urb *urb) { return true; }
  532. static inline bool dbg_perio(void) { return true; }
  533. #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
  534. static inline bool dbg_hc(struct dwc2_host_chan *hc)
  535. {
  536. return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
  537. hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
  538. }
  539. static inline bool dbg_qh(struct dwc2_qh *qh)
  540. {
  541. return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
  542. qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
  543. }
  544. static inline bool dbg_urb(struct urb *urb)
  545. {
  546. return usb_pipetype(urb->pipe) == PIPE_BULK ||
  547. usb_pipetype(urb->pipe) == PIPE_CONTROL;
  548. }
  549. static inline bool dbg_perio(void) { return false; }
  550. #endif
  551. /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
  552. #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
  553. /* Packet size for any kind of endpoint descriptor */
  554. #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
  555. /*
  556. * Returns true if frame1 index is greater than frame2 index. The comparison
  557. * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
  558. * frame number when the max index frame number is reached.
  559. */
  560. static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
  561. {
  562. u16 diff = fr_idx1 - fr_idx2;
  563. u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
  564. return diff && !sign;
  565. }
  566. /*
  567. * Returns true if frame1 is less than or equal to frame2. The comparison is
  568. * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
  569. * frame number when the max frame number is reached.
  570. */
  571. static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
  572. {
  573. return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
  574. }
  575. /*
  576. * Returns true if frame1 is greater than frame2. The comparison is done
  577. * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
  578. * number when the max frame number is reached.
  579. */
  580. static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
  581. {
  582. return (frame1 != frame2) &&
  583. ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
  584. }
  585. /*
  586. * Increments frame by the amount specified by inc. The addition is done
  587. * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
  588. */
  589. static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
  590. {
  591. return (frame + inc) & HFNUM_MAX_FRNUM;
  592. }
  593. static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
  594. {
  595. return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
  596. }
  597. static inline u16 dwc2_full_frame_num(u16 frame)
  598. {
  599. return (frame & HFNUM_MAX_FRNUM) >> 3;
  600. }
  601. static inline u16 dwc2_micro_frame_num(u16 frame)
  602. {
  603. return frame & 0x7;
  604. }
  605. /*
  606. * Returns the Core Interrupt Status register contents, ANDed with the Core
  607. * Interrupt Mask register contents
  608. */
  609. static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
  610. {
  611. return dwc2_readl(hsotg->regs + GINTSTS) &
  612. dwc2_readl(hsotg->regs + GINTMSK);
  613. }
  614. static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
  615. {
  616. return dwc2_urb->status;
  617. }
  618. static inline u32 dwc2_hcd_urb_get_actual_length(
  619. struct dwc2_hcd_urb *dwc2_urb)
  620. {
  621. return dwc2_urb->actual_length;
  622. }
  623. static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
  624. {
  625. return dwc2_urb->error_count;
  626. }
  627. static inline void dwc2_hcd_urb_set_iso_desc_params(
  628. struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
  629. u32 length)
  630. {
  631. dwc2_urb->iso_descs[desc_num].offset = offset;
  632. dwc2_urb->iso_descs[desc_num].length = length;
  633. }
  634. static inline u32 dwc2_hcd_urb_get_iso_desc_status(
  635. struct dwc2_hcd_urb *dwc2_urb, int desc_num)
  636. {
  637. return dwc2_urb->iso_descs[desc_num].status;
  638. }
  639. static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
  640. struct dwc2_hcd_urb *dwc2_urb, int desc_num)
  641. {
  642. return dwc2_urb->iso_descs[desc_num].actual_length;
  643. }
  644. static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
  645. struct usb_host_endpoint *ep)
  646. {
  647. struct dwc2_qh *qh = ep->hcpriv;
  648. if (qh && !list_empty(&qh->qh_list_entry))
  649. return 1;
  650. return 0;
  651. }
  652. static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
  653. struct usb_host_endpoint *ep)
  654. {
  655. struct dwc2_qh *qh = ep->hcpriv;
  656. if (!qh) {
  657. WARN_ON(1);
  658. return 0;
  659. }
  660. return qh->host_us;
  661. }
  662. extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
  663. struct dwc2_host_chan *chan, int chnum,
  664. struct dwc2_qtd *qtd);
  665. /* HCD Core API */
  666. /**
  667. * dwc2_handle_hcd_intr() - Called on every hardware interrupt
  668. *
  669. * @hsotg: The DWC2 HCD
  670. *
  671. * Returns IRQ_HANDLED if interrupt is handled
  672. * Return IRQ_NONE if interrupt is not handled
  673. */
  674. extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
  675. /**
  676. * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
  677. *
  678. * @hsotg: The DWC2 HCD
  679. */
  680. extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
  681. /**
  682. * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
  683. * and 0 otherwise
  684. *
  685. * @hsotg: The DWC2 HCD
  686. */
  687. extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
  688. /**
  689. * dwc2_hcd_dump_state() - Dumps hsotg state
  690. *
  691. * @hsotg: The DWC2 HCD
  692. *
  693. * NOTE: This function will be removed once the peripheral controller code
  694. * is integrated and the driver is stable
  695. */
  696. extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
  697. /**
  698. * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
  699. *
  700. * @hsotg: The DWC2 HCD
  701. *
  702. * This can be used to determine average interrupt latency. Frame remaining is
  703. * also shown for start transfer and two additional sample points.
  704. *
  705. * NOTE: This function will be removed once the peripheral controller code
  706. * is integrated and the driver is stable
  707. */
  708. extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
  709. /* URB interface */
  710. /* Transfer flags */
  711. #define URB_GIVEBACK_ASAP 0x1
  712. #define URB_SEND_ZERO_PACKET 0x2
  713. /* Host driver callbacks */
  714. extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
  715. extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
  716. extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
  717. int *hub_addr, int *hub_port);
  718. extern struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
  719. void *context, gfp_t mem_flags,
  720. int *ttport);
  721. extern void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
  722. struct dwc2_tt *dwc_tt);
  723. extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
  724. extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
  725. int status);
  726. #ifdef DEBUG
  727. /*
  728. * Macro to sample the remaining PHY clocks left in the current frame. This
  729. * may be used during debugging to determine the average time it takes to
  730. * execute sections of code. There are two possible sample points, "a" and
  731. * "b", so the _letter_ argument must be one of these values.
  732. *
  733. * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
  734. * example, "cat /sys/devices/lm0/hcd_frrem".
  735. */
  736. #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
  737. do { \
  738. struct hfnum_data _hfnum_; \
  739. struct dwc2_qtd *_qtd_; \
  740. \
  741. _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
  742. qtd_list_entry); \
  743. if (usb_pipeint(_qtd_->urb->pipe) && \
  744. (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
  745. _hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM); \
  746. switch (_hfnum_.b.frnum & 0x7) { \
  747. case 7: \
  748. (_hcd_)->hfnum_7_samples_##_letter_++; \
  749. (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
  750. _hfnum_.b.frrem; \
  751. break; \
  752. case 0: \
  753. (_hcd_)->hfnum_0_samples_##_letter_++; \
  754. (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
  755. _hfnum_.b.frrem; \
  756. break; \
  757. default: \
  758. (_hcd_)->hfnum_other_samples_##_letter_++; \
  759. (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
  760. _hfnum_.b.frrem; \
  761. break; \
  762. } \
  763. } \
  764. } while (0)
  765. #else
  766. #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
  767. #endif
  768. #endif /* __DWC2_HCD_H__ */