init_64.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. *
  9. * Derived from "arch/i386/mm/init.c"
  10. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  11. *
  12. * Dave Engebretsen <engebret@us.ibm.com>
  13. * Rework for PPC64 port.
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. */
  21. #undef DEBUG
  22. #include <linux/signal.h>
  23. #include <linux/sched.h>
  24. #include <linux/kernel.h>
  25. #include <linux/errno.h>
  26. #include <linux/string.h>
  27. #include <linux/types.h>
  28. #include <linux/mman.h>
  29. #include <linux/mm.h>
  30. #include <linux/swap.h>
  31. #include <linux/stddef.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/highmem.h>
  36. #include <linux/idr.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/module.h>
  39. #include <linux/poison.h>
  40. #include <linux/memblock.h>
  41. #include <linux/hugetlb.h>
  42. #include <linux/slab.h>
  43. #include <linux/of_fdt.h>
  44. #include <linux/libfdt.h>
  45. #include <asm/pgalloc.h>
  46. #include <asm/page.h>
  47. #include <asm/prom.h>
  48. #include <asm/rtas.h>
  49. #include <asm/io.h>
  50. #include <asm/mmu_context.h>
  51. #include <asm/pgtable.h>
  52. #include <asm/mmu.h>
  53. #include <asm/uaccess.h>
  54. #include <asm/smp.h>
  55. #include <asm/machdep.h>
  56. #include <asm/tlb.h>
  57. #include <asm/eeh.h>
  58. #include <asm/processor.h>
  59. #include <asm/mmzone.h>
  60. #include <asm/cputable.h>
  61. #include <asm/sections.h>
  62. #include <asm/iommu.h>
  63. #include <asm/vdso.h>
  64. #include "mmu_decl.h"
  65. #ifdef CONFIG_PPC_STD_MMU_64
  66. #if H_PGTABLE_RANGE > USER_VSID_RANGE
  67. #warning Limited user VSID range means pagetable space is wasted
  68. #endif
  69. #if (TASK_SIZE_USER64 < H_PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
  70. #warning TASK_SIZE is smaller than it needs to be.
  71. #endif
  72. #endif /* CONFIG_PPC_STD_MMU_64 */
  73. phys_addr_t memstart_addr = ~0;
  74. EXPORT_SYMBOL_GPL(memstart_addr);
  75. phys_addr_t kernstart_addr;
  76. EXPORT_SYMBOL_GPL(kernstart_addr);
  77. static void pgd_ctor(void *addr)
  78. {
  79. memset(addr, 0, PGD_TABLE_SIZE);
  80. }
  81. static void pud_ctor(void *addr)
  82. {
  83. memset(addr, 0, PUD_TABLE_SIZE);
  84. }
  85. static void pmd_ctor(void *addr)
  86. {
  87. memset(addr, 0, PMD_TABLE_SIZE);
  88. }
  89. struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
  90. /*
  91. * Create a kmem_cache() for pagetables. This is not used for PTE
  92. * pages - they're linked to struct page, come from the normal free
  93. * pages pool and have a different entry size (see real_pte_t) to
  94. * everything else. Caches created by this function are used for all
  95. * the higher level pagetables, and for hugepage pagetables.
  96. */
  97. void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
  98. {
  99. char *name;
  100. unsigned long table_size = sizeof(void *) << shift;
  101. unsigned long align = table_size;
  102. /* When batching pgtable pointers for RCU freeing, we store
  103. * the index size in the low bits. Table alignment must be
  104. * big enough to fit it.
  105. *
  106. * Likewise, hugeapge pagetable pointers contain a (different)
  107. * shift value in the low bits. All tables must be aligned so
  108. * as to leave enough 0 bits in the address to contain it. */
  109. unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
  110. HUGEPD_SHIFT_MASK + 1);
  111. struct kmem_cache *new;
  112. /* It would be nice if this was a BUILD_BUG_ON(), but at the
  113. * moment, gcc doesn't seem to recognize is_power_of_2 as a
  114. * constant expression, so so much for that. */
  115. BUG_ON(!is_power_of_2(minalign));
  116. BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
  117. if (PGT_CACHE(shift))
  118. return; /* Already have a cache of this size */
  119. align = max_t(unsigned long, align, minalign);
  120. name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
  121. new = kmem_cache_create(name, table_size, align, 0, ctor);
  122. kfree(name);
  123. pgtable_cache[shift - 1] = new;
  124. pr_debug("Allocated pgtable cache for order %d\n", shift);
  125. }
  126. void pgtable_cache_init(void)
  127. {
  128. pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
  129. pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
  130. /*
  131. * In all current configs, when the PUD index exists it's the
  132. * same size as either the pgd or pmd index except with THP enabled
  133. * on book3s 64
  134. */
  135. if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
  136. pgtable_cache_add(PUD_INDEX_SIZE, pud_ctor);
  137. if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
  138. panic("Couldn't allocate pgtable caches");
  139. if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
  140. panic("Couldn't allocate pud pgtable caches");
  141. }
  142. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  143. /*
  144. * Given an address within the vmemmap, determine the pfn of the page that
  145. * represents the start of the section it is within. Note that we have to
  146. * do this by hand as the proffered address may not be correctly aligned.
  147. * Subtraction of non-aligned pointers produces undefined results.
  148. */
  149. static unsigned long __meminit vmemmap_section_start(unsigned long page)
  150. {
  151. unsigned long offset = page - ((unsigned long)(vmemmap));
  152. /* Return the pfn of the start of the section. */
  153. return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
  154. }
  155. /*
  156. * Check if this vmemmap page is already initialised. If any section
  157. * which overlaps this vmemmap page is initialised then this page is
  158. * initialised already.
  159. */
  160. static int __meminit vmemmap_populated(unsigned long start, int page_size)
  161. {
  162. unsigned long end = start + page_size;
  163. start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
  164. for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
  165. if (pfn_valid(page_to_pfn((struct page *)start)))
  166. return 1;
  167. return 0;
  168. }
  169. struct vmemmap_backing *vmemmap_list;
  170. static struct vmemmap_backing *next;
  171. static int num_left;
  172. static int num_freed;
  173. static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
  174. {
  175. struct vmemmap_backing *vmem_back;
  176. /* get from freed entries first */
  177. if (num_freed) {
  178. num_freed--;
  179. vmem_back = next;
  180. next = next->list;
  181. return vmem_back;
  182. }
  183. /* allocate a page when required and hand out chunks */
  184. if (!num_left) {
  185. next = vmemmap_alloc_block(PAGE_SIZE, node);
  186. if (unlikely(!next)) {
  187. WARN_ON(1);
  188. return NULL;
  189. }
  190. num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
  191. }
  192. num_left--;
  193. return next++;
  194. }
  195. static __meminit void vmemmap_list_populate(unsigned long phys,
  196. unsigned long start,
  197. int node)
  198. {
  199. struct vmemmap_backing *vmem_back;
  200. vmem_back = vmemmap_list_alloc(node);
  201. if (unlikely(!vmem_back)) {
  202. WARN_ON(1);
  203. return;
  204. }
  205. vmem_back->phys = phys;
  206. vmem_back->virt_addr = start;
  207. vmem_back->list = vmemmap_list;
  208. vmemmap_list = vmem_back;
  209. }
  210. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  211. {
  212. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  213. /* Align to the page size of the linear mapping. */
  214. start = _ALIGN_DOWN(start, page_size);
  215. pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
  216. for (; start < end; start += page_size) {
  217. void *p;
  218. int rc;
  219. if (vmemmap_populated(start, page_size))
  220. continue;
  221. p = vmemmap_alloc_block(page_size, node);
  222. if (!p)
  223. return -ENOMEM;
  224. vmemmap_list_populate(__pa(p), start, node);
  225. pr_debug(" * %016lx..%016lx allocated at %p\n",
  226. start, start + page_size, p);
  227. rc = vmemmap_create_mapping(start, page_size, __pa(p));
  228. if (rc < 0) {
  229. pr_warning(
  230. "vmemmap_populate: Unable to create vmemmap mapping: %d\n",
  231. rc);
  232. return -EFAULT;
  233. }
  234. }
  235. return 0;
  236. }
  237. #ifdef CONFIG_MEMORY_HOTPLUG
  238. static unsigned long vmemmap_list_free(unsigned long start)
  239. {
  240. struct vmemmap_backing *vmem_back, *vmem_back_prev;
  241. vmem_back_prev = vmem_back = vmemmap_list;
  242. /* look for it with prev pointer recorded */
  243. for (; vmem_back; vmem_back = vmem_back->list) {
  244. if (vmem_back->virt_addr == start)
  245. break;
  246. vmem_back_prev = vmem_back;
  247. }
  248. if (unlikely(!vmem_back)) {
  249. WARN_ON(1);
  250. return 0;
  251. }
  252. /* remove it from vmemmap_list */
  253. if (vmem_back == vmemmap_list) /* remove head */
  254. vmemmap_list = vmem_back->list;
  255. else
  256. vmem_back_prev->list = vmem_back->list;
  257. /* next point to this freed entry */
  258. vmem_back->list = next;
  259. next = vmem_back;
  260. num_freed++;
  261. return vmem_back->phys;
  262. }
  263. void __ref vmemmap_free(unsigned long start, unsigned long end)
  264. {
  265. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  266. start = _ALIGN_DOWN(start, page_size);
  267. pr_debug("vmemmap_free %lx...%lx\n", start, end);
  268. for (; start < end; start += page_size) {
  269. unsigned long addr;
  270. /*
  271. * the section has already be marked as invalid, so
  272. * vmemmap_populated() true means some other sections still
  273. * in this page, so skip it.
  274. */
  275. if (vmemmap_populated(start, page_size))
  276. continue;
  277. addr = vmemmap_list_free(start);
  278. if (addr) {
  279. struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
  280. if (PageReserved(page)) {
  281. /* allocated from bootmem */
  282. if (page_size < PAGE_SIZE) {
  283. /*
  284. * this shouldn't happen, but if it is
  285. * the case, leave the memory there
  286. */
  287. WARN_ON_ONCE(1);
  288. } else {
  289. unsigned int nr_pages =
  290. 1 << get_order(page_size);
  291. while (nr_pages--)
  292. free_reserved_page(page++);
  293. }
  294. } else
  295. free_pages((unsigned long)(__va(addr)),
  296. get_order(page_size));
  297. vmemmap_remove_mapping(start, page_size);
  298. }
  299. }
  300. }
  301. #endif
  302. void register_page_bootmem_memmap(unsigned long section_nr,
  303. struct page *start_page, unsigned long size)
  304. {
  305. }
  306. /*
  307. * We do not have access to the sparsemem vmemmap, so we fallback to
  308. * walking the list of sparsemem blocks which we already maintain for
  309. * the sake of crashdump. In the long run, we might want to maintain
  310. * a tree if performance of that linear walk becomes a problem.
  311. *
  312. * realmode_pfn_to_page functions can fail due to:
  313. * 1) As real sparsemem blocks do not lay in RAM continously (they
  314. * are in virtual address space which is not available in the real mode),
  315. * the requested page struct can be split between blocks so get_page/put_page
  316. * may fail.
  317. * 2) When huge pages are used, the get_page/put_page API will fail
  318. * in real mode as the linked addresses in the page struct are virtual
  319. * too.
  320. */
  321. struct page *realmode_pfn_to_page(unsigned long pfn)
  322. {
  323. struct vmemmap_backing *vmem_back;
  324. struct page *page;
  325. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  326. unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
  327. for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
  328. if (pg_va < vmem_back->virt_addr)
  329. continue;
  330. /* After vmemmap_list entry free is possible, need check all */
  331. if ((pg_va + sizeof(struct page)) <=
  332. (vmem_back->virt_addr + page_size)) {
  333. page = (struct page *) (vmem_back->phys + pg_va -
  334. vmem_back->virt_addr);
  335. return page;
  336. }
  337. }
  338. /* Probably that page struct is split between real pages */
  339. return NULL;
  340. }
  341. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  342. #elif defined(CONFIG_FLATMEM)
  343. struct page *realmode_pfn_to_page(unsigned long pfn)
  344. {
  345. struct page *page = pfn_to_page(pfn);
  346. return page;
  347. }
  348. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  349. #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
  350. #ifdef CONFIG_PPC_STD_MMU_64
  351. static bool disable_radix;
  352. static int __init parse_disable_radix(char *p)
  353. {
  354. disable_radix = true;
  355. return 0;
  356. }
  357. early_param("disable_radix", parse_disable_radix);
  358. /*
  359. * If we're running under a hypervisor, we currently can't do radix
  360. * since we don't have the code to do the H_REGISTER_PROC_TBL hcall.
  361. * We tell that we're running under a hypervisor by looking for the
  362. * /chosen/ibm,architecture-vec-5 property.
  363. */
  364. static void early_check_vec5(void)
  365. {
  366. unsigned long root, chosen;
  367. int size;
  368. const u8 *vec5;
  369. root = of_get_flat_dt_root();
  370. chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
  371. if (chosen == -FDT_ERR_NOTFOUND)
  372. return;
  373. vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
  374. if (!vec5)
  375. return;
  376. cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
  377. }
  378. void __init mmu_early_init_devtree(void)
  379. {
  380. /* Disable radix mode based on kernel command line. */
  381. /* We don't yet have the machinery to do radix as a guest. */
  382. if (disable_radix || !(mfmsr() & MSR_HV))
  383. cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
  384. /*
  385. * Check /chosen/ibm,architecture-vec-5 if running as a guest.
  386. * When running bare-metal, we can use radix if we like
  387. * even though the ibm,architecture-vec-5 property created by
  388. * skiboot doesn't have the necessary bits set.
  389. */
  390. if (early_radix_enabled() && !(mfmsr() & MSR_HV))
  391. early_check_vec5();
  392. if (early_radix_enabled())
  393. radix__early_init_devtree();
  394. else
  395. hash__early_init_devtree();
  396. }
  397. #endif /* CONFIG_PPC_STD_MMU_64 */