fsl_booke_mmu.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. /*
  2. * Modifications by Kumar Gala (galak@kernel.crashing.org) to support
  3. * E500 Book E processors.
  4. *
  5. * Copyright 2004,2010 Freescale Semiconductor, Inc.
  6. *
  7. * This file contains the routines for initializing the MMU
  8. * on the 4xx series of chips.
  9. * -- paulus
  10. *
  11. * Derived from arch/ppc/mm/init.c:
  12. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  13. *
  14. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  15. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  16. * Copyright (C) 1996 Paul Mackerras
  17. *
  18. * Derived from "arch/i386/mm/init.c"
  19. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  20. *
  21. * This program is free software; you can redistribute it and/or
  22. * modify it under the terms of the GNU General Public License
  23. * as published by the Free Software Foundation; either version
  24. * 2 of the License, or (at your option) any later version.
  25. *
  26. */
  27. #include <linux/signal.h>
  28. #include <linux/sched.h>
  29. #include <linux/kernel.h>
  30. #include <linux/errno.h>
  31. #include <linux/string.h>
  32. #include <linux/types.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/mman.h>
  35. #include <linux/mm.h>
  36. #include <linux/swap.h>
  37. #include <linux/stddef.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/init.h>
  40. #include <linux/delay.h>
  41. #include <linux/highmem.h>
  42. #include <linux/memblock.h>
  43. #include <asm/pgalloc.h>
  44. #include <asm/prom.h>
  45. #include <asm/io.h>
  46. #include <asm/mmu_context.h>
  47. #include <asm/pgtable.h>
  48. #include <asm/mmu.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/smp.h>
  51. #include <asm/machdep.h>
  52. #include <asm/setup.h>
  53. #include <asm/paca.h>
  54. #include "mmu_decl.h"
  55. unsigned int tlbcam_index;
  56. #define NUM_TLBCAMS (64)
  57. struct tlbcam TLBCAM[NUM_TLBCAMS];
  58. struct tlbcamrange {
  59. unsigned long start;
  60. unsigned long limit;
  61. phys_addr_t phys;
  62. } tlbcam_addrs[NUM_TLBCAMS];
  63. unsigned long tlbcam_sz(int idx)
  64. {
  65. return tlbcam_addrs[idx].limit - tlbcam_addrs[idx].start + 1;
  66. }
  67. #ifdef CONFIG_FSL_BOOKE
  68. /*
  69. * Return PA for this VA if it is mapped by a CAM, or 0
  70. */
  71. phys_addr_t v_block_mapped(unsigned long va)
  72. {
  73. int b;
  74. for (b = 0; b < tlbcam_index; ++b)
  75. if (va >= tlbcam_addrs[b].start && va < tlbcam_addrs[b].limit)
  76. return tlbcam_addrs[b].phys + (va - tlbcam_addrs[b].start);
  77. return 0;
  78. }
  79. /*
  80. * Return VA for a given PA or 0 if not mapped
  81. */
  82. unsigned long p_block_mapped(phys_addr_t pa)
  83. {
  84. int b;
  85. for (b = 0; b < tlbcam_index; ++b)
  86. if (pa >= tlbcam_addrs[b].phys
  87. && pa < (tlbcam_addrs[b].limit-tlbcam_addrs[b].start)
  88. +tlbcam_addrs[b].phys)
  89. return tlbcam_addrs[b].start+(pa-tlbcam_addrs[b].phys);
  90. return 0;
  91. }
  92. #endif
  93. /*
  94. * Set up a variable-size TLB entry (tlbcam). The parameters are not checked;
  95. * in particular size must be a power of 4 between 4k and the max supported by
  96. * an implementation; max may further be limited by what can be represented in
  97. * an unsigned long (for example, 32-bit implementations cannot support a 4GB
  98. * size).
  99. */
  100. static void settlbcam(int index, unsigned long virt, phys_addr_t phys,
  101. unsigned long size, unsigned long flags, unsigned int pid)
  102. {
  103. unsigned int tsize;
  104. tsize = __ilog2(size) - 10;
  105. #if defined(CONFIG_SMP) || defined(CONFIG_PPC_E500MC)
  106. if ((flags & _PAGE_NO_CACHE) == 0)
  107. flags |= _PAGE_COHERENT;
  108. #endif
  109. TLBCAM[index].MAS0 = MAS0_TLBSEL(1) | MAS0_ESEL(index) | MAS0_NV(index+1);
  110. TLBCAM[index].MAS1 = MAS1_VALID | MAS1_IPROT | MAS1_TSIZE(tsize) | MAS1_TID(pid);
  111. TLBCAM[index].MAS2 = virt & PAGE_MASK;
  112. TLBCAM[index].MAS2 |= (flags & _PAGE_WRITETHRU) ? MAS2_W : 0;
  113. TLBCAM[index].MAS2 |= (flags & _PAGE_NO_CACHE) ? MAS2_I : 0;
  114. TLBCAM[index].MAS2 |= (flags & _PAGE_COHERENT) ? MAS2_M : 0;
  115. TLBCAM[index].MAS2 |= (flags & _PAGE_GUARDED) ? MAS2_G : 0;
  116. TLBCAM[index].MAS2 |= (flags & _PAGE_ENDIAN) ? MAS2_E : 0;
  117. TLBCAM[index].MAS3 = (phys & MAS3_RPN) | MAS3_SX | MAS3_SR;
  118. TLBCAM[index].MAS3 |= ((flags & _PAGE_RW) ? MAS3_SW : 0);
  119. if (mmu_has_feature(MMU_FTR_BIG_PHYS))
  120. TLBCAM[index].MAS7 = (u64)phys >> 32;
  121. /* Below is unlikely -- only for large user pages or similar */
  122. if (pte_user(__pte(flags))) {
  123. TLBCAM[index].MAS3 |= MAS3_UX | MAS3_UR;
  124. TLBCAM[index].MAS3 |= ((flags & _PAGE_RW) ? MAS3_UW : 0);
  125. }
  126. tlbcam_addrs[index].start = virt;
  127. tlbcam_addrs[index].limit = virt + size - 1;
  128. tlbcam_addrs[index].phys = phys;
  129. }
  130. unsigned long calc_cam_sz(unsigned long ram, unsigned long virt,
  131. phys_addr_t phys)
  132. {
  133. unsigned int camsize = __ilog2(ram);
  134. unsigned int align = __ffs(virt | phys);
  135. unsigned long max_cam;
  136. if ((mfspr(SPRN_MMUCFG) & MMUCFG_MAVN) == MMUCFG_MAVN_V1) {
  137. /* Convert (4^max) kB to (2^max) bytes */
  138. max_cam = ((mfspr(SPRN_TLB1CFG) >> 16) & 0xf) * 2 + 10;
  139. camsize &= ~1U;
  140. align &= ~1U;
  141. } else {
  142. /* Convert (2^max) kB to (2^max) bytes */
  143. max_cam = __ilog2(mfspr(SPRN_TLB1PS)) + 10;
  144. }
  145. if (camsize > align)
  146. camsize = align;
  147. if (camsize > max_cam)
  148. camsize = max_cam;
  149. return 1UL << camsize;
  150. }
  151. static unsigned long map_mem_in_cams_addr(phys_addr_t phys, unsigned long virt,
  152. unsigned long ram, int max_cam_idx,
  153. bool dryrun)
  154. {
  155. int i;
  156. unsigned long amount_mapped = 0;
  157. /* Calculate CAM values */
  158. for (i = 0; ram && i < max_cam_idx; i++) {
  159. unsigned long cam_sz;
  160. cam_sz = calc_cam_sz(ram, virt, phys);
  161. if (!dryrun)
  162. settlbcam(i, virt, phys, cam_sz,
  163. pgprot_val(PAGE_KERNEL_X), 0);
  164. ram -= cam_sz;
  165. amount_mapped += cam_sz;
  166. virt += cam_sz;
  167. phys += cam_sz;
  168. }
  169. if (dryrun)
  170. return amount_mapped;
  171. loadcam_multi(0, i, max_cam_idx);
  172. tlbcam_index = i;
  173. #ifdef CONFIG_PPC64
  174. get_paca()->tcd.esel_next = i;
  175. get_paca()->tcd.esel_max = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
  176. get_paca()->tcd.esel_first = i;
  177. #endif
  178. return amount_mapped;
  179. }
  180. unsigned long map_mem_in_cams(unsigned long ram, int max_cam_idx, bool dryrun)
  181. {
  182. unsigned long virt = PAGE_OFFSET;
  183. phys_addr_t phys = memstart_addr;
  184. return map_mem_in_cams_addr(phys, virt, ram, max_cam_idx, dryrun);
  185. }
  186. #ifdef CONFIG_PPC32
  187. #if defined(CONFIG_LOWMEM_CAM_NUM_BOOL) && (CONFIG_LOWMEM_CAM_NUM >= NUM_TLBCAMS)
  188. #error "LOWMEM_CAM_NUM must be less than NUM_TLBCAMS"
  189. #endif
  190. unsigned long __init mmu_mapin_ram(unsigned long top)
  191. {
  192. return tlbcam_addrs[tlbcam_index - 1].limit - PAGE_OFFSET + 1;
  193. }
  194. /*
  195. * MMU_init_hw does the chip-specific initialization of the MMU hardware.
  196. */
  197. void __init MMU_init_hw(void)
  198. {
  199. flush_instruction_cache();
  200. }
  201. void __init adjust_total_lowmem(void)
  202. {
  203. unsigned long ram;
  204. int i;
  205. /* adjust lowmem size to __max_low_memory */
  206. ram = min((phys_addr_t)__max_low_memory, (phys_addr_t)total_lowmem);
  207. i = switch_to_as1();
  208. __max_low_memory = map_mem_in_cams(ram, CONFIG_LOWMEM_CAM_NUM, false);
  209. restore_to_as0(i, 0, 0, 1);
  210. pr_info("Memory CAM mapping: ");
  211. for (i = 0; i < tlbcam_index - 1; i++)
  212. pr_cont("%lu/", tlbcam_sz(i) >> 20);
  213. pr_cont("%lu Mb, residual: %dMb\n", tlbcam_sz(tlbcam_index - 1) >> 20,
  214. (unsigned int)((total_lowmem - __max_low_memory) >> 20));
  215. memblock_set_current_limit(memstart_addr + __max_low_memory);
  216. }
  217. void setup_initial_memory_limit(phys_addr_t first_memblock_base,
  218. phys_addr_t first_memblock_size)
  219. {
  220. phys_addr_t limit = first_memblock_base + first_memblock_size;
  221. /* 64M mapped initially according to head_fsl_booke.S */
  222. memblock_set_current_limit(min_t(u64, limit, 0x04000000));
  223. }
  224. #ifdef CONFIG_RELOCATABLE
  225. int __initdata is_second_reloc;
  226. notrace void __init relocate_init(u64 dt_ptr, phys_addr_t start)
  227. {
  228. unsigned long base = KERNELBASE;
  229. kernstart_addr = start;
  230. if (is_second_reloc) {
  231. virt_phys_offset = PAGE_OFFSET - memstart_addr;
  232. return;
  233. }
  234. /*
  235. * Relocatable kernel support based on processing of dynamic
  236. * relocation entries. Before we get the real memstart_addr,
  237. * We will compute the virt_phys_offset like this:
  238. * virt_phys_offset = stext.run - kernstart_addr
  239. *
  240. * stext.run = (KERNELBASE & ~0x3ffffff) +
  241. * (kernstart_addr & 0x3ffffff)
  242. * When we relocate, we have :
  243. *
  244. * (kernstart_addr & 0x3ffffff) = (stext.run & 0x3ffffff)
  245. *
  246. * hence:
  247. * virt_phys_offset = (KERNELBASE & ~0x3ffffff) -
  248. * (kernstart_addr & ~0x3ffffff)
  249. *
  250. */
  251. start &= ~0x3ffffff;
  252. base &= ~0x3ffffff;
  253. virt_phys_offset = base - start;
  254. early_get_first_memblock_info(__va(dt_ptr), NULL);
  255. /*
  256. * We now get the memstart_addr, then we should check if this
  257. * address is the same as what the PAGE_OFFSET map to now. If
  258. * not we have to change the map of PAGE_OFFSET to memstart_addr
  259. * and do a second relocation.
  260. */
  261. if (start != memstart_addr) {
  262. int n;
  263. long offset = start - memstart_addr;
  264. is_second_reloc = 1;
  265. n = switch_to_as1();
  266. /* map a 64M area for the second relocation */
  267. if (memstart_addr > start)
  268. map_mem_in_cams(0x4000000, CONFIG_LOWMEM_CAM_NUM,
  269. false);
  270. else
  271. map_mem_in_cams_addr(start, PAGE_OFFSET + offset,
  272. 0x4000000, CONFIG_LOWMEM_CAM_NUM,
  273. false);
  274. restore_to_as0(n, offset, __va(dt_ptr), 1);
  275. /* We should never reach here */
  276. panic("Relocation error");
  277. }
  278. }
  279. #endif
  280. #endif