mcdi.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267
  1. /****************************************************************************
  2. * Driver for Solarflare network controllers and boards
  3. * Copyright 2008-2013 Solarflare Communications Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License version 2 as published
  7. * by the Free Software Foundation, incorporated herein by reference.
  8. */
  9. #include <linux/delay.h>
  10. #include <linux/moduleparam.h>
  11. #include <linux/atomic.h>
  12. #include "net_driver.h"
  13. #include "nic.h"
  14. #include "io.h"
  15. #include "farch_regs.h"
  16. #include "mcdi_pcol.h"
  17. #include "phy.h"
  18. /**************************************************************************
  19. *
  20. * Management-Controller-to-Driver Interface
  21. *
  22. **************************************************************************
  23. */
  24. #define MCDI_RPC_TIMEOUT (10 * HZ)
  25. /* A reboot/assertion causes the MCDI status word to be set after the
  26. * command word is set or a REBOOT event is sent. If we notice a reboot
  27. * via these mechanisms then wait 250ms for the status word to be set.
  28. */
  29. #define MCDI_STATUS_DELAY_US 100
  30. #define MCDI_STATUS_DELAY_COUNT 2500
  31. #define MCDI_STATUS_SLEEP_MS \
  32. (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
  33. #define SEQ_MASK \
  34. EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
  35. struct efx_mcdi_async_param {
  36. struct list_head list;
  37. unsigned int cmd;
  38. size_t inlen;
  39. size_t outlen;
  40. bool quiet;
  41. efx_mcdi_async_completer *complete;
  42. unsigned long cookie;
  43. /* followed by request/response buffer */
  44. };
  45. static void efx_mcdi_timeout_async(unsigned long context);
  46. static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
  47. bool *was_attached_out);
  48. static bool efx_mcdi_poll_once(struct efx_nic *efx);
  49. static void efx_mcdi_abandon(struct efx_nic *efx);
  50. #ifdef CONFIG_SFC_MCDI_LOGGING
  51. static bool mcdi_logging_default;
  52. module_param(mcdi_logging_default, bool, 0644);
  53. MODULE_PARM_DESC(mcdi_logging_default,
  54. "Enable MCDI logging on newly-probed functions");
  55. #endif
  56. int efx_mcdi_init(struct efx_nic *efx)
  57. {
  58. struct efx_mcdi_iface *mcdi;
  59. bool already_attached;
  60. int rc = -ENOMEM;
  61. efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
  62. if (!efx->mcdi)
  63. goto fail;
  64. mcdi = efx_mcdi(efx);
  65. mcdi->efx = efx;
  66. #ifdef CONFIG_SFC_MCDI_LOGGING
  67. /* consuming code assumes buffer is page-sized */
  68. mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
  69. if (!mcdi->logging_buffer)
  70. goto fail1;
  71. mcdi->logging_enabled = mcdi_logging_default;
  72. #endif
  73. init_waitqueue_head(&mcdi->wq);
  74. init_waitqueue_head(&mcdi->proxy_rx_wq);
  75. spin_lock_init(&mcdi->iface_lock);
  76. mcdi->state = MCDI_STATE_QUIESCENT;
  77. mcdi->mode = MCDI_MODE_POLL;
  78. spin_lock_init(&mcdi->async_lock);
  79. INIT_LIST_HEAD(&mcdi->async_list);
  80. setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
  81. (unsigned long)mcdi);
  82. (void) efx_mcdi_poll_reboot(efx);
  83. mcdi->new_epoch = true;
  84. /* Recover from a failed assertion before probing */
  85. rc = efx_mcdi_handle_assertion(efx);
  86. if (rc)
  87. goto fail2;
  88. /* Let the MC (and BMC, if this is a LOM) know that the driver
  89. * is loaded. We should do this before we reset the NIC.
  90. */
  91. rc = efx_mcdi_drv_attach(efx, true, &already_attached);
  92. if (rc) {
  93. netif_err(efx, probe, efx->net_dev,
  94. "Unable to register driver with MCPU\n");
  95. goto fail2;
  96. }
  97. if (already_attached)
  98. /* Not a fatal error */
  99. netif_err(efx, probe, efx->net_dev,
  100. "Host already registered with MCPU\n");
  101. if (efx->mcdi->fn_flags &
  102. (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
  103. efx->primary = efx;
  104. return 0;
  105. fail2:
  106. #ifdef CONFIG_SFC_MCDI_LOGGING
  107. free_page((unsigned long)mcdi->logging_buffer);
  108. fail1:
  109. #endif
  110. kfree(efx->mcdi);
  111. efx->mcdi = NULL;
  112. fail:
  113. return rc;
  114. }
  115. void efx_mcdi_fini(struct efx_nic *efx)
  116. {
  117. if (!efx->mcdi)
  118. return;
  119. BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
  120. /* Relinquish the device (back to the BMC, if this is a LOM) */
  121. efx_mcdi_drv_attach(efx, false, NULL);
  122. #ifdef CONFIG_SFC_MCDI_LOGGING
  123. free_page((unsigned long)efx->mcdi->iface.logging_buffer);
  124. #endif
  125. kfree(efx->mcdi);
  126. }
  127. static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
  128. const efx_dword_t *inbuf, size_t inlen)
  129. {
  130. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  131. #ifdef CONFIG_SFC_MCDI_LOGGING
  132. char *buf = mcdi->logging_buffer; /* page-sized */
  133. #endif
  134. efx_dword_t hdr[2];
  135. size_t hdr_len;
  136. u32 xflags, seqno;
  137. BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
  138. /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
  139. spin_lock_bh(&mcdi->iface_lock);
  140. ++mcdi->seqno;
  141. spin_unlock_bh(&mcdi->iface_lock);
  142. seqno = mcdi->seqno & SEQ_MASK;
  143. xflags = 0;
  144. if (mcdi->mode == MCDI_MODE_EVENTS)
  145. xflags |= MCDI_HEADER_XFLAGS_EVREQ;
  146. if (efx->type->mcdi_max_ver == 1) {
  147. /* MCDI v1 */
  148. EFX_POPULATE_DWORD_7(hdr[0],
  149. MCDI_HEADER_RESPONSE, 0,
  150. MCDI_HEADER_RESYNC, 1,
  151. MCDI_HEADER_CODE, cmd,
  152. MCDI_HEADER_DATALEN, inlen,
  153. MCDI_HEADER_SEQ, seqno,
  154. MCDI_HEADER_XFLAGS, xflags,
  155. MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
  156. hdr_len = 4;
  157. } else {
  158. /* MCDI v2 */
  159. BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
  160. EFX_POPULATE_DWORD_7(hdr[0],
  161. MCDI_HEADER_RESPONSE, 0,
  162. MCDI_HEADER_RESYNC, 1,
  163. MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
  164. MCDI_HEADER_DATALEN, 0,
  165. MCDI_HEADER_SEQ, seqno,
  166. MCDI_HEADER_XFLAGS, xflags,
  167. MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
  168. EFX_POPULATE_DWORD_2(hdr[1],
  169. MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
  170. MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
  171. hdr_len = 8;
  172. }
  173. #ifdef CONFIG_SFC_MCDI_LOGGING
  174. if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
  175. int bytes = 0;
  176. int i;
  177. /* Lengths should always be a whole number of dwords, so scream
  178. * if they're not.
  179. */
  180. WARN_ON_ONCE(hdr_len % 4);
  181. WARN_ON_ONCE(inlen % 4);
  182. /* We own the logging buffer, as only one MCDI can be in
  183. * progress on a NIC at any one time. So no need for locking.
  184. */
  185. for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
  186. bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
  187. " %08x", le32_to_cpu(hdr[i].u32[0]));
  188. for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
  189. bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
  190. " %08x", le32_to_cpu(inbuf[i].u32[0]));
  191. netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
  192. }
  193. #endif
  194. efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
  195. mcdi->new_epoch = false;
  196. }
  197. static int efx_mcdi_errno(unsigned int mcdi_err)
  198. {
  199. switch (mcdi_err) {
  200. case 0:
  201. return 0;
  202. #define TRANSLATE_ERROR(name) \
  203. case MC_CMD_ERR_ ## name: \
  204. return -name;
  205. TRANSLATE_ERROR(EPERM);
  206. TRANSLATE_ERROR(ENOENT);
  207. TRANSLATE_ERROR(EINTR);
  208. TRANSLATE_ERROR(EAGAIN);
  209. TRANSLATE_ERROR(EACCES);
  210. TRANSLATE_ERROR(EBUSY);
  211. TRANSLATE_ERROR(EINVAL);
  212. TRANSLATE_ERROR(EDEADLK);
  213. TRANSLATE_ERROR(ENOSYS);
  214. TRANSLATE_ERROR(ETIME);
  215. TRANSLATE_ERROR(EALREADY);
  216. TRANSLATE_ERROR(ENOSPC);
  217. #undef TRANSLATE_ERROR
  218. case MC_CMD_ERR_ENOTSUP:
  219. return -EOPNOTSUPP;
  220. case MC_CMD_ERR_ALLOC_FAIL:
  221. return -ENOBUFS;
  222. case MC_CMD_ERR_MAC_EXIST:
  223. return -EADDRINUSE;
  224. default:
  225. return -EPROTO;
  226. }
  227. }
  228. static void efx_mcdi_read_response_header(struct efx_nic *efx)
  229. {
  230. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  231. unsigned int respseq, respcmd, error;
  232. #ifdef CONFIG_SFC_MCDI_LOGGING
  233. char *buf = mcdi->logging_buffer; /* page-sized */
  234. #endif
  235. efx_dword_t hdr;
  236. efx->type->mcdi_read_response(efx, &hdr, 0, 4);
  237. respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
  238. respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
  239. error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
  240. if (respcmd != MC_CMD_V2_EXTN) {
  241. mcdi->resp_hdr_len = 4;
  242. mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
  243. } else {
  244. efx->type->mcdi_read_response(efx, &hdr, 4, 4);
  245. mcdi->resp_hdr_len = 8;
  246. mcdi->resp_data_len =
  247. EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
  248. }
  249. #ifdef CONFIG_SFC_MCDI_LOGGING
  250. if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
  251. size_t hdr_len, data_len;
  252. int bytes = 0;
  253. int i;
  254. WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
  255. hdr_len = mcdi->resp_hdr_len / 4;
  256. /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
  257. * to dword size, and the MCDI buffer is always dword size
  258. */
  259. data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
  260. /* We own the logging buffer, as only one MCDI can be in
  261. * progress on a NIC at any one time. So no need for locking.
  262. */
  263. for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
  264. efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
  265. bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
  266. " %08x", le32_to_cpu(hdr.u32[0]));
  267. }
  268. for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
  269. efx->type->mcdi_read_response(efx, &hdr,
  270. mcdi->resp_hdr_len + (i * 4), 4);
  271. bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
  272. " %08x", le32_to_cpu(hdr.u32[0]));
  273. }
  274. netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
  275. }
  276. #endif
  277. mcdi->resprc_raw = 0;
  278. if (error && mcdi->resp_data_len == 0) {
  279. netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
  280. mcdi->resprc = -EIO;
  281. } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
  282. netif_err(efx, hw, efx->net_dev,
  283. "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
  284. respseq, mcdi->seqno);
  285. mcdi->resprc = -EIO;
  286. } else if (error) {
  287. efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
  288. mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
  289. mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
  290. } else {
  291. mcdi->resprc = 0;
  292. }
  293. }
  294. static bool efx_mcdi_poll_once(struct efx_nic *efx)
  295. {
  296. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  297. rmb();
  298. if (!efx->type->mcdi_poll_response(efx))
  299. return false;
  300. spin_lock_bh(&mcdi->iface_lock);
  301. efx_mcdi_read_response_header(efx);
  302. spin_unlock_bh(&mcdi->iface_lock);
  303. return true;
  304. }
  305. static int efx_mcdi_poll(struct efx_nic *efx)
  306. {
  307. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  308. unsigned long time, finish;
  309. unsigned int spins;
  310. int rc;
  311. /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
  312. rc = efx_mcdi_poll_reboot(efx);
  313. if (rc) {
  314. spin_lock_bh(&mcdi->iface_lock);
  315. mcdi->resprc = rc;
  316. mcdi->resp_hdr_len = 0;
  317. mcdi->resp_data_len = 0;
  318. spin_unlock_bh(&mcdi->iface_lock);
  319. return 0;
  320. }
  321. /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
  322. * because generally mcdi responses are fast. After that, back off
  323. * and poll once a jiffy (approximately)
  324. */
  325. spins = TICK_USEC;
  326. finish = jiffies + MCDI_RPC_TIMEOUT;
  327. while (1) {
  328. if (spins != 0) {
  329. --spins;
  330. udelay(1);
  331. } else {
  332. schedule_timeout_uninterruptible(1);
  333. }
  334. time = jiffies;
  335. if (efx_mcdi_poll_once(efx))
  336. break;
  337. if (time_after(time, finish))
  338. return -ETIMEDOUT;
  339. }
  340. /* Return rc=0 like wait_event_timeout() */
  341. return 0;
  342. }
  343. /* Test and clear MC-rebooted flag for this port/function; reset
  344. * software state as necessary.
  345. */
  346. int efx_mcdi_poll_reboot(struct efx_nic *efx)
  347. {
  348. if (!efx->mcdi)
  349. return 0;
  350. return efx->type->mcdi_poll_reboot(efx);
  351. }
  352. static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
  353. {
  354. return cmpxchg(&mcdi->state,
  355. MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
  356. MCDI_STATE_QUIESCENT;
  357. }
  358. static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
  359. {
  360. /* Wait until the interface becomes QUIESCENT and we win the race
  361. * to mark it RUNNING_SYNC.
  362. */
  363. wait_event(mcdi->wq,
  364. cmpxchg(&mcdi->state,
  365. MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
  366. MCDI_STATE_QUIESCENT);
  367. }
  368. static int efx_mcdi_await_completion(struct efx_nic *efx)
  369. {
  370. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  371. if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
  372. MCDI_RPC_TIMEOUT) == 0)
  373. return -ETIMEDOUT;
  374. /* Check if efx_mcdi_set_mode() switched us back to polled completions.
  375. * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
  376. * completed the request first, then we'll just end up completing the
  377. * request again, which is safe.
  378. *
  379. * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
  380. * wait_event_timeout() implicitly provides.
  381. */
  382. if (mcdi->mode == MCDI_MODE_POLL)
  383. return efx_mcdi_poll(efx);
  384. return 0;
  385. }
  386. /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
  387. * requester. Return whether this was done. Does not take any locks.
  388. */
  389. static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
  390. {
  391. if (cmpxchg(&mcdi->state,
  392. MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
  393. MCDI_STATE_RUNNING_SYNC) {
  394. wake_up(&mcdi->wq);
  395. return true;
  396. }
  397. return false;
  398. }
  399. static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
  400. {
  401. if (mcdi->mode == MCDI_MODE_EVENTS) {
  402. struct efx_mcdi_async_param *async;
  403. struct efx_nic *efx = mcdi->efx;
  404. /* Process the asynchronous request queue */
  405. spin_lock_bh(&mcdi->async_lock);
  406. async = list_first_entry_or_null(
  407. &mcdi->async_list, struct efx_mcdi_async_param, list);
  408. if (async) {
  409. mcdi->state = MCDI_STATE_RUNNING_ASYNC;
  410. efx_mcdi_send_request(efx, async->cmd,
  411. (const efx_dword_t *)(async + 1),
  412. async->inlen);
  413. mod_timer(&mcdi->async_timer,
  414. jiffies + MCDI_RPC_TIMEOUT);
  415. }
  416. spin_unlock_bh(&mcdi->async_lock);
  417. if (async)
  418. return;
  419. }
  420. mcdi->state = MCDI_STATE_QUIESCENT;
  421. wake_up(&mcdi->wq);
  422. }
  423. /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
  424. * asynchronous completion function, and release the interface.
  425. * Return whether this was done. Must be called in bh-disabled
  426. * context. Will take iface_lock and async_lock.
  427. */
  428. static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
  429. {
  430. struct efx_nic *efx = mcdi->efx;
  431. struct efx_mcdi_async_param *async;
  432. size_t hdr_len, data_len, err_len;
  433. efx_dword_t *outbuf;
  434. MCDI_DECLARE_BUF_ERR(errbuf);
  435. int rc;
  436. if (cmpxchg(&mcdi->state,
  437. MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
  438. MCDI_STATE_RUNNING_ASYNC)
  439. return false;
  440. spin_lock(&mcdi->iface_lock);
  441. if (timeout) {
  442. /* Ensure that if the completion event arrives later,
  443. * the seqno check in efx_mcdi_ev_cpl() will fail
  444. */
  445. ++mcdi->seqno;
  446. ++mcdi->credits;
  447. rc = -ETIMEDOUT;
  448. hdr_len = 0;
  449. data_len = 0;
  450. } else {
  451. rc = mcdi->resprc;
  452. hdr_len = mcdi->resp_hdr_len;
  453. data_len = mcdi->resp_data_len;
  454. }
  455. spin_unlock(&mcdi->iface_lock);
  456. /* Stop the timer. In case the timer function is running, we
  457. * must wait for it to return so that there is no possibility
  458. * of it aborting the next request.
  459. */
  460. if (!timeout)
  461. del_timer_sync(&mcdi->async_timer);
  462. spin_lock(&mcdi->async_lock);
  463. async = list_first_entry(&mcdi->async_list,
  464. struct efx_mcdi_async_param, list);
  465. list_del(&async->list);
  466. spin_unlock(&mcdi->async_lock);
  467. outbuf = (efx_dword_t *)(async + 1);
  468. efx->type->mcdi_read_response(efx, outbuf, hdr_len,
  469. min(async->outlen, data_len));
  470. if (!timeout && rc && !async->quiet) {
  471. err_len = min(sizeof(errbuf), data_len);
  472. efx->type->mcdi_read_response(efx, errbuf, hdr_len,
  473. sizeof(errbuf));
  474. efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
  475. err_len, rc);
  476. }
  477. if (async->complete)
  478. async->complete(efx, async->cookie, rc, outbuf,
  479. min(async->outlen, data_len));
  480. kfree(async);
  481. efx_mcdi_release(mcdi);
  482. return true;
  483. }
  484. static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
  485. unsigned int datalen, unsigned int mcdi_err)
  486. {
  487. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  488. bool wake = false;
  489. spin_lock(&mcdi->iface_lock);
  490. if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
  491. if (mcdi->credits)
  492. /* The request has been cancelled */
  493. --mcdi->credits;
  494. else
  495. netif_err(efx, hw, efx->net_dev,
  496. "MC response mismatch tx seq 0x%x rx "
  497. "seq 0x%x\n", seqno, mcdi->seqno);
  498. } else {
  499. if (efx->type->mcdi_max_ver >= 2) {
  500. /* MCDI v2 responses don't fit in an event */
  501. efx_mcdi_read_response_header(efx);
  502. } else {
  503. mcdi->resprc = efx_mcdi_errno(mcdi_err);
  504. mcdi->resp_hdr_len = 4;
  505. mcdi->resp_data_len = datalen;
  506. }
  507. wake = true;
  508. }
  509. spin_unlock(&mcdi->iface_lock);
  510. if (wake) {
  511. if (!efx_mcdi_complete_async(mcdi, false))
  512. (void) efx_mcdi_complete_sync(mcdi);
  513. /* If the interface isn't RUNNING_ASYNC or
  514. * RUNNING_SYNC then we've received a duplicate
  515. * completion after we've already transitioned back to
  516. * QUIESCENT. [A subsequent invocation would increment
  517. * seqno, so would have failed the seqno check].
  518. */
  519. }
  520. }
  521. static void efx_mcdi_timeout_async(unsigned long context)
  522. {
  523. struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
  524. efx_mcdi_complete_async(mcdi, true);
  525. }
  526. static int
  527. efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
  528. {
  529. if (efx->type->mcdi_max_ver < 0 ||
  530. (efx->type->mcdi_max_ver < 2 &&
  531. cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
  532. return -EINVAL;
  533. if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
  534. (efx->type->mcdi_max_ver < 2 &&
  535. inlen > MCDI_CTL_SDU_LEN_MAX_V1))
  536. return -EMSGSIZE;
  537. return 0;
  538. }
  539. static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
  540. size_t hdr_len, size_t data_len,
  541. u32 *proxy_handle)
  542. {
  543. MCDI_DECLARE_BUF_ERR(testbuf);
  544. const size_t buflen = sizeof(testbuf);
  545. if (!proxy_handle || data_len < buflen)
  546. return false;
  547. efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
  548. if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
  549. *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
  550. return true;
  551. }
  552. return false;
  553. }
  554. static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
  555. size_t inlen,
  556. efx_dword_t *outbuf, size_t outlen,
  557. size_t *outlen_actual, bool quiet,
  558. u32 *proxy_handle, int *raw_rc)
  559. {
  560. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  561. MCDI_DECLARE_BUF_ERR(errbuf);
  562. int rc;
  563. if (mcdi->mode == MCDI_MODE_POLL)
  564. rc = efx_mcdi_poll(efx);
  565. else
  566. rc = efx_mcdi_await_completion(efx);
  567. if (rc != 0) {
  568. netif_err(efx, hw, efx->net_dev,
  569. "MC command 0x%x inlen %d mode %d timed out\n",
  570. cmd, (int)inlen, mcdi->mode);
  571. if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
  572. netif_err(efx, hw, efx->net_dev,
  573. "MCDI request was completed without an event\n");
  574. rc = 0;
  575. }
  576. efx_mcdi_abandon(efx);
  577. /* Close the race with efx_mcdi_ev_cpl() executing just too late
  578. * and completing a request we've just cancelled, by ensuring
  579. * that the seqno check therein fails.
  580. */
  581. spin_lock_bh(&mcdi->iface_lock);
  582. ++mcdi->seqno;
  583. ++mcdi->credits;
  584. spin_unlock_bh(&mcdi->iface_lock);
  585. }
  586. if (proxy_handle)
  587. *proxy_handle = 0;
  588. if (rc != 0) {
  589. if (outlen_actual)
  590. *outlen_actual = 0;
  591. } else {
  592. size_t hdr_len, data_len, err_len;
  593. /* At the very least we need a memory barrier here to ensure
  594. * we pick up changes from efx_mcdi_ev_cpl(). Protect against
  595. * a spurious efx_mcdi_ev_cpl() running concurrently by
  596. * acquiring the iface_lock. */
  597. spin_lock_bh(&mcdi->iface_lock);
  598. rc = mcdi->resprc;
  599. if (raw_rc)
  600. *raw_rc = mcdi->resprc_raw;
  601. hdr_len = mcdi->resp_hdr_len;
  602. data_len = mcdi->resp_data_len;
  603. err_len = min(sizeof(errbuf), data_len);
  604. spin_unlock_bh(&mcdi->iface_lock);
  605. BUG_ON(rc > 0);
  606. efx->type->mcdi_read_response(efx, outbuf, hdr_len,
  607. min(outlen, data_len));
  608. if (outlen_actual)
  609. *outlen_actual = data_len;
  610. efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
  611. if (cmd == MC_CMD_REBOOT && rc == -EIO) {
  612. /* Don't reset if MC_CMD_REBOOT returns EIO */
  613. } else if (rc == -EIO || rc == -EINTR) {
  614. netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
  615. -rc);
  616. efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
  617. } else if (proxy_handle && (rc == -EPROTO) &&
  618. efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
  619. proxy_handle)) {
  620. mcdi->proxy_rx_status = 0;
  621. mcdi->proxy_rx_handle = 0;
  622. mcdi->state = MCDI_STATE_PROXY_WAIT;
  623. } else if (rc && !quiet) {
  624. efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
  625. rc);
  626. }
  627. if (rc == -EIO || rc == -EINTR) {
  628. msleep(MCDI_STATUS_SLEEP_MS);
  629. efx_mcdi_poll_reboot(efx);
  630. mcdi->new_epoch = true;
  631. }
  632. }
  633. if (!proxy_handle || !*proxy_handle)
  634. efx_mcdi_release(mcdi);
  635. return rc;
  636. }
  637. static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
  638. {
  639. if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
  640. /* Interrupt the proxy wait. */
  641. mcdi->proxy_rx_status = -EINTR;
  642. wake_up(&mcdi->proxy_rx_wq);
  643. }
  644. }
  645. static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
  646. u32 handle, int status)
  647. {
  648. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  649. WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
  650. mcdi->proxy_rx_status = efx_mcdi_errno(status);
  651. /* Ensure the status is written before we update the handle, since the
  652. * latter is used to check if we've finished.
  653. */
  654. wmb();
  655. mcdi->proxy_rx_handle = handle;
  656. wake_up(&mcdi->proxy_rx_wq);
  657. }
  658. static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
  659. {
  660. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  661. int rc;
  662. /* Wait for a proxy event, or timeout. */
  663. rc = wait_event_timeout(mcdi->proxy_rx_wq,
  664. mcdi->proxy_rx_handle != 0 ||
  665. mcdi->proxy_rx_status == -EINTR,
  666. MCDI_RPC_TIMEOUT);
  667. if (rc <= 0) {
  668. netif_dbg(efx, hw, efx->net_dev,
  669. "MCDI proxy timeout %d\n", handle);
  670. return -ETIMEDOUT;
  671. } else if (mcdi->proxy_rx_handle != handle) {
  672. netif_warn(efx, hw, efx->net_dev,
  673. "MCDI proxy unexpected handle %d (expected %d)\n",
  674. mcdi->proxy_rx_handle, handle);
  675. return -EINVAL;
  676. }
  677. return mcdi->proxy_rx_status;
  678. }
  679. static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
  680. const efx_dword_t *inbuf, size_t inlen,
  681. efx_dword_t *outbuf, size_t outlen,
  682. size_t *outlen_actual, bool quiet, int *raw_rc)
  683. {
  684. u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
  685. int rc;
  686. if (inbuf && inlen && (inbuf == outbuf)) {
  687. /* The input buffer can't be aliased with the output. */
  688. WARN_ON(1);
  689. return -EINVAL;
  690. }
  691. rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
  692. if (rc)
  693. return rc;
  694. rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
  695. outlen_actual, quiet, &proxy_handle, raw_rc);
  696. if (proxy_handle) {
  697. /* Handle proxy authorisation. This allows approval of MCDI
  698. * operations to be delegated to the admin function, allowing
  699. * fine control over (eg) multicast subscriptions.
  700. */
  701. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  702. netif_dbg(efx, hw, efx->net_dev,
  703. "MCDI waiting for proxy auth %d\n",
  704. proxy_handle);
  705. rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
  706. if (rc == 0) {
  707. netif_dbg(efx, hw, efx->net_dev,
  708. "MCDI proxy retry %d\n", proxy_handle);
  709. /* We now retry the original request. */
  710. mcdi->state = MCDI_STATE_RUNNING_SYNC;
  711. efx_mcdi_send_request(efx, cmd, inbuf, inlen);
  712. rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
  713. outbuf, outlen, outlen_actual,
  714. quiet, NULL, raw_rc);
  715. } else {
  716. netif_printk(efx, hw,
  717. rc == -EPERM ? KERN_DEBUG : KERN_ERR,
  718. efx->net_dev,
  719. "MC command 0x%x failed after proxy auth rc=%d\n",
  720. cmd, rc);
  721. if (rc == -EINTR || rc == -EIO)
  722. efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
  723. efx_mcdi_release(mcdi);
  724. }
  725. }
  726. return rc;
  727. }
  728. static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
  729. const efx_dword_t *inbuf, size_t inlen,
  730. efx_dword_t *outbuf, size_t outlen,
  731. size_t *outlen_actual, bool quiet)
  732. {
  733. int raw_rc = 0;
  734. int rc;
  735. rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
  736. outbuf, outlen, outlen_actual, true, &raw_rc);
  737. if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
  738. efx->type->is_vf) {
  739. /* If the EVB port isn't available within a VF this may
  740. * mean the PF is still bringing the switch up. We should
  741. * retry our request shortly.
  742. */
  743. unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
  744. unsigned int delay_us = 10000;
  745. netif_dbg(efx, hw, efx->net_dev,
  746. "%s: NO_EVB_PORT; will retry request\n",
  747. __func__);
  748. do {
  749. usleep_range(delay_us, delay_us + 10000);
  750. rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
  751. outbuf, outlen, outlen_actual,
  752. true, &raw_rc);
  753. if (delay_us < 100000)
  754. delay_us <<= 1;
  755. } while ((rc == -EPROTO) &&
  756. (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
  757. time_before(jiffies, abort_time));
  758. }
  759. if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
  760. efx_mcdi_display_error(efx, cmd, inlen,
  761. outbuf, outlen, rc);
  762. return rc;
  763. }
  764. /**
  765. * efx_mcdi_rpc - Issue an MCDI command and wait for completion
  766. * @efx: NIC through which to issue the command
  767. * @cmd: Command type number
  768. * @inbuf: Command parameters
  769. * @inlen: Length of command parameters, in bytes. Must be a multiple
  770. * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
  771. * @outbuf: Response buffer. May be %NULL if @outlen is 0.
  772. * @outlen: Length of response buffer, in bytes. If the actual
  773. * response is longer than @outlen & ~3, it will be truncated
  774. * to that length.
  775. * @outlen_actual: Pointer through which to return the actual response
  776. * length. May be %NULL if this is not needed.
  777. *
  778. * This function may sleep and therefore must be called in an appropriate
  779. * context.
  780. *
  781. * Return: A negative error code, or zero if successful. The error
  782. * code may come from the MCDI response or may indicate a failure
  783. * to communicate with the MC. In the former case, the response
  784. * will still be copied to @outbuf and *@outlen_actual will be
  785. * set accordingly. In the latter case, *@outlen_actual will be
  786. * set to zero.
  787. */
  788. int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
  789. const efx_dword_t *inbuf, size_t inlen,
  790. efx_dword_t *outbuf, size_t outlen,
  791. size_t *outlen_actual)
  792. {
  793. return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
  794. outlen_actual, false);
  795. }
  796. /* Normally, on receiving an error code in the MCDI response,
  797. * efx_mcdi_rpc will log an error message containing (among other
  798. * things) the raw error code, by means of efx_mcdi_display_error.
  799. * This _quiet version suppresses that; if the caller wishes to log
  800. * the error conditionally on the return code, it should call this
  801. * function and is then responsible for calling efx_mcdi_display_error
  802. * as needed.
  803. */
  804. int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
  805. const efx_dword_t *inbuf, size_t inlen,
  806. efx_dword_t *outbuf, size_t outlen,
  807. size_t *outlen_actual)
  808. {
  809. return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
  810. outlen_actual, true);
  811. }
  812. int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
  813. const efx_dword_t *inbuf, size_t inlen)
  814. {
  815. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  816. int rc;
  817. rc = efx_mcdi_check_supported(efx, cmd, inlen);
  818. if (rc)
  819. return rc;
  820. if (efx->mc_bist_for_other_fn)
  821. return -ENETDOWN;
  822. if (mcdi->mode == MCDI_MODE_FAIL)
  823. return -ENETDOWN;
  824. efx_mcdi_acquire_sync(mcdi);
  825. efx_mcdi_send_request(efx, cmd, inbuf, inlen);
  826. return 0;
  827. }
  828. static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
  829. const efx_dword_t *inbuf, size_t inlen,
  830. size_t outlen,
  831. efx_mcdi_async_completer *complete,
  832. unsigned long cookie, bool quiet)
  833. {
  834. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  835. struct efx_mcdi_async_param *async;
  836. int rc;
  837. rc = efx_mcdi_check_supported(efx, cmd, inlen);
  838. if (rc)
  839. return rc;
  840. if (efx->mc_bist_for_other_fn)
  841. return -ENETDOWN;
  842. async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
  843. GFP_ATOMIC);
  844. if (!async)
  845. return -ENOMEM;
  846. async->cmd = cmd;
  847. async->inlen = inlen;
  848. async->outlen = outlen;
  849. async->quiet = quiet;
  850. async->complete = complete;
  851. async->cookie = cookie;
  852. memcpy(async + 1, inbuf, inlen);
  853. spin_lock_bh(&mcdi->async_lock);
  854. if (mcdi->mode == MCDI_MODE_EVENTS) {
  855. list_add_tail(&async->list, &mcdi->async_list);
  856. /* If this is at the front of the queue, try to start it
  857. * immediately
  858. */
  859. if (mcdi->async_list.next == &async->list &&
  860. efx_mcdi_acquire_async(mcdi)) {
  861. efx_mcdi_send_request(efx, cmd, inbuf, inlen);
  862. mod_timer(&mcdi->async_timer,
  863. jiffies + MCDI_RPC_TIMEOUT);
  864. }
  865. } else {
  866. kfree(async);
  867. rc = -ENETDOWN;
  868. }
  869. spin_unlock_bh(&mcdi->async_lock);
  870. return rc;
  871. }
  872. /**
  873. * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
  874. * @efx: NIC through which to issue the command
  875. * @cmd: Command type number
  876. * @inbuf: Command parameters
  877. * @inlen: Length of command parameters, in bytes
  878. * @outlen: Length to allocate for response buffer, in bytes
  879. * @complete: Function to be called on completion or cancellation.
  880. * @cookie: Arbitrary value to be passed to @complete.
  881. *
  882. * This function does not sleep and therefore may be called in atomic
  883. * context. It will fail if event queues are disabled or if MCDI
  884. * event completions have been disabled due to an error.
  885. *
  886. * If it succeeds, the @complete function will be called exactly once
  887. * in atomic context, when one of the following occurs:
  888. * (a) the completion event is received (in NAPI context)
  889. * (b) event queues are disabled (in the process that disables them)
  890. * (c) the request times-out (in timer context)
  891. */
  892. int
  893. efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
  894. const efx_dword_t *inbuf, size_t inlen, size_t outlen,
  895. efx_mcdi_async_completer *complete, unsigned long cookie)
  896. {
  897. return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
  898. cookie, false);
  899. }
  900. int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
  901. const efx_dword_t *inbuf, size_t inlen,
  902. size_t outlen, efx_mcdi_async_completer *complete,
  903. unsigned long cookie)
  904. {
  905. return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
  906. cookie, true);
  907. }
  908. int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
  909. efx_dword_t *outbuf, size_t outlen,
  910. size_t *outlen_actual)
  911. {
  912. return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
  913. outlen_actual, false, NULL, NULL);
  914. }
  915. int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
  916. efx_dword_t *outbuf, size_t outlen,
  917. size_t *outlen_actual)
  918. {
  919. return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
  920. outlen_actual, true, NULL, NULL);
  921. }
  922. void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
  923. size_t inlen, efx_dword_t *outbuf,
  924. size_t outlen, int rc)
  925. {
  926. int code = 0, err_arg = 0;
  927. if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
  928. code = MCDI_DWORD(outbuf, ERR_CODE);
  929. if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
  930. err_arg = MCDI_DWORD(outbuf, ERR_ARG);
  931. netif_printk(efx, hw, rc == -EPERM ? KERN_DEBUG : KERN_ERR,
  932. efx->net_dev,
  933. "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
  934. cmd, inlen, rc, code, err_arg);
  935. }
  936. /* Switch to polled MCDI completions. This can be called in various
  937. * error conditions with various locks held, so it must be lockless.
  938. * Caller is responsible for flushing asynchronous requests later.
  939. */
  940. void efx_mcdi_mode_poll(struct efx_nic *efx)
  941. {
  942. struct efx_mcdi_iface *mcdi;
  943. if (!efx->mcdi)
  944. return;
  945. mcdi = efx_mcdi(efx);
  946. /* If already in polling mode, nothing to do.
  947. * If in fail-fast state, don't switch to polled completion.
  948. * FLR recovery will do that later.
  949. */
  950. if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
  951. return;
  952. /* We can switch from event completion to polled completion, because
  953. * mcdi requests are always completed in shared memory. We do this by
  954. * switching the mode to POLL'd then completing the request.
  955. * efx_mcdi_await_completion() will then call efx_mcdi_poll().
  956. *
  957. * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
  958. * which efx_mcdi_complete_sync() provides for us.
  959. */
  960. mcdi->mode = MCDI_MODE_POLL;
  961. efx_mcdi_complete_sync(mcdi);
  962. }
  963. /* Flush any running or queued asynchronous requests, after event processing
  964. * is stopped
  965. */
  966. void efx_mcdi_flush_async(struct efx_nic *efx)
  967. {
  968. struct efx_mcdi_async_param *async, *next;
  969. struct efx_mcdi_iface *mcdi;
  970. if (!efx->mcdi)
  971. return;
  972. mcdi = efx_mcdi(efx);
  973. /* We must be in poll or fail mode so no more requests can be queued */
  974. BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
  975. del_timer_sync(&mcdi->async_timer);
  976. /* If a request is still running, make sure we give the MC
  977. * time to complete it so that the response won't overwrite our
  978. * next request.
  979. */
  980. if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
  981. efx_mcdi_poll(efx);
  982. mcdi->state = MCDI_STATE_QUIESCENT;
  983. }
  984. /* Nothing else will access the async list now, so it is safe
  985. * to walk it without holding async_lock. If we hold it while
  986. * calling a completer then lockdep may warn that we have
  987. * acquired locks in the wrong order.
  988. */
  989. list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
  990. if (async->complete)
  991. async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
  992. list_del(&async->list);
  993. kfree(async);
  994. }
  995. }
  996. void efx_mcdi_mode_event(struct efx_nic *efx)
  997. {
  998. struct efx_mcdi_iface *mcdi;
  999. if (!efx->mcdi)
  1000. return;
  1001. mcdi = efx_mcdi(efx);
  1002. /* If already in event completion mode, nothing to do.
  1003. * If in fail-fast state, don't switch to event completion. FLR
  1004. * recovery will do that later.
  1005. */
  1006. if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
  1007. return;
  1008. /* We can't switch from polled to event completion in the middle of a
  1009. * request, because the completion method is specified in the request.
  1010. * So acquire the interface to serialise the requestors. We don't need
  1011. * to acquire the iface_lock to change the mode here, but we do need a
  1012. * write memory barrier ensure that efx_mcdi_rpc() sees it, which
  1013. * efx_mcdi_acquire() provides.
  1014. */
  1015. efx_mcdi_acquire_sync(mcdi);
  1016. mcdi->mode = MCDI_MODE_EVENTS;
  1017. efx_mcdi_release(mcdi);
  1018. }
  1019. static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
  1020. {
  1021. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  1022. /* If there is an outstanding MCDI request, it has been terminated
  1023. * either by a BADASSERT or REBOOT event. If the mcdi interface is
  1024. * in polled mode, then do nothing because the MC reboot handler will
  1025. * set the header correctly. However, if the mcdi interface is waiting
  1026. * for a CMDDONE event it won't receive it [and since all MCDI events
  1027. * are sent to the same queue, we can't be racing with
  1028. * efx_mcdi_ev_cpl()]
  1029. *
  1030. * If there is an outstanding asynchronous request, we can't
  1031. * complete it now (efx_mcdi_complete() would deadlock). The
  1032. * reset process will take care of this.
  1033. *
  1034. * There's a race here with efx_mcdi_send_request(), because
  1035. * we might receive a REBOOT event *before* the request has
  1036. * been copied out. In polled mode (during startup) this is
  1037. * irrelevant, because efx_mcdi_complete_sync() is ignored. In
  1038. * event mode, this condition is just an edge-case of
  1039. * receiving a REBOOT event after posting the MCDI
  1040. * request. Did the mc reboot before or after the copyout? The
  1041. * best we can do always is just return failure.
  1042. *
  1043. * If there is an outstanding proxy response expected it is not going
  1044. * to arrive. We should thus abort it.
  1045. */
  1046. spin_lock(&mcdi->iface_lock);
  1047. efx_mcdi_proxy_abort(mcdi);
  1048. if (efx_mcdi_complete_sync(mcdi)) {
  1049. if (mcdi->mode == MCDI_MODE_EVENTS) {
  1050. mcdi->resprc = rc;
  1051. mcdi->resp_hdr_len = 0;
  1052. mcdi->resp_data_len = 0;
  1053. ++mcdi->credits;
  1054. }
  1055. } else {
  1056. int count;
  1057. /* Consume the status word since efx_mcdi_rpc_finish() won't */
  1058. for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
  1059. rc = efx_mcdi_poll_reboot(efx);
  1060. if (rc)
  1061. break;
  1062. udelay(MCDI_STATUS_DELAY_US);
  1063. }
  1064. /* On EF10, a CODE_MC_REBOOT event can be received without the
  1065. * reboot detection in efx_mcdi_poll_reboot() being triggered.
  1066. * If zero was returned from the final call to
  1067. * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
  1068. * MC has definitely rebooted so prepare for the reset.
  1069. */
  1070. if (!rc && efx->type->mcdi_reboot_detected)
  1071. efx->type->mcdi_reboot_detected(efx);
  1072. mcdi->new_epoch = true;
  1073. /* Nobody was waiting for an MCDI request, so trigger a reset */
  1074. efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
  1075. }
  1076. spin_unlock(&mcdi->iface_lock);
  1077. }
  1078. /* The MC is going down in to BIST mode. set the BIST flag to block
  1079. * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
  1080. * (which doesn't actually execute a reset, it waits for the controlling
  1081. * function to reset it).
  1082. */
  1083. static void efx_mcdi_ev_bist(struct efx_nic *efx)
  1084. {
  1085. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  1086. spin_lock(&mcdi->iface_lock);
  1087. efx->mc_bist_for_other_fn = true;
  1088. efx_mcdi_proxy_abort(mcdi);
  1089. if (efx_mcdi_complete_sync(mcdi)) {
  1090. if (mcdi->mode == MCDI_MODE_EVENTS) {
  1091. mcdi->resprc = -EIO;
  1092. mcdi->resp_hdr_len = 0;
  1093. mcdi->resp_data_len = 0;
  1094. ++mcdi->credits;
  1095. }
  1096. }
  1097. mcdi->new_epoch = true;
  1098. efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
  1099. spin_unlock(&mcdi->iface_lock);
  1100. }
  1101. /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
  1102. * to recover.
  1103. */
  1104. static void efx_mcdi_abandon(struct efx_nic *efx)
  1105. {
  1106. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  1107. if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
  1108. return; /* it had already been done */
  1109. netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
  1110. efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
  1111. }
  1112. /* Called from falcon_process_eventq for MCDI events */
  1113. void efx_mcdi_process_event(struct efx_channel *channel,
  1114. efx_qword_t *event)
  1115. {
  1116. struct efx_nic *efx = channel->efx;
  1117. int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
  1118. u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
  1119. switch (code) {
  1120. case MCDI_EVENT_CODE_BADSSERT:
  1121. netif_err(efx, hw, efx->net_dev,
  1122. "MC watchdog or assertion failure at 0x%x\n", data);
  1123. efx_mcdi_ev_death(efx, -EINTR);
  1124. break;
  1125. case MCDI_EVENT_CODE_PMNOTICE:
  1126. netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
  1127. break;
  1128. case MCDI_EVENT_CODE_CMDDONE:
  1129. efx_mcdi_ev_cpl(efx,
  1130. MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
  1131. MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
  1132. MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
  1133. break;
  1134. case MCDI_EVENT_CODE_LINKCHANGE:
  1135. efx_mcdi_process_link_change(efx, event);
  1136. break;
  1137. case MCDI_EVENT_CODE_SENSOREVT:
  1138. efx_mcdi_sensor_event(efx, event);
  1139. break;
  1140. case MCDI_EVENT_CODE_SCHEDERR:
  1141. netif_dbg(efx, hw, efx->net_dev,
  1142. "MC Scheduler alert (0x%x)\n", data);
  1143. break;
  1144. case MCDI_EVENT_CODE_REBOOT:
  1145. case MCDI_EVENT_CODE_MC_REBOOT:
  1146. netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
  1147. efx_mcdi_ev_death(efx, -EIO);
  1148. break;
  1149. case MCDI_EVENT_CODE_MC_BIST:
  1150. netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
  1151. efx_mcdi_ev_bist(efx);
  1152. break;
  1153. case MCDI_EVENT_CODE_MAC_STATS_DMA:
  1154. /* MAC stats are gather lazily. We can ignore this. */
  1155. break;
  1156. case MCDI_EVENT_CODE_FLR:
  1157. if (efx->type->sriov_flr)
  1158. efx->type->sriov_flr(efx,
  1159. MCDI_EVENT_FIELD(*event, FLR_VF));
  1160. break;
  1161. case MCDI_EVENT_CODE_PTP_RX:
  1162. case MCDI_EVENT_CODE_PTP_FAULT:
  1163. case MCDI_EVENT_CODE_PTP_PPS:
  1164. efx_ptp_event(efx, event);
  1165. break;
  1166. case MCDI_EVENT_CODE_PTP_TIME:
  1167. efx_time_sync_event(channel, event);
  1168. break;
  1169. case MCDI_EVENT_CODE_TX_FLUSH:
  1170. case MCDI_EVENT_CODE_RX_FLUSH:
  1171. /* Two flush events will be sent: one to the same event
  1172. * queue as completions, and one to event queue 0.
  1173. * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
  1174. * flag will be set, and we should ignore the event
  1175. * because we want to wait for all completions.
  1176. */
  1177. BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
  1178. MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
  1179. if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
  1180. efx_ef10_handle_drain_event(efx);
  1181. break;
  1182. case MCDI_EVENT_CODE_TX_ERR:
  1183. case MCDI_EVENT_CODE_RX_ERR:
  1184. netif_err(efx, hw, efx->net_dev,
  1185. "%s DMA error (event: "EFX_QWORD_FMT")\n",
  1186. code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
  1187. EFX_QWORD_VAL(*event));
  1188. efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
  1189. break;
  1190. case MCDI_EVENT_CODE_PROXY_RESPONSE:
  1191. efx_mcdi_ev_proxy_response(efx,
  1192. MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
  1193. MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
  1194. break;
  1195. default:
  1196. netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
  1197. code);
  1198. }
  1199. }
  1200. /**************************************************************************
  1201. *
  1202. * Specific request functions
  1203. *
  1204. **************************************************************************
  1205. */
  1206. void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
  1207. {
  1208. MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
  1209. size_t outlength;
  1210. const __le16 *ver_words;
  1211. size_t offset;
  1212. int rc;
  1213. BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
  1214. rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
  1215. outbuf, sizeof(outbuf), &outlength);
  1216. if (rc)
  1217. goto fail;
  1218. if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
  1219. rc = -EIO;
  1220. goto fail;
  1221. }
  1222. ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
  1223. offset = snprintf(buf, len, "%u.%u.%u.%u",
  1224. le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
  1225. le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
  1226. /* EF10 may have multiple datapath firmware variants within a
  1227. * single version. Report which variants are running.
  1228. */
  1229. if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
  1230. struct efx_ef10_nic_data *nic_data = efx->nic_data;
  1231. offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
  1232. nic_data->rx_dpcpu_fw_id,
  1233. nic_data->tx_dpcpu_fw_id);
  1234. /* It's theoretically possible for the string to exceed 31
  1235. * characters, though in practice the first three version
  1236. * components are short enough that this doesn't happen.
  1237. */
  1238. if (WARN_ON(offset >= len))
  1239. buf[0] = 0;
  1240. }
  1241. return;
  1242. fail:
  1243. netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1244. buf[0] = 0;
  1245. }
  1246. static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
  1247. bool *was_attached)
  1248. {
  1249. MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
  1250. MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
  1251. size_t outlen;
  1252. int rc;
  1253. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
  1254. driver_operating ? 1 : 0);
  1255. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
  1256. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
  1257. rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
  1258. outbuf, sizeof(outbuf), &outlen);
  1259. /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
  1260. * specified will fail with EPERM, and we have to tell the MC we don't
  1261. * care what firmware we get.
  1262. */
  1263. if (rc == -EPERM) {
  1264. netif_dbg(efx, probe, efx->net_dev,
  1265. "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
  1266. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
  1267. MC_CMD_FW_DONT_CARE);
  1268. rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
  1269. sizeof(inbuf), outbuf, sizeof(outbuf),
  1270. &outlen);
  1271. }
  1272. if (rc) {
  1273. efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
  1274. outbuf, outlen, rc);
  1275. goto fail;
  1276. }
  1277. if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
  1278. rc = -EIO;
  1279. goto fail;
  1280. }
  1281. if (driver_operating) {
  1282. if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
  1283. efx->mcdi->fn_flags =
  1284. MCDI_DWORD(outbuf,
  1285. DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
  1286. } else {
  1287. /* Synthesise flags for Siena */
  1288. efx->mcdi->fn_flags =
  1289. 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
  1290. 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
  1291. (efx_port_num(efx) == 0) <<
  1292. MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
  1293. }
  1294. }
  1295. /* We currently assume we have control of the external link
  1296. * and are completely trusted by firmware. Abort probing
  1297. * if that's not true for this function.
  1298. */
  1299. if (was_attached != NULL)
  1300. *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
  1301. return 0;
  1302. fail:
  1303. netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1304. return rc;
  1305. }
  1306. int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
  1307. u16 *fw_subtype_list, u32 *capabilities)
  1308. {
  1309. MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
  1310. size_t outlen, i;
  1311. int port_num = efx_port_num(efx);
  1312. int rc;
  1313. BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
  1314. /* we need __aligned(2) for ether_addr_copy */
  1315. BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
  1316. BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
  1317. rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
  1318. outbuf, sizeof(outbuf), &outlen);
  1319. if (rc)
  1320. goto fail;
  1321. if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
  1322. rc = -EIO;
  1323. goto fail;
  1324. }
  1325. if (mac_address)
  1326. ether_addr_copy(mac_address,
  1327. port_num ?
  1328. MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
  1329. MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
  1330. if (fw_subtype_list) {
  1331. for (i = 0;
  1332. i < MCDI_VAR_ARRAY_LEN(outlen,
  1333. GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
  1334. i++)
  1335. fw_subtype_list[i] = MCDI_ARRAY_WORD(
  1336. outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
  1337. for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
  1338. fw_subtype_list[i] = 0;
  1339. }
  1340. if (capabilities) {
  1341. if (port_num)
  1342. *capabilities = MCDI_DWORD(outbuf,
  1343. GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
  1344. else
  1345. *capabilities = MCDI_DWORD(outbuf,
  1346. GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
  1347. }
  1348. return 0;
  1349. fail:
  1350. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
  1351. __func__, rc, (int)outlen);
  1352. return rc;
  1353. }
  1354. int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
  1355. {
  1356. MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
  1357. u32 dest = 0;
  1358. int rc;
  1359. if (uart)
  1360. dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
  1361. if (evq)
  1362. dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
  1363. MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
  1364. MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
  1365. BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
  1366. rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
  1367. NULL, 0, NULL);
  1368. return rc;
  1369. }
  1370. int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
  1371. {
  1372. MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
  1373. size_t outlen;
  1374. int rc;
  1375. BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
  1376. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
  1377. outbuf, sizeof(outbuf), &outlen);
  1378. if (rc)
  1379. goto fail;
  1380. if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
  1381. rc = -EIO;
  1382. goto fail;
  1383. }
  1384. *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
  1385. return 0;
  1386. fail:
  1387. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
  1388. __func__, rc);
  1389. return rc;
  1390. }
  1391. int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
  1392. size_t *size_out, size_t *erase_size_out,
  1393. bool *protected_out)
  1394. {
  1395. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
  1396. MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
  1397. size_t outlen;
  1398. int rc;
  1399. MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
  1400. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
  1401. outbuf, sizeof(outbuf), &outlen);
  1402. if (rc)
  1403. goto fail;
  1404. if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
  1405. rc = -EIO;
  1406. goto fail;
  1407. }
  1408. *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
  1409. *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
  1410. *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
  1411. (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
  1412. return 0;
  1413. fail:
  1414. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1415. return rc;
  1416. }
  1417. static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
  1418. {
  1419. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
  1420. MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
  1421. int rc;
  1422. MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
  1423. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
  1424. outbuf, sizeof(outbuf), NULL);
  1425. if (rc)
  1426. return rc;
  1427. switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
  1428. case MC_CMD_NVRAM_TEST_PASS:
  1429. case MC_CMD_NVRAM_TEST_NOTSUPP:
  1430. return 0;
  1431. default:
  1432. return -EIO;
  1433. }
  1434. }
  1435. int efx_mcdi_nvram_test_all(struct efx_nic *efx)
  1436. {
  1437. u32 nvram_types;
  1438. unsigned int type;
  1439. int rc;
  1440. rc = efx_mcdi_nvram_types(efx, &nvram_types);
  1441. if (rc)
  1442. goto fail1;
  1443. type = 0;
  1444. while (nvram_types != 0) {
  1445. if (nvram_types & 1) {
  1446. rc = efx_mcdi_nvram_test(efx, type);
  1447. if (rc)
  1448. goto fail2;
  1449. }
  1450. type++;
  1451. nvram_types >>= 1;
  1452. }
  1453. return 0;
  1454. fail2:
  1455. netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
  1456. __func__, type);
  1457. fail1:
  1458. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1459. return rc;
  1460. }
  1461. /* Returns 1 if an assertion was read, 0 if no assertion had fired,
  1462. * negative on error.
  1463. */
  1464. static int efx_mcdi_read_assertion(struct efx_nic *efx)
  1465. {
  1466. MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
  1467. MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
  1468. unsigned int flags, index;
  1469. const char *reason;
  1470. size_t outlen;
  1471. int retry;
  1472. int rc;
  1473. /* Attempt to read any stored assertion state before we reboot
  1474. * the mcfw out of the assertion handler. Retry twice, once
  1475. * because a boot-time assertion might cause this command to fail
  1476. * with EINTR. And once again because GET_ASSERTS can race with
  1477. * MC_CMD_REBOOT running on the other port. */
  1478. retry = 2;
  1479. do {
  1480. MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
  1481. rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
  1482. inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
  1483. outbuf, sizeof(outbuf), &outlen);
  1484. if (rc == -EPERM)
  1485. return 0;
  1486. } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
  1487. if (rc) {
  1488. efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
  1489. MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
  1490. outlen, rc);
  1491. return rc;
  1492. }
  1493. if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
  1494. return -EIO;
  1495. /* Print out any recorded assertion state */
  1496. flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
  1497. if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
  1498. return 0;
  1499. reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
  1500. ? "system-level assertion"
  1501. : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
  1502. ? "thread-level assertion"
  1503. : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
  1504. ? "watchdog reset"
  1505. : "unknown assertion";
  1506. netif_err(efx, hw, efx->net_dev,
  1507. "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
  1508. MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
  1509. MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
  1510. /* Print out the registers */
  1511. for (index = 0;
  1512. index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
  1513. index++)
  1514. netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
  1515. 1 + index,
  1516. MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
  1517. index));
  1518. return 1;
  1519. }
  1520. static int efx_mcdi_exit_assertion(struct efx_nic *efx)
  1521. {
  1522. MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
  1523. int rc;
  1524. /* If the MC is running debug firmware, it might now be
  1525. * waiting for a debugger to attach, but we just want it to
  1526. * reboot. We set a flag that makes the command a no-op if it
  1527. * has already done so.
  1528. * The MCDI will thus return either 0 or -EIO.
  1529. */
  1530. BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
  1531. MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
  1532. MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
  1533. rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
  1534. NULL, 0, NULL);
  1535. if (rc == -EIO)
  1536. rc = 0;
  1537. if (rc)
  1538. efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
  1539. NULL, 0, rc);
  1540. return rc;
  1541. }
  1542. int efx_mcdi_handle_assertion(struct efx_nic *efx)
  1543. {
  1544. int rc;
  1545. rc = efx_mcdi_read_assertion(efx);
  1546. if (rc <= 0)
  1547. return rc;
  1548. return efx_mcdi_exit_assertion(efx);
  1549. }
  1550. void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
  1551. {
  1552. MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
  1553. int rc;
  1554. BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
  1555. BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
  1556. BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
  1557. BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
  1558. MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
  1559. rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
  1560. NULL, 0, NULL);
  1561. }
  1562. static int efx_mcdi_reset_func(struct efx_nic *efx)
  1563. {
  1564. MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
  1565. int rc;
  1566. BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
  1567. MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
  1568. ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
  1569. rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
  1570. NULL, 0, NULL);
  1571. return rc;
  1572. }
  1573. static int efx_mcdi_reset_mc(struct efx_nic *efx)
  1574. {
  1575. MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
  1576. int rc;
  1577. BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
  1578. MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
  1579. rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
  1580. NULL, 0, NULL);
  1581. /* White is black, and up is down */
  1582. if (rc == -EIO)
  1583. return 0;
  1584. if (rc == 0)
  1585. rc = -EIO;
  1586. return rc;
  1587. }
  1588. enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
  1589. {
  1590. return RESET_TYPE_RECOVER_OR_ALL;
  1591. }
  1592. int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
  1593. {
  1594. int rc;
  1595. /* If MCDI is down, we can't handle_assertion */
  1596. if (method == RESET_TYPE_MCDI_TIMEOUT) {
  1597. rc = pci_reset_function(efx->pci_dev);
  1598. if (rc)
  1599. return rc;
  1600. /* Re-enable polled MCDI completion */
  1601. if (efx->mcdi) {
  1602. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  1603. mcdi->mode = MCDI_MODE_POLL;
  1604. }
  1605. return 0;
  1606. }
  1607. /* Recover from a failed assertion pre-reset */
  1608. rc = efx_mcdi_handle_assertion(efx);
  1609. if (rc)
  1610. return rc;
  1611. if (method == RESET_TYPE_DATAPATH)
  1612. return 0;
  1613. else if (method == RESET_TYPE_WORLD)
  1614. return efx_mcdi_reset_mc(efx);
  1615. else
  1616. return efx_mcdi_reset_func(efx);
  1617. }
  1618. static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
  1619. const u8 *mac, int *id_out)
  1620. {
  1621. MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
  1622. MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
  1623. size_t outlen;
  1624. int rc;
  1625. MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
  1626. MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
  1627. MC_CMD_FILTER_MODE_SIMPLE);
  1628. ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
  1629. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
  1630. outbuf, sizeof(outbuf), &outlen);
  1631. if (rc)
  1632. goto fail;
  1633. if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
  1634. rc = -EIO;
  1635. goto fail;
  1636. }
  1637. *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
  1638. return 0;
  1639. fail:
  1640. *id_out = -1;
  1641. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1642. return rc;
  1643. }
  1644. int
  1645. efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
  1646. {
  1647. return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
  1648. }
  1649. int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
  1650. {
  1651. MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
  1652. size_t outlen;
  1653. int rc;
  1654. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
  1655. outbuf, sizeof(outbuf), &outlen);
  1656. if (rc)
  1657. goto fail;
  1658. if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
  1659. rc = -EIO;
  1660. goto fail;
  1661. }
  1662. *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
  1663. return 0;
  1664. fail:
  1665. *id_out = -1;
  1666. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1667. return rc;
  1668. }
  1669. int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
  1670. {
  1671. MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
  1672. int rc;
  1673. MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
  1674. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
  1675. NULL, 0, NULL);
  1676. return rc;
  1677. }
  1678. int efx_mcdi_flush_rxqs(struct efx_nic *efx)
  1679. {
  1680. struct efx_channel *channel;
  1681. struct efx_rx_queue *rx_queue;
  1682. MCDI_DECLARE_BUF(inbuf,
  1683. MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
  1684. int rc, count;
  1685. BUILD_BUG_ON(EFX_MAX_CHANNELS >
  1686. MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
  1687. count = 0;
  1688. efx_for_each_channel(channel, efx) {
  1689. efx_for_each_channel_rx_queue(rx_queue, channel) {
  1690. if (rx_queue->flush_pending) {
  1691. rx_queue->flush_pending = false;
  1692. atomic_dec(&efx->rxq_flush_pending);
  1693. MCDI_SET_ARRAY_DWORD(
  1694. inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
  1695. count, efx_rx_queue_index(rx_queue));
  1696. count++;
  1697. }
  1698. }
  1699. }
  1700. rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
  1701. MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
  1702. WARN_ON(rc < 0);
  1703. return rc;
  1704. }
  1705. int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
  1706. {
  1707. int rc;
  1708. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
  1709. return rc;
  1710. }
  1711. int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
  1712. unsigned int *flags)
  1713. {
  1714. MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
  1715. MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
  1716. size_t outlen;
  1717. int rc;
  1718. BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
  1719. MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
  1720. MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
  1721. rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
  1722. outbuf, sizeof(outbuf), &outlen);
  1723. if (rc)
  1724. return rc;
  1725. if (!flags)
  1726. return 0;
  1727. if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
  1728. *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
  1729. else
  1730. *flags = 0;
  1731. return 0;
  1732. }
  1733. int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
  1734. unsigned int *enabled_out)
  1735. {
  1736. MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
  1737. size_t outlen;
  1738. int rc;
  1739. rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
  1740. outbuf, sizeof(outbuf), &outlen);
  1741. if (rc)
  1742. goto fail;
  1743. if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
  1744. rc = -EIO;
  1745. goto fail;
  1746. }
  1747. if (impl_out)
  1748. *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
  1749. if (enabled_out)
  1750. *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
  1751. return 0;
  1752. fail:
  1753. /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
  1754. * terrifying. The call site will have to deal with it though.
  1755. */
  1756. netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR,
  1757. efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1758. return rc;
  1759. }
  1760. #ifdef CONFIG_SFC_MTD
  1761. #define EFX_MCDI_NVRAM_LEN_MAX 128
  1762. static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
  1763. {
  1764. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
  1765. int rc;
  1766. MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
  1767. BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
  1768. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
  1769. NULL, 0, NULL);
  1770. return rc;
  1771. }
  1772. static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
  1773. loff_t offset, u8 *buffer, size_t length)
  1774. {
  1775. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
  1776. MCDI_DECLARE_BUF(outbuf,
  1777. MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
  1778. size_t outlen;
  1779. int rc;
  1780. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
  1781. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
  1782. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
  1783. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
  1784. outbuf, sizeof(outbuf), &outlen);
  1785. if (rc)
  1786. return rc;
  1787. memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
  1788. return 0;
  1789. }
  1790. static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
  1791. loff_t offset, const u8 *buffer, size_t length)
  1792. {
  1793. MCDI_DECLARE_BUF(inbuf,
  1794. MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
  1795. int rc;
  1796. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
  1797. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
  1798. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
  1799. memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
  1800. BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
  1801. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
  1802. ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
  1803. NULL, 0, NULL);
  1804. return rc;
  1805. }
  1806. static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
  1807. loff_t offset, size_t length)
  1808. {
  1809. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
  1810. int rc;
  1811. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
  1812. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
  1813. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
  1814. BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
  1815. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
  1816. NULL, 0, NULL);
  1817. return rc;
  1818. }
  1819. static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
  1820. {
  1821. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
  1822. int rc;
  1823. MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
  1824. BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
  1825. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
  1826. NULL, 0, NULL);
  1827. return rc;
  1828. }
  1829. int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
  1830. size_t len, size_t *retlen, u8 *buffer)
  1831. {
  1832. struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
  1833. struct efx_nic *efx = mtd->priv;
  1834. loff_t offset = start;
  1835. loff_t end = min_t(loff_t, start + len, mtd->size);
  1836. size_t chunk;
  1837. int rc = 0;
  1838. while (offset < end) {
  1839. chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
  1840. rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
  1841. buffer, chunk);
  1842. if (rc)
  1843. goto out;
  1844. offset += chunk;
  1845. buffer += chunk;
  1846. }
  1847. out:
  1848. *retlen = offset - start;
  1849. return rc;
  1850. }
  1851. int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
  1852. {
  1853. struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
  1854. struct efx_nic *efx = mtd->priv;
  1855. loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
  1856. loff_t end = min_t(loff_t, start + len, mtd->size);
  1857. size_t chunk = part->common.mtd.erasesize;
  1858. int rc = 0;
  1859. if (!part->updating) {
  1860. rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
  1861. if (rc)
  1862. goto out;
  1863. part->updating = true;
  1864. }
  1865. /* The MCDI interface can in fact do multiple erase blocks at once;
  1866. * but erasing may be slow, so we make multiple calls here to avoid
  1867. * tripping the MCDI RPC timeout. */
  1868. while (offset < end) {
  1869. rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
  1870. chunk);
  1871. if (rc)
  1872. goto out;
  1873. offset += chunk;
  1874. }
  1875. out:
  1876. return rc;
  1877. }
  1878. int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
  1879. size_t len, size_t *retlen, const u8 *buffer)
  1880. {
  1881. struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
  1882. struct efx_nic *efx = mtd->priv;
  1883. loff_t offset = start;
  1884. loff_t end = min_t(loff_t, start + len, mtd->size);
  1885. size_t chunk;
  1886. int rc = 0;
  1887. if (!part->updating) {
  1888. rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
  1889. if (rc)
  1890. goto out;
  1891. part->updating = true;
  1892. }
  1893. while (offset < end) {
  1894. chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
  1895. rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
  1896. buffer, chunk);
  1897. if (rc)
  1898. goto out;
  1899. offset += chunk;
  1900. buffer += chunk;
  1901. }
  1902. out:
  1903. *retlen = offset - start;
  1904. return rc;
  1905. }
  1906. int efx_mcdi_mtd_sync(struct mtd_info *mtd)
  1907. {
  1908. struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
  1909. struct efx_nic *efx = mtd->priv;
  1910. int rc = 0;
  1911. if (part->updating) {
  1912. part->updating = false;
  1913. rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
  1914. }
  1915. return rc;
  1916. }
  1917. void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
  1918. {
  1919. struct efx_mcdi_mtd_partition *mcdi_part =
  1920. container_of(part, struct efx_mcdi_mtd_partition, common);
  1921. struct efx_nic *efx = part->mtd.priv;
  1922. snprintf(part->name, sizeof(part->name), "%s %s:%02x",
  1923. efx->name, part->type_name, mcdi_part->fw_subtype);
  1924. }
  1925. #endif /* CONFIG_SFC_MTD */