i40e_txrx.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035
  1. /*******************************************************************************
  2. *
  3. * Intel Ethernet Controller XL710 Family Linux Driver
  4. * Copyright(c) 2013 - 2016 Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * The full GNU General Public License is included in this distribution in
  19. * the file called "COPYING".
  20. *
  21. * Contact Information:
  22. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24. *
  25. ******************************************************************************/
  26. #include <linux/prefetch.h>
  27. #include <net/busy_poll.h>
  28. #include "i40e.h"
  29. #include "i40e_prototype.h"
  30. static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  31. u32 td_tag)
  32. {
  33. return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  34. ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
  35. ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  36. ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  37. ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
  38. }
  39. #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  40. /**
  41. * i40e_fdir - Generate a Flow Director descriptor based on fdata
  42. * @tx_ring: Tx ring to send buffer on
  43. * @fdata: Flow director filter data
  44. * @add: Indicate if we are adding a rule or deleting one
  45. *
  46. **/
  47. static void i40e_fdir(struct i40e_ring *tx_ring,
  48. struct i40e_fdir_filter *fdata, bool add)
  49. {
  50. struct i40e_filter_program_desc *fdir_desc;
  51. struct i40e_pf *pf = tx_ring->vsi->back;
  52. u32 flex_ptype, dtype_cmd;
  53. u16 i;
  54. /* grab the next descriptor */
  55. i = tx_ring->next_to_use;
  56. fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  57. i++;
  58. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  59. flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  60. (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  61. flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  62. (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  63. flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  64. (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  65. /* Use LAN VSI Id if not programmed by user */
  66. flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  67. ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  68. I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  69. dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  70. dtype_cmd |= add ?
  71. I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  72. I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  73. I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  74. I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  75. dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  76. (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  77. dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  78. (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  79. if (fdata->cnt_index) {
  80. dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  81. dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  82. ((u32)fdata->cnt_index <<
  83. I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  84. }
  85. fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  86. fdir_desc->rsvd = cpu_to_le32(0);
  87. fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  88. fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  89. }
  90. #define I40E_FD_CLEAN_DELAY 10
  91. /**
  92. * i40e_program_fdir_filter - Program a Flow Director filter
  93. * @fdir_data: Packet data that will be filter parameters
  94. * @raw_packet: the pre-allocated packet buffer for FDir
  95. * @pf: The PF pointer
  96. * @add: True for add/update, False for remove
  97. **/
  98. static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  99. u8 *raw_packet, struct i40e_pf *pf,
  100. bool add)
  101. {
  102. struct i40e_tx_buffer *tx_buf, *first;
  103. struct i40e_tx_desc *tx_desc;
  104. struct i40e_ring *tx_ring;
  105. struct i40e_vsi *vsi;
  106. struct device *dev;
  107. dma_addr_t dma;
  108. u32 td_cmd = 0;
  109. u16 delay = 0;
  110. u16 i;
  111. /* find existing FDIR VSI */
  112. vsi = NULL;
  113. for (i = 0; i < pf->num_alloc_vsi; i++)
  114. if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
  115. vsi = pf->vsi[i];
  116. if (!vsi)
  117. return -ENOENT;
  118. tx_ring = vsi->tx_rings[0];
  119. dev = tx_ring->dev;
  120. /* we need two descriptors to add/del a filter and we can wait */
  121. do {
  122. if (I40E_DESC_UNUSED(tx_ring) > 1)
  123. break;
  124. msleep_interruptible(1);
  125. delay++;
  126. } while (delay < I40E_FD_CLEAN_DELAY);
  127. if (!(I40E_DESC_UNUSED(tx_ring) > 1))
  128. return -EAGAIN;
  129. dma = dma_map_single(dev, raw_packet,
  130. I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
  131. if (dma_mapping_error(dev, dma))
  132. goto dma_fail;
  133. /* grab the next descriptor */
  134. i = tx_ring->next_to_use;
  135. first = &tx_ring->tx_bi[i];
  136. i40e_fdir(tx_ring, fdir_data, add);
  137. /* Now program a dummy descriptor */
  138. i = tx_ring->next_to_use;
  139. tx_desc = I40E_TX_DESC(tx_ring, i);
  140. tx_buf = &tx_ring->tx_bi[i];
  141. tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
  142. memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
  143. /* record length, and DMA address */
  144. dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
  145. dma_unmap_addr_set(tx_buf, dma, dma);
  146. tx_desc->buffer_addr = cpu_to_le64(dma);
  147. td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
  148. tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
  149. tx_buf->raw_buf = (void *)raw_packet;
  150. tx_desc->cmd_type_offset_bsz =
  151. build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
  152. /* Force memory writes to complete before letting h/w
  153. * know there are new descriptors to fetch.
  154. */
  155. wmb();
  156. /* Mark the data descriptor to be watched */
  157. first->next_to_watch = tx_desc;
  158. writel(tx_ring->next_to_use, tx_ring->tail);
  159. return 0;
  160. dma_fail:
  161. return -1;
  162. }
  163. #define IP_HEADER_OFFSET 14
  164. #define I40E_UDPIP_DUMMY_PACKET_LEN 42
  165. /**
  166. * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
  167. * @vsi: pointer to the targeted VSI
  168. * @fd_data: the flow director data required for the FDir descriptor
  169. * @add: true adds a filter, false removes it
  170. *
  171. * Returns 0 if the filters were successfully added or removed
  172. **/
  173. static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
  174. struct i40e_fdir_filter *fd_data,
  175. bool add)
  176. {
  177. struct i40e_pf *pf = vsi->back;
  178. struct udphdr *udp;
  179. struct iphdr *ip;
  180. bool err = false;
  181. u8 *raw_packet;
  182. int ret;
  183. static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
  184. 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
  185. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  186. raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
  187. if (!raw_packet)
  188. return -ENOMEM;
  189. memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
  190. ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
  191. udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
  192. + sizeof(struct iphdr));
  193. ip->daddr = fd_data->dst_ip[0];
  194. udp->dest = fd_data->dst_port;
  195. ip->saddr = fd_data->src_ip[0];
  196. udp->source = fd_data->src_port;
  197. fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
  198. ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
  199. if (ret) {
  200. dev_info(&pf->pdev->dev,
  201. "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
  202. fd_data->pctype, fd_data->fd_id, ret);
  203. err = true;
  204. } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
  205. if (add)
  206. dev_info(&pf->pdev->dev,
  207. "Filter OK for PCTYPE %d loc = %d\n",
  208. fd_data->pctype, fd_data->fd_id);
  209. else
  210. dev_info(&pf->pdev->dev,
  211. "Filter deleted for PCTYPE %d loc = %d\n",
  212. fd_data->pctype, fd_data->fd_id);
  213. }
  214. if (err)
  215. kfree(raw_packet);
  216. return err ? -EOPNOTSUPP : 0;
  217. }
  218. #define I40E_TCPIP_DUMMY_PACKET_LEN 54
  219. /**
  220. * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
  221. * @vsi: pointer to the targeted VSI
  222. * @fd_data: the flow director data required for the FDir descriptor
  223. * @add: true adds a filter, false removes it
  224. *
  225. * Returns 0 if the filters were successfully added or removed
  226. **/
  227. static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
  228. struct i40e_fdir_filter *fd_data,
  229. bool add)
  230. {
  231. struct i40e_pf *pf = vsi->back;
  232. struct tcphdr *tcp;
  233. struct iphdr *ip;
  234. bool err = false;
  235. u8 *raw_packet;
  236. int ret;
  237. /* Dummy packet */
  238. static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
  239. 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
  240. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
  241. 0x0, 0x72, 0, 0, 0, 0};
  242. raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
  243. if (!raw_packet)
  244. return -ENOMEM;
  245. memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
  246. ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
  247. tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
  248. + sizeof(struct iphdr));
  249. ip->daddr = fd_data->dst_ip[0];
  250. tcp->dest = fd_data->dst_port;
  251. ip->saddr = fd_data->src_ip[0];
  252. tcp->source = fd_data->src_port;
  253. if (add) {
  254. pf->fd_tcp_rule++;
  255. if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
  256. I40E_DEBUG_FD & pf->hw.debug_mask)
  257. dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
  258. pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
  259. } else {
  260. pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
  261. (pf->fd_tcp_rule - 1) : 0;
  262. if (pf->fd_tcp_rule == 0) {
  263. if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
  264. I40E_DEBUG_FD & pf->hw.debug_mask)
  265. dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
  266. pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
  267. }
  268. }
  269. fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
  270. ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
  271. if (ret) {
  272. dev_info(&pf->pdev->dev,
  273. "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
  274. fd_data->pctype, fd_data->fd_id, ret);
  275. err = true;
  276. } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
  277. if (add)
  278. dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
  279. fd_data->pctype, fd_data->fd_id);
  280. else
  281. dev_info(&pf->pdev->dev,
  282. "Filter deleted for PCTYPE %d loc = %d\n",
  283. fd_data->pctype, fd_data->fd_id);
  284. }
  285. if (err)
  286. kfree(raw_packet);
  287. return err ? -EOPNOTSUPP : 0;
  288. }
  289. /**
  290. * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
  291. * a specific flow spec
  292. * @vsi: pointer to the targeted VSI
  293. * @fd_data: the flow director data required for the FDir descriptor
  294. * @add: true adds a filter, false removes it
  295. *
  296. * Returns 0 if the filters were successfully added or removed
  297. **/
  298. static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
  299. struct i40e_fdir_filter *fd_data,
  300. bool add)
  301. {
  302. return -EOPNOTSUPP;
  303. }
  304. #define I40E_IP_DUMMY_PACKET_LEN 34
  305. /**
  306. * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
  307. * a specific flow spec
  308. * @vsi: pointer to the targeted VSI
  309. * @fd_data: the flow director data required for the FDir descriptor
  310. * @add: true adds a filter, false removes it
  311. *
  312. * Returns 0 if the filters were successfully added or removed
  313. **/
  314. static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
  315. struct i40e_fdir_filter *fd_data,
  316. bool add)
  317. {
  318. struct i40e_pf *pf = vsi->back;
  319. struct iphdr *ip;
  320. bool err = false;
  321. u8 *raw_packet;
  322. int ret;
  323. int i;
  324. static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
  325. 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
  326. 0, 0, 0, 0};
  327. for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
  328. i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
  329. raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
  330. if (!raw_packet)
  331. return -ENOMEM;
  332. memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
  333. ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
  334. ip->saddr = fd_data->src_ip[0];
  335. ip->daddr = fd_data->dst_ip[0];
  336. ip->protocol = 0;
  337. fd_data->pctype = i;
  338. ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
  339. if (ret) {
  340. dev_info(&pf->pdev->dev,
  341. "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
  342. fd_data->pctype, fd_data->fd_id, ret);
  343. err = true;
  344. } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
  345. if (add)
  346. dev_info(&pf->pdev->dev,
  347. "Filter OK for PCTYPE %d loc = %d\n",
  348. fd_data->pctype, fd_data->fd_id);
  349. else
  350. dev_info(&pf->pdev->dev,
  351. "Filter deleted for PCTYPE %d loc = %d\n",
  352. fd_data->pctype, fd_data->fd_id);
  353. }
  354. }
  355. if (err)
  356. kfree(raw_packet);
  357. return err ? -EOPNOTSUPP : 0;
  358. }
  359. /**
  360. * i40e_add_del_fdir - Build raw packets to add/del fdir filter
  361. * @vsi: pointer to the targeted VSI
  362. * @cmd: command to get or set RX flow classification rules
  363. * @add: true adds a filter, false removes it
  364. *
  365. **/
  366. int i40e_add_del_fdir(struct i40e_vsi *vsi,
  367. struct i40e_fdir_filter *input, bool add)
  368. {
  369. struct i40e_pf *pf = vsi->back;
  370. int ret;
  371. switch (input->flow_type & ~FLOW_EXT) {
  372. case TCP_V4_FLOW:
  373. ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
  374. break;
  375. case UDP_V4_FLOW:
  376. ret = i40e_add_del_fdir_udpv4(vsi, input, add);
  377. break;
  378. case SCTP_V4_FLOW:
  379. ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
  380. break;
  381. case IPV4_FLOW:
  382. ret = i40e_add_del_fdir_ipv4(vsi, input, add);
  383. break;
  384. case IP_USER_FLOW:
  385. switch (input->ip4_proto) {
  386. case IPPROTO_TCP:
  387. ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
  388. break;
  389. case IPPROTO_UDP:
  390. ret = i40e_add_del_fdir_udpv4(vsi, input, add);
  391. break;
  392. case IPPROTO_SCTP:
  393. ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
  394. break;
  395. default:
  396. ret = i40e_add_del_fdir_ipv4(vsi, input, add);
  397. break;
  398. }
  399. break;
  400. default:
  401. dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
  402. input->flow_type);
  403. ret = -EINVAL;
  404. }
  405. /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
  406. return ret;
  407. }
  408. /**
  409. * i40e_fd_handle_status - check the Programming Status for FD
  410. * @rx_ring: the Rx ring for this descriptor
  411. * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
  412. * @prog_id: the id originally used for programming
  413. *
  414. * This is used to verify if the FD programming or invalidation
  415. * requested by SW to the HW is successful or not and take actions accordingly.
  416. **/
  417. static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
  418. union i40e_rx_desc *rx_desc, u8 prog_id)
  419. {
  420. struct i40e_pf *pf = rx_ring->vsi->back;
  421. struct pci_dev *pdev = pf->pdev;
  422. u32 fcnt_prog, fcnt_avail;
  423. u32 error;
  424. u64 qw;
  425. qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  426. error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
  427. I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
  428. if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
  429. pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
  430. if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
  431. (I40E_DEBUG_FD & pf->hw.debug_mask))
  432. dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
  433. pf->fd_inv);
  434. /* Check if the programming error is for ATR.
  435. * If so, auto disable ATR and set a state for
  436. * flush in progress. Next time we come here if flush is in
  437. * progress do nothing, once flush is complete the state will
  438. * be cleared.
  439. */
  440. if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
  441. return;
  442. pf->fd_add_err++;
  443. /* store the current atr filter count */
  444. pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
  445. if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
  446. (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
  447. pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
  448. set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
  449. }
  450. /* filter programming failed most likely due to table full */
  451. fcnt_prog = i40e_get_global_fd_count(pf);
  452. fcnt_avail = pf->fdir_pf_filter_count;
  453. /* If ATR is running fcnt_prog can quickly change,
  454. * if we are very close to full, it makes sense to disable
  455. * FD ATR/SB and then re-enable it when there is room.
  456. */
  457. if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
  458. if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
  459. !(pf->auto_disable_flags &
  460. I40E_FLAG_FD_SB_ENABLED)) {
  461. if (I40E_DEBUG_FD & pf->hw.debug_mask)
  462. dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
  463. pf->auto_disable_flags |=
  464. I40E_FLAG_FD_SB_ENABLED;
  465. }
  466. }
  467. } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
  468. if (I40E_DEBUG_FD & pf->hw.debug_mask)
  469. dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
  470. rx_desc->wb.qword0.hi_dword.fd_id);
  471. }
  472. }
  473. /**
  474. * i40e_unmap_and_free_tx_resource - Release a Tx buffer
  475. * @ring: the ring that owns the buffer
  476. * @tx_buffer: the buffer to free
  477. **/
  478. static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
  479. struct i40e_tx_buffer *tx_buffer)
  480. {
  481. if (tx_buffer->skb) {
  482. if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
  483. kfree(tx_buffer->raw_buf);
  484. else
  485. dev_kfree_skb_any(tx_buffer->skb);
  486. if (dma_unmap_len(tx_buffer, len))
  487. dma_unmap_single(ring->dev,
  488. dma_unmap_addr(tx_buffer, dma),
  489. dma_unmap_len(tx_buffer, len),
  490. DMA_TO_DEVICE);
  491. } else if (dma_unmap_len(tx_buffer, len)) {
  492. dma_unmap_page(ring->dev,
  493. dma_unmap_addr(tx_buffer, dma),
  494. dma_unmap_len(tx_buffer, len),
  495. DMA_TO_DEVICE);
  496. }
  497. tx_buffer->next_to_watch = NULL;
  498. tx_buffer->skb = NULL;
  499. dma_unmap_len_set(tx_buffer, len, 0);
  500. /* tx_buffer must be completely set up in the transmit path */
  501. }
  502. /**
  503. * i40e_clean_tx_ring - Free any empty Tx buffers
  504. * @tx_ring: ring to be cleaned
  505. **/
  506. void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
  507. {
  508. unsigned long bi_size;
  509. u16 i;
  510. /* ring already cleared, nothing to do */
  511. if (!tx_ring->tx_bi)
  512. return;
  513. /* Free all the Tx ring sk_buffs */
  514. for (i = 0; i < tx_ring->count; i++)
  515. i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  516. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  517. memset(tx_ring->tx_bi, 0, bi_size);
  518. /* Zero out the descriptor ring */
  519. memset(tx_ring->desc, 0, tx_ring->size);
  520. tx_ring->next_to_use = 0;
  521. tx_ring->next_to_clean = 0;
  522. if (!tx_ring->netdev)
  523. return;
  524. /* cleanup Tx queue statistics */
  525. netdev_tx_reset_queue(txring_txq(tx_ring));
  526. }
  527. /**
  528. * i40e_free_tx_resources - Free Tx resources per queue
  529. * @tx_ring: Tx descriptor ring for a specific queue
  530. *
  531. * Free all transmit software resources
  532. **/
  533. void i40e_free_tx_resources(struct i40e_ring *tx_ring)
  534. {
  535. i40e_clean_tx_ring(tx_ring);
  536. kfree(tx_ring->tx_bi);
  537. tx_ring->tx_bi = NULL;
  538. if (tx_ring->desc) {
  539. dma_free_coherent(tx_ring->dev, tx_ring->size,
  540. tx_ring->desc, tx_ring->dma);
  541. tx_ring->desc = NULL;
  542. }
  543. }
  544. /**
  545. * i40e_get_tx_pending - how many tx descriptors not processed
  546. * @tx_ring: the ring of descriptors
  547. * @in_sw: is tx_pending being checked in SW or HW
  548. *
  549. * Since there is no access to the ring head register
  550. * in XL710, we need to use our local copies
  551. **/
  552. u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
  553. {
  554. u32 head, tail;
  555. if (!in_sw)
  556. head = i40e_get_head(ring);
  557. else
  558. head = ring->next_to_clean;
  559. tail = readl(ring->tail);
  560. if (head != tail)
  561. return (head < tail) ?
  562. tail - head : (tail + ring->count - head);
  563. return 0;
  564. }
  565. #define WB_STRIDE 0x3
  566. /**
  567. * i40e_clean_tx_irq - Reclaim resources after transmit completes
  568. * @vsi: the VSI we care about
  569. * @tx_ring: Tx ring to clean
  570. * @napi_budget: Used to determine if we are in netpoll
  571. *
  572. * Returns true if there's any budget left (e.g. the clean is finished)
  573. **/
  574. static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
  575. struct i40e_ring *tx_ring, int napi_budget)
  576. {
  577. u16 i = tx_ring->next_to_clean;
  578. struct i40e_tx_buffer *tx_buf;
  579. struct i40e_tx_desc *tx_head;
  580. struct i40e_tx_desc *tx_desc;
  581. unsigned int total_bytes = 0, total_packets = 0;
  582. unsigned int budget = vsi->work_limit;
  583. tx_buf = &tx_ring->tx_bi[i];
  584. tx_desc = I40E_TX_DESC(tx_ring, i);
  585. i -= tx_ring->count;
  586. tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
  587. do {
  588. struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
  589. /* if next_to_watch is not set then there is no work pending */
  590. if (!eop_desc)
  591. break;
  592. /* prevent any other reads prior to eop_desc */
  593. smp_rmb();
  594. /* we have caught up to head, no work left to do */
  595. if (tx_head == tx_desc)
  596. break;
  597. /* clear next_to_watch to prevent false hangs */
  598. tx_buf->next_to_watch = NULL;
  599. /* update the statistics for this packet */
  600. total_bytes += tx_buf->bytecount;
  601. total_packets += tx_buf->gso_segs;
  602. /* free the skb */
  603. napi_consume_skb(tx_buf->skb, napi_budget);
  604. /* unmap skb header data */
  605. dma_unmap_single(tx_ring->dev,
  606. dma_unmap_addr(tx_buf, dma),
  607. dma_unmap_len(tx_buf, len),
  608. DMA_TO_DEVICE);
  609. /* clear tx_buffer data */
  610. tx_buf->skb = NULL;
  611. dma_unmap_len_set(tx_buf, len, 0);
  612. /* unmap remaining buffers */
  613. while (tx_desc != eop_desc) {
  614. tx_buf++;
  615. tx_desc++;
  616. i++;
  617. if (unlikely(!i)) {
  618. i -= tx_ring->count;
  619. tx_buf = tx_ring->tx_bi;
  620. tx_desc = I40E_TX_DESC(tx_ring, 0);
  621. }
  622. /* unmap any remaining paged data */
  623. if (dma_unmap_len(tx_buf, len)) {
  624. dma_unmap_page(tx_ring->dev,
  625. dma_unmap_addr(tx_buf, dma),
  626. dma_unmap_len(tx_buf, len),
  627. DMA_TO_DEVICE);
  628. dma_unmap_len_set(tx_buf, len, 0);
  629. }
  630. }
  631. /* move us one more past the eop_desc for start of next pkt */
  632. tx_buf++;
  633. tx_desc++;
  634. i++;
  635. if (unlikely(!i)) {
  636. i -= tx_ring->count;
  637. tx_buf = tx_ring->tx_bi;
  638. tx_desc = I40E_TX_DESC(tx_ring, 0);
  639. }
  640. prefetch(tx_desc);
  641. /* update budget accounting */
  642. budget--;
  643. } while (likely(budget));
  644. i += tx_ring->count;
  645. tx_ring->next_to_clean = i;
  646. u64_stats_update_begin(&tx_ring->syncp);
  647. tx_ring->stats.bytes += total_bytes;
  648. tx_ring->stats.packets += total_packets;
  649. u64_stats_update_end(&tx_ring->syncp);
  650. tx_ring->q_vector->tx.total_bytes += total_bytes;
  651. tx_ring->q_vector->tx.total_packets += total_packets;
  652. if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
  653. /* check to see if there are < 4 descriptors
  654. * waiting to be written back, then kick the hardware to force
  655. * them to be written back in case we stay in NAPI.
  656. * In this mode on X722 we do not enable Interrupt.
  657. */
  658. unsigned int j = i40e_get_tx_pending(tx_ring, false);
  659. if (budget &&
  660. ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
  661. !test_bit(__I40E_DOWN, &vsi->state) &&
  662. (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
  663. tx_ring->arm_wb = true;
  664. }
  665. /* notify netdev of completed buffers */
  666. netdev_tx_completed_queue(txring_txq(tx_ring),
  667. total_packets, total_bytes);
  668. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  669. if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
  670. (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
  671. /* Make sure that anybody stopping the queue after this
  672. * sees the new next_to_clean.
  673. */
  674. smp_mb();
  675. if (__netif_subqueue_stopped(tx_ring->netdev,
  676. tx_ring->queue_index) &&
  677. !test_bit(__I40E_DOWN, &vsi->state)) {
  678. netif_wake_subqueue(tx_ring->netdev,
  679. tx_ring->queue_index);
  680. ++tx_ring->tx_stats.restart_queue;
  681. }
  682. }
  683. return !!budget;
  684. }
  685. /**
  686. * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
  687. * @vsi: the VSI we care about
  688. * @q_vector: the vector on which to enable writeback
  689. *
  690. **/
  691. static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
  692. struct i40e_q_vector *q_vector)
  693. {
  694. u16 flags = q_vector->tx.ring[0].flags;
  695. u32 val;
  696. if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
  697. return;
  698. if (q_vector->arm_wb_state)
  699. return;
  700. if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
  701. val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
  702. I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
  703. wr32(&vsi->back->hw,
  704. I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
  705. val);
  706. } else {
  707. val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
  708. I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
  709. wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
  710. }
  711. q_vector->arm_wb_state = true;
  712. }
  713. /**
  714. * i40e_force_wb - Issue SW Interrupt so HW does a wb
  715. * @vsi: the VSI we care about
  716. * @q_vector: the vector on which to force writeback
  717. *
  718. **/
  719. void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
  720. {
  721. if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
  722. u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
  723. I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
  724. I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
  725. I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
  726. /* allow 00 to be written to the index */
  727. wr32(&vsi->back->hw,
  728. I40E_PFINT_DYN_CTLN(q_vector->v_idx +
  729. vsi->base_vector - 1), val);
  730. } else {
  731. u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
  732. I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
  733. I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
  734. I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
  735. /* allow 00 to be written to the index */
  736. wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
  737. }
  738. }
  739. /**
  740. * i40e_set_new_dynamic_itr - Find new ITR level
  741. * @rc: structure containing ring performance data
  742. *
  743. * Returns true if ITR changed, false if not
  744. *
  745. * Stores a new ITR value based on packets and byte counts during
  746. * the last interrupt. The advantage of per interrupt computation
  747. * is faster updates and more accurate ITR for the current traffic
  748. * pattern. Constants in this function were computed based on
  749. * theoretical maximum wire speed and thresholds were set based on
  750. * testing data as well as attempting to minimize response time
  751. * while increasing bulk throughput.
  752. **/
  753. static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
  754. {
  755. enum i40e_latency_range new_latency_range = rc->latency_range;
  756. struct i40e_q_vector *qv = rc->ring->q_vector;
  757. u32 new_itr = rc->itr;
  758. int bytes_per_int;
  759. int usecs;
  760. if (rc->total_packets == 0 || !rc->itr)
  761. return false;
  762. /* simple throttlerate management
  763. * 0-10MB/s lowest (50000 ints/s)
  764. * 10-20MB/s low (20000 ints/s)
  765. * 20-1249MB/s bulk (18000 ints/s)
  766. * > 40000 Rx packets per second (8000 ints/s)
  767. *
  768. * The math works out because the divisor is in 10^(-6) which
  769. * turns the bytes/us input value into MB/s values, but
  770. * make sure to use usecs, as the register values written
  771. * are in 2 usec increments in the ITR registers, and make sure
  772. * to use the smoothed values that the countdown timer gives us.
  773. */
  774. usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
  775. bytes_per_int = rc->total_bytes / usecs;
  776. switch (new_latency_range) {
  777. case I40E_LOWEST_LATENCY:
  778. if (bytes_per_int > 10)
  779. new_latency_range = I40E_LOW_LATENCY;
  780. break;
  781. case I40E_LOW_LATENCY:
  782. if (bytes_per_int > 20)
  783. new_latency_range = I40E_BULK_LATENCY;
  784. else if (bytes_per_int <= 10)
  785. new_latency_range = I40E_LOWEST_LATENCY;
  786. break;
  787. case I40E_BULK_LATENCY:
  788. case I40E_ULTRA_LATENCY:
  789. default:
  790. if (bytes_per_int <= 20)
  791. new_latency_range = I40E_LOW_LATENCY;
  792. break;
  793. }
  794. /* this is to adjust RX more aggressively when streaming small
  795. * packets. The value of 40000 was picked as it is just beyond
  796. * what the hardware can receive per second if in low latency
  797. * mode.
  798. */
  799. #define RX_ULTRA_PACKET_RATE 40000
  800. if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
  801. (&qv->rx == rc))
  802. new_latency_range = I40E_ULTRA_LATENCY;
  803. rc->latency_range = new_latency_range;
  804. switch (new_latency_range) {
  805. case I40E_LOWEST_LATENCY:
  806. new_itr = I40E_ITR_50K;
  807. break;
  808. case I40E_LOW_LATENCY:
  809. new_itr = I40E_ITR_20K;
  810. break;
  811. case I40E_BULK_LATENCY:
  812. new_itr = I40E_ITR_18K;
  813. break;
  814. case I40E_ULTRA_LATENCY:
  815. new_itr = I40E_ITR_8K;
  816. break;
  817. default:
  818. break;
  819. }
  820. rc->total_bytes = 0;
  821. rc->total_packets = 0;
  822. if (new_itr != rc->itr) {
  823. rc->itr = new_itr;
  824. return true;
  825. }
  826. return false;
  827. }
  828. /**
  829. * i40e_clean_programming_status - clean the programming status descriptor
  830. * @rx_ring: the rx ring that has this descriptor
  831. * @rx_desc: the rx descriptor written back by HW
  832. *
  833. * Flow director should handle FD_FILTER_STATUS to check its filter programming
  834. * status being successful or not and take actions accordingly. FCoE should
  835. * handle its context/filter programming/invalidation status and take actions.
  836. *
  837. **/
  838. static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
  839. union i40e_rx_desc *rx_desc)
  840. {
  841. u64 qw;
  842. u8 id;
  843. qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  844. id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
  845. I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
  846. if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
  847. i40e_fd_handle_status(rx_ring, rx_desc, id);
  848. #ifdef I40E_FCOE
  849. else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
  850. (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
  851. i40e_fcoe_handle_status(rx_ring, rx_desc, id);
  852. #endif
  853. }
  854. /**
  855. * i40e_setup_tx_descriptors - Allocate the Tx descriptors
  856. * @tx_ring: the tx ring to set up
  857. *
  858. * Return 0 on success, negative on error
  859. **/
  860. int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
  861. {
  862. struct device *dev = tx_ring->dev;
  863. int bi_size;
  864. if (!dev)
  865. return -ENOMEM;
  866. /* warn if we are about to overwrite the pointer */
  867. WARN_ON(tx_ring->tx_bi);
  868. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  869. tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
  870. if (!tx_ring->tx_bi)
  871. goto err;
  872. /* round up to nearest 4K */
  873. tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
  874. /* add u32 for head writeback, align after this takes care of
  875. * guaranteeing this is at least one cache line in size
  876. */
  877. tx_ring->size += sizeof(u32);
  878. tx_ring->size = ALIGN(tx_ring->size, 4096);
  879. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  880. &tx_ring->dma, GFP_KERNEL);
  881. if (!tx_ring->desc) {
  882. dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
  883. tx_ring->size);
  884. goto err;
  885. }
  886. tx_ring->next_to_use = 0;
  887. tx_ring->next_to_clean = 0;
  888. return 0;
  889. err:
  890. kfree(tx_ring->tx_bi);
  891. tx_ring->tx_bi = NULL;
  892. return -ENOMEM;
  893. }
  894. /**
  895. * i40e_clean_rx_ring - Free Rx buffers
  896. * @rx_ring: ring to be cleaned
  897. **/
  898. void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
  899. {
  900. struct device *dev = rx_ring->dev;
  901. unsigned long bi_size;
  902. u16 i;
  903. /* ring already cleared, nothing to do */
  904. if (!rx_ring->rx_bi)
  905. return;
  906. /* Free all the Rx ring sk_buffs */
  907. for (i = 0; i < rx_ring->count; i++) {
  908. struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
  909. if (rx_bi->skb) {
  910. dev_kfree_skb(rx_bi->skb);
  911. rx_bi->skb = NULL;
  912. }
  913. if (!rx_bi->page)
  914. continue;
  915. dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
  916. __free_pages(rx_bi->page, 0);
  917. rx_bi->page = NULL;
  918. rx_bi->page_offset = 0;
  919. }
  920. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  921. memset(rx_ring->rx_bi, 0, bi_size);
  922. /* Zero out the descriptor ring */
  923. memset(rx_ring->desc, 0, rx_ring->size);
  924. rx_ring->next_to_alloc = 0;
  925. rx_ring->next_to_clean = 0;
  926. rx_ring->next_to_use = 0;
  927. }
  928. /**
  929. * i40e_free_rx_resources - Free Rx resources
  930. * @rx_ring: ring to clean the resources from
  931. *
  932. * Free all receive software resources
  933. **/
  934. void i40e_free_rx_resources(struct i40e_ring *rx_ring)
  935. {
  936. i40e_clean_rx_ring(rx_ring);
  937. kfree(rx_ring->rx_bi);
  938. rx_ring->rx_bi = NULL;
  939. if (rx_ring->desc) {
  940. dma_free_coherent(rx_ring->dev, rx_ring->size,
  941. rx_ring->desc, rx_ring->dma);
  942. rx_ring->desc = NULL;
  943. }
  944. }
  945. /**
  946. * i40e_setup_rx_descriptors - Allocate Rx descriptors
  947. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  948. *
  949. * Returns 0 on success, negative on failure
  950. **/
  951. int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
  952. {
  953. struct device *dev = rx_ring->dev;
  954. int bi_size;
  955. /* warn if we are about to overwrite the pointer */
  956. WARN_ON(rx_ring->rx_bi);
  957. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  958. rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
  959. if (!rx_ring->rx_bi)
  960. goto err;
  961. u64_stats_init(&rx_ring->syncp);
  962. /* Round up to nearest 4K */
  963. rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
  964. rx_ring->size = ALIGN(rx_ring->size, 4096);
  965. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  966. &rx_ring->dma, GFP_KERNEL);
  967. if (!rx_ring->desc) {
  968. dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
  969. rx_ring->size);
  970. goto err;
  971. }
  972. rx_ring->next_to_alloc = 0;
  973. rx_ring->next_to_clean = 0;
  974. rx_ring->next_to_use = 0;
  975. return 0;
  976. err:
  977. kfree(rx_ring->rx_bi);
  978. rx_ring->rx_bi = NULL;
  979. return -ENOMEM;
  980. }
  981. /**
  982. * i40e_release_rx_desc - Store the new tail and head values
  983. * @rx_ring: ring to bump
  984. * @val: new head index
  985. **/
  986. static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
  987. {
  988. rx_ring->next_to_use = val;
  989. /* update next to alloc since we have filled the ring */
  990. rx_ring->next_to_alloc = val;
  991. /* Force memory writes to complete before letting h/w
  992. * know there are new descriptors to fetch. (Only
  993. * applicable for weak-ordered memory model archs,
  994. * such as IA-64).
  995. */
  996. wmb();
  997. writel(val, rx_ring->tail);
  998. }
  999. /**
  1000. * i40e_alloc_mapped_page - recycle or make a new page
  1001. * @rx_ring: ring to use
  1002. * @bi: rx_buffer struct to modify
  1003. *
  1004. * Returns true if the page was successfully allocated or
  1005. * reused.
  1006. **/
  1007. static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
  1008. struct i40e_rx_buffer *bi)
  1009. {
  1010. struct page *page = bi->page;
  1011. dma_addr_t dma;
  1012. /* since we are recycling buffers we should seldom need to alloc */
  1013. if (likely(page)) {
  1014. rx_ring->rx_stats.page_reuse_count++;
  1015. return true;
  1016. }
  1017. /* alloc new page for storage */
  1018. page = dev_alloc_page();
  1019. if (unlikely(!page)) {
  1020. rx_ring->rx_stats.alloc_page_failed++;
  1021. return false;
  1022. }
  1023. /* map page for use */
  1024. dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  1025. /* if mapping failed free memory back to system since
  1026. * there isn't much point in holding memory we can't use
  1027. */
  1028. if (dma_mapping_error(rx_ring->dev, dma)) {
  1029. __free_pages(page, 0);
  1030. rx_ring->rx_stats.alloc_page_failed++;
  1031. return false;
  1032. }
  1033. bi->dma = dma;
  1034. bi->page = page;
  1035. bi->page_offset = 0;
  1036. return true;
  1037. }
  1038. /**
  1039. * i40e_receive_skb - Send a completed packet up the stack
  1040. * @rx_ring: rx ring in play
  1041. * @skb: packet to send up
  1042. * @vlan_tag: vlan tag for packet
  1043. **/
  1044. static void i40e_receive_skb(struct i40e_ring *rx_ring,
  1045. struct sk_buff *skb, u16 vlan_tag)
  1046. {
  1047. struct i40e_q_vector *q_vector = rx_ring->q_vector;
  1048. if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  1049. (vlan_tag & VLAN_VID_MASK))
  1050. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  1051. napi_gro_receive(&q_vector->napi, skb);
  1052. }
  1053. /**
  1054. * i40e_alloc_rx_buffers - Replace used receive buffers
  1055. * @rx_ring: ring to place buffers on
  1056. * @cleaned_count: number of buffers to replace
  1057. *
  1058. * Returns false if all allocations were successful, true if any fail
  1059. **/
  1060. bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
  1061. {
  1062. u16 ntu = rx_ring->next_to_use;
  1063. union i40e_rx_desc *rx_desc;
  1064. struct i40e_rx_buffer *bi;
  1065. /* do nothing if no valid netdev defined */
  1066. if (!rx_ring->netdev || !cleaned_count)
  1067. return false;
  1068. rx_desc = I40E_RX_DESC(rx_ring, ntu);
  1069. bi = &rx_ring->rx_bi[ntu];
  1070. do {
  1071. if (!i40e_alloc_mapped_page(rx_ring, bi))
  1072. goto no_buffers;
  1073. /* Refresh the desc even if buffer_addrs didn't change
  1074. * because each write-back erases this info.
  1075. */
  1076. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
  1077. rx_desc->read.hdr_addr = 0;
  1078. rx_desc++;
  1079. bi++;
  1080. ntu++;
  1081. if (unlikely(ntu == rx_ring->count)) {
  1082. rx_desc = I40E_RX_DESC(rx_ring, 0);
  1083. bi = rx_ring->rx_bi;
  1084. ntu = 0;
  1085. }
  1086. /* clear the status bits for the next_to_use descriptor */
  1087. rx_desc->wb.qword1.status_error_len = 0;
  1088. cleaned_count--;
  1089. } while (cleaned_count);
  1090. if (rx_ring->next_to_use != ntu)
  1091. i40e_release_rx_desc(rx_ring, ntu);
  1092. return false;
  1093. no_buffers:
  1094. if (rx_ring->next_to_use != ntu)
  1095. i40e_release_rx_desc(rx_ring, ntu);
  1096. /* make sure to come back via polling to try again after
  1097. * allocation failure
  1098. */
  1099. return true;
  1100. }
  1101. /**
  1102. * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
  1103. * @vsi: the VSI we care about
  1104. * @skb: skb currently being received and modified
  1105. * @rx_desc: the receive descriptor
  1106. *
  1107. * skb->protocol must be set before this function is called
  1108. **/
  1109. static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
  1110. struct sk_buff *skb,
  1111. union i40e_rx_desc *rx_desc)
  1112. {
  1113. struct i40e_rx_ptype_decoded decoded;
  1114. u32 rx_error, rx_status;
  1115. bool ipv4, ipv6;
  1116. u8 ptype;
  1117. u64 qword;
  1118. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  1119. ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
  1120. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  1121. I40E_RXD_QW1_ERROR_SHIFT;
  1122. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  1123. I40E_RXD_QW1_STATUS_SHIFT;
  1124. decoded = decode_rx_desc_ptype(ptype);
  1125. skb->ip_summed = CHECKSUM_NONE;
  1126. skb_checksum_none_assert(skb);
  1127. /* Rx csum enabled and ip headers found? */
  1128. if (!(vsi->netdev->features & NETIF_F_RXCSUM))
  1129. return;
  1130. /* did the hardware decode the packet and checksum? */
  1131. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
  1132. return;
  1133. /* both known and outer_ip must be set for the below code to work */
  1134. if (!(decoded.known && decoded.outer_ip))
  1135. return;
  1136. ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
  1137. (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
  1138. ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
  1139. (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
  1140. if (ipv4 &&
  1141. (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
  1142. BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
  1143. goto checksum_fail;
  1144. /* likely incorrect csum if alternate IP extension headers found */
  1145. if (ipv6 &&
  1146. rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
  1147. /* don't increment checksum err here, non-fatal err */
  1148. return;
  1149. /* there was some L4 error, count error and punt packet to the stack */
  1150. if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
  1151. goto checksum_fail;
  1152. /* handle packets that were not able to be checksummed due
  1153. * to arrival speed, in this case the stack can compute
  1154. * the csum.
  1155. */
  1156. if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
  1157. return;
  1158. /* If there is an outer header present that might contain a checksum
  1159. * we need to bump the checksum level by 1 to reflect the fact that
  1160. * we are indicating we validated the inner checksum.
  1161. */
  1162. if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
  1163. skb->csum_level = 1;
  1164. /* Only report checksum unnecessary for TCP, UDP, or SCTP */
  1165. switch (decoded.inner_prot) {
  1166. case I40E_RX_PTYPE_INNER_PROT_TCP:
  1167. case I40E_RX_PTYPE_INNER_PROT_UDP:
  1168. case I40E_RX_PTYPE_INNER_PROT_SCTP:
  1169. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1170. /* fall though */
  1171. default:
  1172. break;
  1173. }
  1174. return;
  1175. checksum_fail:
  1176. vsi->back->hw_csum_rx_error++;
  1177. }
  1178. /**
  1179. * i40e_ptype_to_htype - get a hash type
  1180. * @ptype: the ptype value from the descriptor
  1181. *
  1182. * Returns a hash type to be used by skb_set_hash
  1183. **/
  1184. static inline int i40e_ptype_to_htype(u8 ptype)
  1185. {
  1186. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
  1187. if (!decoded.known)
  1188. return PKT_HASH_TYPE_NONE;
  1189. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  1190. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
  1191. return PKT_HASH_TYPE_L4;
  1192. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  1193. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
  1194. return PKT_HASH_TYPE_L3;
  1195. else
  1196. return PKT_HASH_TYPE_L2;
  1197. }
  1198. /**
  1199. * i40e_rx_hash - set the hash value in the skb
  1200. * @ring: descriptor ring
  1201. * @rx_desc: specific descriptor
  1202. **/
  1203. static inline void i40e_rx_hash(struct i40e_ring *ring,
  1204. union i40e_rx_desc *rx_desc,
  1205. struct sk_buff *skb,
  1206. u8 rx_ptype)
  1207. {
  1208. u32 hash;
  1209. const __le64 rss_mask =
  1210. cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
  1211. I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
  1212. if (!(ring->netdev->features & NETIF_F_RXHASH))
  1213. return;
  1214. if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
  1215. hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
  1216. skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
  1217. }
  1218. }
  1219. /**
  1220. * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
  1221. * @rx_ring: rx descriptor ring packet is being transacted on
  1222. * @rx_desc: pointer to the EOP Rx descriptor
  1223. * @skb: pointer to current skb being populated
  1224. * @rx_ptype: the packet type decoded by hardware
  1225. *
  1226. * This function checks the ring, descriptor, and packet information in
  1227. * order to populate the hash, checksum, VLAN, protocol, and
  1228. * other fields within the skb.
  1229. **/
  1230. static inline
  1231. void i40e_process_skb_fields(struct i40e_ring *rx_ring,
  1232. union i40e_rx_desc *rx_desc, struct sk_buff *skb,
  1233. u8 rx_ptype)
  1234. {
  1235. u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  1236. u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  1237. I40E_RXD_QW1_STATUS_SHIFT;
  1238. u32 rsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
  1239. I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
  1240. if (unlikely(rsyn)) {
  1241. i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, rsyn);
  1242. rx_ring->last_rx_timestamp = jiffies;
  1243. }
  1244. i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
  1245. /* modifies the skb - consumes the enet header */
  1246. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  1247. i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
  1248. skb_record_rx_queue(skb, rx_ring->queue_index);
  1249. }
  1250. /**
  1251. * i40e_pull_tail - i40e specific version of skb_pull_tail
  1252. * @rx_ring: rx descriptor ring packet is being transacted on
  1253. * @skb: pointer to current skb being adjusted
  1254. *
  1255. * This function is an i40e specific version of __pskb_pull_tail. The
  1256. * main difference between this version and the original function is that
  1257. * this function can make several assumptions about the state of things
  1258. * that allow for significant optimizations versus the standard function.
  1259. * As a result we can do things like drop a frag and maintain an accurate
  1260. * truesize for the skb.
  1261. */
  1262. static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
  1263. {
  1264. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
  1265. unsigned char *va;
  1266. unsigned int pull_len;
  1267. /* it is valid to use page_address instead of kmap since we are
  1268. * working with pages allocated out of the lomem pool per
  1269. * alloc_page(GFP_ATOMIC)
  1270. */
  1271. va = skb_frag_address(frag);
  1272. /* we need the header to contain the greater of either ETH_HLEN or
  1273. * 60 bytes if the skb->len is less than 60 for skb_pad.
  1274. */
  1275. pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
  1276. /* align pull length to size of long to optimize memcpy performance */
  1277. skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
  1278. /* update all of the pointers */
  1279. skb_frag_size_sub(frag, pull_len);
  1280. frag->page_offset += pull_len;
  1281. skb->data_len -= pull_len;
  1282. skb->tail += pull_len;
  1283. }
  1284. /**
  1285. * i40e_cleanup_headers - Correct empty headers
  1286. * @rx_ring: rx descriptor ring packet is being transacted on
  1287. * @skb: pointer to current skb being fixed
  1288. *
  1289. * Also address the case where we are pulling data in on pages only
  1290. * and as such no data is present in the skb header.
  1291. *
  1292. * In addition if skb is not at least 60 bytes we need to pad it so that
  1293. * it is large enough to qualify as a valid Ethernet frame.
  1294. *
  1295. * Returns true if an error was encountered and skb was freed.
  1296. **/
  1297. static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
  1298. {
  1299. /* place header in linear portion of buffer */
  1300. if (skb_is_nonlinear(skb))
  1301. i40e_pull_tail(rx_ring, skb);
  1302. /* if eth_skb_pad returns an error the skb was freed */
  1303. if (eth_skb_pad(skb))
  1304. return true;
  1305. return false;
  1306. }
  1307. /**
  1308. * i40e_reuse_rx_page - page flip buffer and store it back on the ring
  1309. * @rx_ring: rx descriptor ring to store buffers on
  1310. * @old_buff: donor buffer to have page reused
  1311. *
  1312. * Synchronizes page for reuse by the adapter
  1313. **/
  1314. static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
  1315. struct i40e_rx_buffer *old_buff)
  1316. {
  1317. struct i40e_rx_buffer *new_buff;
  1318. u16 nta = rx_ring->next_to_alloc;
  1319. new_buff = &rx_ring->rx_bi[nta];
  1320. /* update, and store next to alloc */
  1321. nta++;
  1322. rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
  1323. /* transfer page from old buffer to new buffer */
  1324. *new_buff = *old_buff;
  1325. }
  1326. /**
  1327. * i40e_page_is_reserved - check if reuse is possible
  1328. * @page: page struct to check
  1329. */
  1330. static inline bool i40e_page_is_reserved(struct page *page)
  1331. {
  1332. return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
  1333. }
  1334. /**
  1335. * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
  1336. * @rx_ring: rx descriptor ring to transact packets on
  1337. * @rx_buffer: buffer containing page to add
  1338. * @rx_desc: descriptor containing length of buffer written by hardware
  1339. * @skb: sk_buff to place the data into
  1340. *
  1341. * This function will add the data contained in rx_buffer->page to the skb.
  1342. * This is done either through a direct copy if the data in the buffer is
  1343. * less than the skb header size, otherwise it will just attach the page as
  1344. * a frag to the skb.
  1345. *
  1346. * The function will then update the page offset if necessary and return
  1347. * true if the buffer can be reused by the adapter.
  1348. **/
  1349. static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
  1350. struct i40e_rx_buffer *rx_buffer,
  1351. union i40e_rx_desc *rx_desc,
  1352. struct sk_buff *skb)
  1353. {
  1354. struct page *page = rx_buffer->page;
  1355. u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  1356. unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  1357. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  1358. #if (PAGE_SIZE < 8192)
  1359. unsigned int truesize = I40E_RXBUFFER_2048;
  1360. #else
  1361. unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
  1362. unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
  1363. #endif
  1364. /* will the data fit in the skb we allocated? if so, just
  1365. * copy it as it is pretty small anyway
  1366. */
  1367. if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
  1368. unsigned char *va = page_address(page) + rx_buffer->page_offset;
  1369. memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
  1370. /* page is not reserved, we can reuse buffer as-is */
  1371. if (likely(!i40e_page_is_reserved(page)))
  1372. return true;
  1373. /* this page cannot be reused so discard it */
  1374. __free_pages(page, 0);
  1375. return false;
  1376. }
  1377. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
  1378. rx_buffer->page_offset, size, truesize);
  1379. /* avoid re-using remote pages */
  1380. if (unlikely(i40e_page_is_reserved(page)))
  1381. return false;
  1382. #if (PAGE_SIZE < 8192)
  1383. /* if we are only owner of page we can reuse it */
  1384. if (unlikely(page_count(page) != 1))
  1385. return false;
  1386. /* flip page offset to other buffer */
  1387. rx_buffer->page_offset ^= truesize;
  1388. #else
  1389. /* move offset up to the next cache line */
  1390. rx_buffer->page_offset += truesize;
  1391. if (rx_buffer->page_offset > last_offset)
  1392. return false;
  1393. #endif
  1394. /* Even if we own the page, we are not allowed to use atomic_set()
  1395. * This would break get_page_unless_zero() users.
  1396. */
  1397. get_page(rx_buffer->page);
  1398. return true;
  1399. }
  1400. /**
  1401. * i40e_fetch_rx_buffer - Allocate skb and populate it
  1402. * @rx_ring: rx descriptor ring to transact packets on
  1403. * @rx_desc: descriptor containing info written by hardware
  1404. *
  1405. * This function allocates an skb on the fly, and populates it with the page
  1406. * data from the current receive descriptor, taking care to set up the skb
  1407. * correctly, as well as handling calling the page recycle function if
  1408. * necessary.
  1409. */
  1410. static inline
  1411. struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
  1412. union i40e_rx_desc *rx_desc)
  1413. {
  1414. struct i40e_rx_buffer *rx_buffer;
  1415. struct sk_buff *skb;
  1416. struct page *page;
  1417. rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
  1418. page = rx_buffer->page;
  1419. prefetchw(page);
  1420. skb = rx_buffer->skb;
  1421. if (likely(!skb)) {
  1422. void *page_addr = page_address(page) + rx_buffer->page_offset;
  1423. /* prefetch first cache line of first page */
  1424. prefetch(page_addr);
  1425. #if L1_CACHE_BYTES < 128
  1426. prefetch(page_addr + L1_CACHE_BYTES);
  1427. #endif
  1428. /* allocate a skb to store the frags */
  1429. skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
  1430. I40E_RX_HDR_SIZE,
  1431. GFP_ATOMIC | __GFP_NOWARN);
  1432. if (unlikely(!skb)) {
  1433. rx_ring->rx_stats.alloc_buff_failed++;
  1434. return NULL;
  1435. }
  1436. /* we will be copying header into skb->data in
  1437. * pskb_may_pull so it is in our interest to prefetch
  1438. * it now to avoid a possible cache miss
  1439. */
  1440. prefetchw(skb->data);
  1441. } else {
  1442. rx_buffer->skb = NULL;
  1443. }
  1444. /* we are reusing so sync this buffer for CPU use */
  1445. dma_sync_single_range_for_cpu(rx_ring->dev,
  1446. rx_buffer->dma,
  1447. rx_buffer->page_offset,
  1448. I40E_RXBUFFER_2048,
  1449. DMA_FROM_DEVICE);
  1450. /* pull page into skb */
  1451. if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
  1452. /* hand second half of page back to the ring */
  1453. i40e_reuse_rx_page(rx_ring, rx_buffer);
  1454. rx_ring->rx_stats.page_reuse_count++;
  1455. } else {
  1456. /* we are not reusing the buffer so unmap it */
  1457. dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
  1458. DMA_FROM_DEVICE);
  1459. }
  1460. /* clear contents of buffer_info */
  1461. rx_buffer->page = NULL;
  1462. return skb;
  1463. }
  1464. /**
  1465. * i40e_is_non_eop - process handling of non-EOP buffers
  1466. * @rx_ring: Rx ring being processed
  1467. * @rx_desc: Rx descriptor for current buffer
  1468. * @skb: Current socket buffer containing buffer in progress
  1469. *
  1470. * This function updates next to clean. If the buffer is an EOP buffer
  1471. * this function exits returning false, otherwise it will place the
  1472. * sk_buff in the next buffer to be chained and return true indicating
  1473. * that this is in fact a non-EOP buffer.
  1474. **/
  1475. static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
  1476. union i40e_rx_desc *rx_desc,
  1477. struct sk_buff *skb)
  1478. {
  1479. u32 ntc = rx_ring->next_to_clean + 1;
  1480. /* fetch, update, and store next to clean */
  1481. ntc = (ntc < rx_ring->count) ? ntc : 0;
  1482. rx_ring->next_to_clean = ntc;
  1483. prefetch(I40E_RX_DESC(rx_ring, ntc));
  1484. #define staterrlen rx_desc->wb.qword1.status_error_len
  1485. if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
  1486. i40e_clean_programming_status(rx_ring, rx_desc);
  1487. rx_ring->rx_bi[ntc].skb = skb;
  1488. return true;
  1489. }
  1490. /* if we are the last buffer then there is nothing else to do */
  1491. #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
  1492. if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
  1493. return false;
  1494. /* place skb in next buffer to be received */
  1495. rx_ring->rx_bi[ntc].skb = skb;
  1496. rx_ring->rx_stats.non_eop_descs++;
  1497. return true;
  1498. }
  1499. /**
  1500. * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
  1501. * @rx_ring: rx descriptor ring to transact packets on
  1502. * @budget: Total limit on number of packets to process
  1503. *
  1504. * This function provides a "bounce buffer" approach to Rx interrupt
  1505. * processing. The advantage to this is that on systems that have
  1506. * expensive overhead for IOMMU access this provides a means of avoiding
  1507. * it by maintaining the mapping of the page to the system.
  1508. *
  1509. * Returns amount of work completed
  1510. **/
  1511. static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
  1512. {
  1513. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  1514. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  1515. bool failure = false;
  1516. while (likely(total_rx_packets < budget)) {
  1517. union i40e_rx_desc *rx_desc;
  1518. struct sk_buff *skb;
  1519. u32 rx_status;
  1520. u16 vlan_tag;
  1521. u8 rx_ptype;
  1522. u64 qword;
  1523. /* return some buffers to hardware, one at a time is too slow */
  1524. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  1525. failure = failure ||
  1526. i40e_alloc_rx_buffers(rx_ring, cleaned_count);
  1527. cleaned_count = 0;
  1528. }
  1529. rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
  1530. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  1531. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  1532. I40E_RXD_QW1_PTYPE_SHIFT;
  1533. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  1534. I40E_RXD_QW1_STATUS_SHIFT;
  1535. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  1536. break;
  1537. /* status_error_len will always be zero for unused descriptors
  1538. * because it's cleared in cleanup, and overlaps with hdr_addr
  1539. * which is always zero because packet split isn't used, if the
  1540. * hardware wrote DD then it will be non-zero
  1541. */
  1542. if (!rx_desc->wb.qword1.status_error_len)
  1543. break;
  1544. /* This memory barrier is needed to keep us from reading
  1545. * any other fields out of the rx_desc until we know the
  1546. * DD bit is set.
  1547. */
  1548. dma_rmb();
  1549. skb = i40e_fetch_rx_buffer(rx_ring, rx_desc);
  1550. if (!skb)
  1551. break;
  1552. cleaned_count++;
  1553. if (i40e_is_non_eop(rx_ring, rx_desc, skb))
  1554. continue;
  1555. /* ERR_MASK will only have valid bits if EOP set, and
  1556. * what we are doing here is actually checking
  1557. * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
  1558. * the error field
  1559. */
  1560. if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
  1561. dev_kfree_skb_any(skb);
  1562. skb = NULL;
  1563. continue;
  1564. }
  1565. if (i40e_cleanup_headers(rx_ring, skb))
  1566. continue;
  1567. /* probably a little skewed due to removing CRC */
  1568. total_rx_bytes += skb->len;
  1569. /* populate checksum, VLAN, and protocol */
  1570. i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
  1571. #ifdef I40E_FCOE
  1572. if (unlikely(
  1573. i40e_rx_is_fcoe(rx_ptype) &&
  1574. !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
  1575. dev_kfree_skb_any(skb);
  1576. continue;
  1577. }
  1578. #endif
  1579. vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
  1580. le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
  1581. i40e_receive_skb(rx_ring, skb, vlan_tag);
  1582. /* update budget accounting */
  1583. total_rx_packets++;
  1584. }
  1585. u64_stats_update_begin(&rx_ring->syncp);
  1586. rx_ring->stats.packets += total_rx_packets;
  1587. rx_ring->stats.bytes += total_rx_bytes;
  1588. u64_stats_update_end(&rx_ring->syncp);
  1589. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  1590. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  1591. /* guarantee a trip back through this routine if there was a failure */
  1592. return failure ? budget : total_rx_packets;
  1593. }
  1594. static u32 i40e_buildreg_itr(const int type, const u16 itr)
  1595. {
  1596. u32 val;
  1597. val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
  1598. /* Don't clear PBA because that can cause lost interrupts that
  1599. * came in while we were cleaning/polling
  1600. */
  1601. (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
  1602. (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
  1603. return val;
  1604. }
  1605. /* a small macro to shorten up some long lines */
  1606. #define INTREG I40E_PFINT_DYN_CTLN
  1607. static inline int get_rx_itr_enabled(struct i40e_vsi *vsi, int idx)
  1608. {
  1609. return !!(vsi->rx_rings[idx]->rx_itr_setting);
  1610. }
  1611. static inline int get_tx_itr_enabled(struct i40e_vsi *vsi, int idx)
  1612. {
  1613. return !!(vsi->tx_rings[idx]->tx_itr_setting);
  1614. }
  1615. /**
  1616. * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
  1617. * @vsi: the VSI we care about
  1618. * @q_vector: q_vector for which itr is being updated and interrupt enabled
  1619. *
  1620. **/
  1621. static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
  1622. struct i40e_q_vector *q_vector)
  1623. {
  1624. struct i40e_hw *hw = &vsi->back->hw;
  1625. bool rx = false, tx = false;
  1626. u32 rxval, txval;
  1627. int vector;
  1628. int idx = q_vector->v_idx;
  1629. int rx_itr_setting, tx_itr_setting;
  1630. vector = (q_vector->v_idx + vsi->base_vector);
  1631. /* avoid dynamic calculation if in countdown mode OR if
  1632. * all dynamic is disabled
  1633. */
  1634. rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
  1635. rx_itr_setting = get_rx_itr_enabled(vsi, idx);
  1636. tx_itr_setting = get_tx_itr_enabled(vsi, idx);
  1637. if (q_vector->itr_countdown > 0 ||
  1638. (!ITR_IS_DYNAMIC(rx_itr_setting) &&
  1639. !ITR_IS_DYNAMIC(tx_itr_setting))) {
  1640. goto enable_int;
  1641. }
  1642. if (ITR_IS_DYNAMIC(tx_itr_setting)) {
  1643. rx = i40e_set_new_dynamic_itr(&q_vector->rx);
  1644. rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
  1645. }
  1646. if (ITR_IS_DYNAMIC(tx_itr_setting)) {
  1647. tx = i40e_set_new_dynamic_itr(&q_vector->tx);
  1648. txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
  1649. }
  1650. if (rx || tx) {
  1651. /* get the higher of the two ITR adjustments and
  1652. * use the same value for both ITR registers
  1653. * when in adaptive mode (Rx and/or Tx)
  1654. */
  1655. u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
  1656. q_vector->tx.itr = q_vector->rx.itr = itr;
  1657. txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
  1658. tx = true;
  1659. rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
  1660. rx = true;
  1661. }
  1662. /* only need to enable the interrupt once, but need
  1663. * to possibly update both ITR values
  1664. */
  1665. if (rx) {
  1666. /* set the INTENA_MSK_MASK so that this first write
  1667. * won't actually enable the interrupt, instead just
  1668. * updating the ITR (it's bit 31 PF and VF)
  1669. */
  1670. rxval |= BIT(31);
  1671. /* don't check _DOWN because interrupt isn't being enabled */
  1672. wr32(hw, INTREG(vector - 1), rxval);
  1673. }
  1674. enable_int:
  1675. if (!test_bit(__I40E_DOWN, &vsi->state))
  1676. wr32(hw, INTREG(vector - 1), txval);
  1677. if (q_vector->itr_countdown)
  1678. q_vector->itr_countdown--;
  1679. else
  1680. q_vector->itr_countdown = ITR_COUNTDOWN_START;
  1681. }
  1682. /**
  1683. * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
  1684. * @napi: napi struct with our devices info in it
  1685. * @budget: amount of work driver is allowed to do this pass, in packets
  1686. *
  1687. * This function will clean all queues associated with a q_vector.
  1688. *
  1689. * Returns the amount of work done
  1690. **/
  1691. int i40e_napi_poll(struct napi_struct *napi, int budget)
  1692. {
  1693. struct i40e_q_vector *q_vector =
  1694. container_of(napi, struct i40e_q_vector, napi);
  1695. struct i40e_vsi *vsi = q_vector->vsi;
  1696. struct i40e_ring *ring;
  1697. bool clean_complete = true;
  1698. bool arm_wb = false;
  1699. int budget_per_ring;
  1700. int work_done = 0;
  1701. if (test_bit(__I40E_DOWN, &vsi->state)) {
  1702. napi_complete(napi);
  1703. return 0;
  1704. }
  1705. /* Clear hung_detected bit */
  1706. clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
  1707. /* Since the actual Tx work is minimal, we can give the Tx a larger
  1708. * budget and be more aggressive about cleaning up the Tx descriptors.
  1709. */
  1710. i40e_for_each_ring(ring, q_vector->tx) {
  1711. if (!i40e_clean_tx_irq(vsi, ring, budget)) {
  1712. clean_complete = false;
  1713. continue;
  1714. }
  1715. arm_wb |= ring->arm_wb;
  1716. ring->arm_wb = false;
  1717. }
  1718. /* Handle case where we are called by netpoll with a budget of 0 */
  1719. if (budget <= 0)
  1720. goto tx_only;
  1721. /* We attempt to distribute budget to each Rx queue fairly, but don't
  1722. * allow the budget to go below 1 because that would exit polling early.
  1723. */
  1724. budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
  1725. i40e_for_each_ring(ring, q_vector->rx) {
  1726. int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
  1727. work_done += cleaned;
  1728. /* if we clean as many as budgeted, we must not be done */
  1729. if (cleaned >= budget_per_ring)
  1730. clean_complete = false;
  1731. }
  1732. /* If work not completed, return budget and polling will return */
  1733. if (!clean_complete) {
  1734. tx_only:
  1735. if (arm_wb) {
  1736. q_vector->tx.ring[0].tx_stats.tx_force_wb++;
  1737. i40e_enable_wb_on_itr(vsi, q_vector);
  1738. }
  1739. return budget;
  1740. }
  1741. if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
  1742. q_vector->arm_wb_state = false;
  1743. /* Work is done so exit the polling mode and re-enable the interrupt */
  1744. napi_complete_done(napi, work_done);
  1745. if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
  1746. i40e_update_enable_itr(vsi, q_vector);
  1747. } else { /* Legacy mode */
  1748. i40e_irq_dynamic_enable_icr0(vsi->back, false);
  1749. }
  1750. return 0;
  1751. }
  1752. /**
  1753. * i40e_atr - Add a Flow Director ATR filter
  1754. * @tx_ring: ring to add programming descriptor to
  1755. * @skb: send buffer
  1756. * @tx_flags: send tx flags
  1757. **/
  1758. static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1759. u32 tx_flags)
  1760. {
  1761. struct i40e_filter_program_desc *fdir_desc;
  1762. struct i40e_pf *pf = tx_ring->vsi->back;
  1763. union {
  1764. unsigned char *network;
  1765. struct iphdr *ipv4;
  1766. struct ipv6hdr *ipv6;
  1767. } hdr;
  1768. struct tcphdr *th;
  1769. unsigned int hlen;
  1770. u32 flex_ptype, dtype_cmd;
  1771. int l4_proto;
  1772. u16 i;
  1773. /* make sure ATR is enabled */
  1774. if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
  1775. return;
  1776. if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
  1777. return;
  1778. /* if sampling is disabled do nothing */
  1779. if (!tx_ring->atr_sample_rate)
  1780. return;
  1781. /* Currently only IPv4/IPv6 with TCP is supported */
  1782. if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
  1783. return;
  1784. /* snag network header to get L4 type and address */
  1785. hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
  1786. skb_inner_network_header(skb) : skb_network_header(skb);
  1787. /* Note: tx_flags gets modified to reflect inner protocols in
  1788. * tx_enable_csum function if encap is enabled.
  1789. */
  1790. if (tx_flags & I40E_TX_FLAGS_IPV4) {
  1791. /* access ihl as u8 to avoid unaligned access on ia64 */
  1792. hlen = (hdr.network[0] & 0x0F) << 2;
  1793. l4_proto = hdr.ipv4->protocol;
  1794. } else {
  1795. hlen = hdr.network - skb->data;
  1796. l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
  1797. hlen -= hdr.network - skb->data;
  1798. }
  1799. if (l4_proto != IPPROTO_TCP)
  1800. return;
  1801. th = (struct tcphdr *)(hdr.network + hlen);
  1802. /* Due to lack of space, no more new filters can be programmed */
  1803. if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
  1804. return;
  1805. if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
  1806. (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
  1807. /* HW ATR eviction will take care of removing filters on FIN
  1808. * and RST packets.
  1809. */
  1810. if (th->fin || th->rst)
  1811. return;
  1812. }
  1813. tx_ring->atr_count++;
  1814. /* sample on all syn/fin/rst packets or once every atr sample rate */
  1815. if (!th->fin &&
  1816. !th->syn &&
  1817. !th->rst &&
  1818. (tx_ring->atr_count < tx_ring->atr_sample_rate))
  1819. return;
  1820. tx_ring->atr_count = 0;
  1821. /* grab the next descriptor */
  1822. i = tx_ring->next_to_use;
  1823. fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  1824. i++;
  1825. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  1826. flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
  1827. I40E_TXD_FLTR_QW0_QINDEX_MASK;
  1828. flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
  1829. (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
  1830. I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
  1831. (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
  1832. I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  1833. flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
  1834. dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  1835. dtype_cmd |= (th->fin || th->rst) ?
  1836. (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  1837. I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
  1838. (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  1839. I40E_TXD_FLTR_QW1_PCMD_SHIFT);
  1840. dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
  1841. I40E_TXD_FLTR_QW1_DEST_SHIFT;
  1842. dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
  1843. I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
  1844. dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  1845. if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
  1846. dtype_cmd |=
  1847. ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
  1848. I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
  1849. I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
  1850. else
  1851. dtype_cmd |=
  1852. ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
  1853. I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
  1854. I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
  1855. if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
  1856. (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
  1857. dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
  1858. fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  1859. fdir_desc->rsvd = cpu_to_le32(0);
  1860. fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  1861. fdir_desc->fd_id = cpu_to_le32(0);
  1862. }
  1863. /**
  1864. * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
  1865. * @skb: send buffer
  1866. * @tx_ring: ring to send buffer on
  1867. * @flags: the tx flags to be set
  1868. *
  1869. * Checks the skb and set up correspondingly several generic transmit flags
  1870. * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
  1871. *
  1872. * Returns error code indicate the frame should be dropped upon error and the
  1873. * otherwise returns 0 to indicate the flags has been set properly.
  1874. **/
  1875. #ifdef I40E_FCOE
  1876. inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
  1877. struct i40e_ring *tx_ring,
  1878. u32 *flags)
  1879. #else
  1880. static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
  1881. struct i40e_ring *tx_ring,
  1882. u32 *flags)
  1883. #endif
  1884. {
  1885. __be16 protocol = skb->protocol;
  1886. u32 tx_flags = 0;
  1887. if (protocol == htons(ETH_P_8021Q) &&
  1888. !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
  1889. /* When HW VLAN acceleration is turned off by the user the
  1890. * stack sets the protocol to 8021q so that the driver
  1891. * can take any steps required to support the SW only
  1892. * VLAN handling. In our case the driver doesn't need
  1893. * to take any further steps so just set the protocol
  1894. * to the encapsulated ethertype.
  1895. */
  1896. skb->protocol = vlan_get_protocol(skb);
  1897. goto out;
  1898. }
  1899. /* if we have a HW VLAN tag being added, default to the HW one */
  1900. if (skb_vlan_tag_present(skb)) {
  1901. tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
  1902. tx_flags |= I40E_TX_FLAGS_HW_VLAN;
  1903. /* else if it is a SW VLAN, check the next protocol and store the tag */
  1904. } else if (protocol == htons(ETH_P_8021Q)) {
  1905. struct vlan_hdr *vhdr, _vhdr;
  1906. vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
  1907. if (!vhdr)
  1908. return -EINVAL;
  1909. protocol = vhdr->h_vlan_encapsulated_proto;
  1910. tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
  1911. tx_flags |= I40E_TX_FLAGS_SW_VLAN;
  1912. }
  1913. if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
  1914. goto out;
  1915. /* Insert 802.1p priority into VLAN header */
  1916. if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
  1917. (skb->priority != TC_PRIO_CONTROL)) {
  1918. tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
  1919. tx_flags |= (skb->priority & 0x7) <<
  1920. I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
  1921. if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
  1922. struct vlan_ethhdr *vhdr;
  1923. int rc;
  1924. rc = skb_cow_head(skb, 0);
  1925. if (rc < 0)
  1926. return rc;
  1927. vhdr = (struct vlan_ethhdr *)skb->data;
  1928. vhdr->h_vlan_TCI = htons(tx_flags >>
  1929. I40E_TX_FLAGS_VLAN_SHIFT);
  1930. } else {
  1931. tx_flags |= I40E_TX_FLAGS_HW_VLAN;
  1932. }
  1933. }
  1934. out:
  1935. *flags = tx_flags;
  1936. return 0;
  1937. }
  1938. /**
  1939. * i40e_tso - set up the tso context descriptor
  1940. * @skb: ptr to the skb we're sending
  1941. * @hdr_len: ptr to the size of the packet header
  1942. * @cd_type_cmd_tso_mss: Quad Word 1
  1943. *
  1944. * Returns 0 if no TSO can happen, 1 if tso is going, or error
  1945. **/
  1946. static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
  1947. {
  1948. u64 cd_cmd, cd_tso_len, cd_mss;
  1949. union {
  1950. struct iphdr *v4;
  1951. struct ipv6hdr *v6;
  1952. unsigned char *hdr;
  1953. } ip;
  1954. union {
  1955. struct tcphdr *tcp;
  1956. struct udphdr *udp;
  1957. unsigned char *hdr;
  1958. } l4;
  1959. u32 paylen, l4_offset;
  1960. int err;
  1961. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1962. return 0;
  1963. if (!skb_is_gso(skb))
  1964. return 0;
  1965. err = skb_cow_head(skb, 0);
  1966. if (err < 0)
  1967. return err;
  1968. ip.hdr = skb_network_header(skb);
  1969. l4.hdr = skb_transport_header(skb);
  1970. /* initialize outer IP header fields */
  1971. if (ip.v4->version == 4) {
  1972. ip.v4->tot_len = 0;
  1973. ip.v4->check = 0;
  1974. } else {
  1975. ip.v6->payload_len = 0;
  1976. }
  1977. if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
  1978. SKB_GSO_GRE_CSUM |
  1979. SKB_GSO_IPXIP4 |
  1980. SKB_GSO_IPXIP6 |
  1981. SKB_GSO_UDP_TUNNEL |
  1982. SKB_GSO_UDP_TUNNEL_CSUM)) {
  1983. if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
  1984. (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
  1985. l4.udp->len = 0;
  1986. /* determine offset of outer transport header */
  1987. l4_offset = l4.hdr - skb->data;
  1988. /* remove payload length from outer checksum */
  1989. paylen = skb->len - l4_offset;
  1990. csum_replace_by_diff(&l4.udp->check, htonl(paylen));
  1991. }
  1992. /* reset pointers to inner headers */
  1993. ip.hdr = skb_inner_network_header(skb);
  1994. l4.hdr = skb_inner_transport_header(skb);
  1995. /* initialize inner IP header fields */
  1996. if (ip.v4->version == 4) {
  1997. ip.v4->tot_len = 0;
  1998. ip.v4->check = 0;
  1999. } else {
  2000. ip.v6->payload_len = 0;
  2001. }
  2002. }
  2003. /* determine offset of inner transport header */
  2004. l4_offset = l4.hdr - skb->data;
  2005. /* remove payload length from inner checksum */
  2006. paylen = skb->len - l4_offset;
  2007. csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
  2008. /* compute length of segmentation header */
  2009. *hdr_len = (l4.tcp->doff * 4) + l4_offset;
  2010. /* find the field values */
  2011. cd_cmd = I40E_TX_CTX_DESC_TSO;
  2012. cd_tso_len = skb->len - *hdr_len;
  2013. cd_mss = skb_shinfo(skb)->gso_size;
  2014. *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
  2015. (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
  2016. (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
  2017. return 1;
  2018. }
  2019. /**
  2020. * i40e_tsyn - set up the tsyn context descriptor
  2021. * @tx_ring: ptr to the ring to send
  2022. * @skb: ptr to the skb we're sending
  2023. * @tx_flags: the collected send information
  2024. * @cd_type_cmd_tso_mss: Quad Word 1
  2025. *
  2026. * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
  2027. **/
  2028. static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
  2029. u32 tx_flags, u64 *cd_type_cmd_tso_mss)
  2030. {
  2031. struct i40e_pf *pf;
  2032. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
  2033. return 0;
  2034. /* Tx timestamps cannot be sampled when doing TSO */
  2035. if (tx_flags & I40E_TX_FLAGS_TSO)
  2036. return 0;
  2037. /* only timestamp the outbound packet if the user has requested it and
  2038. * we are not already transmitting a packet to be timestamped
  2039. */
  2040. pf = i40e_netdev_to_pf(tx_ring->netdev);
  2041. if (!(pf->flags & I40E_FLAG_PTP))
  2042. return 0;
  2043. if (pf->ptp_tx &&
  2044. !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
  2045. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  2046. pf->ptp_tx_skb = skb_get(skb);
  2047. } else {
  2048. return 0;
  2049. }
  2050. *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
  2051. I40E_TXD_CTX_QW1_CMD_SHIFT;
  2052. return 1;
  2053. }
  2054. /**
  2055. * i40e_tx_enable_csum - Enable Tx checksum offloads
  2056. * @skb: send buffer
  2057. * @tx_flags: pointer to Tx flags currently set
  2058. * @td_cmd: Tx descriptor command bits to set
  2059. * @td_offset: Tx descriptor header offsets to set
  2060. * @tx_ring: Tx descriptor ring
  2061. * @cd_tunneling: ptr to context desc bits
  2062. **/
  2063. static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
  2064. u32 *td_cmd, u32 *td_offset,
  2065. struct i40e_ring *tx_ring,
  2066. u32 *cd_tunneling)
  2067. {
  2068. union {
  2069. struct iphdr *v4;
  2070. struct ipv6hdr *v6;
  2071. unsigned char *hdr;
  2072. } ip;
  2073. union {
  2074. struct tcphdr *tcp;
  2075. struct udphdr *udp;
  2076. unsigned char *hdr;
  2077. } l4;
  2078. unsigned char *exthdr;
  2079. u32 offset, cmd = 0;
  2080. __be16 frag_off;
  2081. u8 l4_proto = 0;
  2082. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2083. return 0;
  2084. ip.hdr = skb_network_header(skb);
  2085. l4.hdr = skb_transport_header(skb);
  2086. /* compute outer L2 header size */
  2087. offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
  2088. if (skb->encapsulation) {
  2089. u32 tunnel = 0;
  2090. /* define outer network header type */
  2091. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  2092. tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
  2093. I40E_TX_CTX_EXT_IP_IPV4 :
  2094. I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
  2095. l4_proto = ip.v4->protocol;
  2096. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  2097. tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
  2098. exthdr = ip.hdr + sizeof(*ip.v6);
  2099. l4_proto = ip.v6->nexthdr;
  2100. if (l4.hdr != exthdr)
  2101. ipv6_skip_exthdr(skb, exthdr - skb->data,
  2102. &l4_proto, &frag_off);
  2103. }
  2104. /* define outer transport */
  2105. switch (l4_proto) {
  2106. case IPPROTO_UDP:
  2107. tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
  2108. *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
  2109. break;
  2110. case IPPROTO_GRE:
  2111. tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
  2112. *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
  2113. break;
  2114. case IPPROTO_IPIP:
  2115. case IPPROTO_IPV6:
  2116. *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
  2117. l4.hdr = skb_inner_network_header(skb);
  2118. break;
  2119. default:
  2120. if (*tx_flags & I40E_TX_FLAGS_TSO)
  2121. return -1;
  2122. skb_checksum_help(skb);
  2123. return 0;
  2124. }
  2125. /* compute outer L3 header size */
  2126. tunnel |= ((l4.hdr - ip.hdr) / 4) <<
  2127. I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
  2128. /* switch IP header pointer from outer to inner header */
  2129. ip.hdr = skb_inner_network_header(skb);
  2130. /* compute tunnel header size */
  2131. tunnel |= ((ip.hdr - l4.hdr) / 2) <<
  2132. I40E_TXD_CTX_QW0_NATLEN_SHIFT;
  2133. /* indicate if we need to offload outer UDP header */
  2134. if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
  2135. !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
  2136. (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
  2137. tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
  2138. /* record tunnel offload values */
  2139. *cd_tunneling |= tunnel;
  2140. /* switch L4 header pointer from outer to inner */
  2141. l4.hdr = skb_inner_transport_header(skb);
  2142. l4_proto = 0;
  2143. /* reset type as we transition from outer to inner headers */
  2144. *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
  2145. if (ip.v4->version == 4)
  2146. *tx_flags |= I40E_TX_FLAGS_IPV4;
  2147. if (ip.v6->version == 6)
  2148. *tx_flags |= I40E_TX_FLAGS_IPV6;
  2149. }
  2150. /* Enable IP checksum offloads */
  2151. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  2152. l4_proto = ip.v4->protocol;
  2153. /* the stack computes the IP header already, the only time we
  2154. * need the hardware to recompute it is in the case of TSO.
  2155. */
  2156. cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
  2157. I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
  2158. I40E_TX_DESC_CMD_IIPT_IPV4;
  2159. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  2160. cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
  2161. exthdr = ip.hdr + sizeof(*ip.v6);
  2162. l4_proto = ip.v6->nexthdr;
  2163. if (l4.hdr != exthdr)
  2164. ipv6_skip_exthdr(skb, exthdr - skb->data,
  2165. &l4_proto, &frag_off);
  2166. }
  2167. /* compute inner L3 header size */
  2168. offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  2169. /* Enable L4 checksum offloads */
  2170. switch (l4_proto) {
  2171. case IPPROTO_TCP:
  2172. /* enable checksum offloads */
  2173. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
  2174. offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  2175. break;
  2176. case IPPROTO_SCTP:
  2177. /* enable SCTP checksum offload */
  2178. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
  2179. offset |= (sizeof(struct sctphdr) >> 2) <<
  2180. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  2181. break;
  2182. case IPPROTO_UDP:
  2183. /* enable UDP checksum offload */
  2184. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
  2185. offset |= (sizeof(struct udphdr) >> 2) <<
  2186. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  2187. break;
  2188. default:
  2189. if (*tx_flags & I40E_TX_FLAGS_TSO)
  2190. return -1;
  2191. skb_checksum_help(skb);
  2192. return 0;
  2193. }
  2194. *td_cmd |= cmd;
  2195. *td_offset |= offset;
  2196. return 1;
  2197. }
  2198. /**
  2199. * i40e_create_tx_ctx Build the Tx context descriptor
  2200. * @tx_ring: ring to create the descriptor on
  2201. * @cd_type_cmd_tso_mss: Quad Word 1
  2202. * @cd_tunneling: Quad Word 0 - bits 0-31
  2203. * @cd_l2tag2: Quad Word 0 - bits 32-63
  2204. **/
  2205. static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
  2206. const u64 cd_type_cmd_tso_mss,
  2207. const u32 cd_tunneling, const u32 cd_l2tag2)
  2208. {
  2209. struct i40e_tx_context_desc *context_desc;
  2210. int i = tx_ring->next_to_use;
  2211. if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
  2212. !cd_tunneling && !cd_l2tag2)
  2213. return;
  2214. /* grab the next descriptor */
  2215. context_desc = I40E_TX_CTXTDESC(tx_ring, i);
  2216. i++;
  2217. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  2218. /* cpu_to_le32 and assign to struct fields */
  2219. context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
  2220. context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
  2221. context_desc->rsvd = cpu_to_le16(0);
  2222. context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
  2223. }
  2224. /**
  2225. * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
  2226. * @tx_ring: the ring to be checked
  2227. * @size: the size buffer we want to assure is available
  2228. *
  2229. * Returns -EBUSY if a stop is needed, else 0
  2230. **/
  2231. int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  2232. {
  2233. netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
  2234. /* Memory barrier before checking head and tail */
  2235. smp_mb();
  2236. /* Check again in a case another CPU has just made room available. */
  2237. if (likely(I40E_DESC_UNUSED(tx_ring) < size))
  2238. return -EBUSY;
  2239. /* A reprieve! - use start_queue because it doesn't call schedule */
  2240. netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
  2241. ++tx_ring->tx_stats.restart_queue;
  2242. return 0;
  2243. }
  2244. /**
  2245. * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
  2246. * @skb: send buffer
  2247. *
  2248. * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
  2249. * and so we need to figure out the cases where we need to linearize the skb.
  2250. *
  2251. * For TSO we need to count the TSO header and segment payload separately.
  2252. * As such we need to check cases where we have 7 fragments or more as we
  2253. * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
  2254. * the segment payload in the first descriptor, and another 7 for the
  2255. * fragments.
  2256. **/
  2257. bool __i40e_chk_linearize(struct sk_buff *skb)
  2258. {
  2259. const struct skb_frag_struct *frag, *stale;
  2260. int nr_frags, sum;
  2261. /* no need to check if number of frags is less than 7 */
  2262. nr_frags = skb_shinfo(skb)->nr_frags;
  2263. if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
  2264. return false;
  2265. /* We need to walk through the list and validate that each group
  2266. * of 6 fragments totals at least gso_size.
  2267. */
  2268. nr_frags -= I40E_MAX_BUFFER_TXD - 2;
  2269. frag = &skb_shinfo(skb)->frags[0];
  2270. /* Initialize size to the negative value of gso_size minus 1. We
  2271. * use this as the worst case scenerio in which the frag ahead
  2272. * of us only provides one byte which is why we are limited to 6
  2273. * descriptors for a single transmit as the header and previous
  2274. * fragment are already consuming 2 descriptors.
  2275. */
  2276. sum = 1 - skb_shinfo(skb)->gso_size;
  2277. /* Add size of frags 0 through 4 to create our initial sum */
  2278. sum += skb_frag_size(frag++);
  2279. sum += skb_frag_size(frag++);
  2280. sum += skb_frag_size(frag++);
  2281. sum += skb_frag_size(frag++);
  2282. sum += skb_frag_size(frag++);
  2283. /* Walk through fragments adding latest fragment, testing it, and
  2284. * then removing stale fragments from the sum.
  2285. */
  2286. for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
  2287. int stale_size = skb_frag_size(stale);
  2288. sum += skb_frag_size(frag++);
  2289. /* The stale fragment may present us with a smaller
  2290. * descriptor than the actual fragment size. To account
  2291. * for that we need to remove all the data on the front and
  2292. * figure out what the remainder would be in the last
  2293. * descriptor associated with the fragment.
  2294. */
  2295. if (stale_size > I40E_MAX_DATA_PER_TXD) {
  2296. int align_pad = -(stale->page_offset) &
  2297. (I40E_MAX_READ_REQ_SIZE - 1);
  2298. sum -= align_pad;
  2299. stale_size -= align_pad;
  2300. do {
  2301. sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
  2302. stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
  2303. } while (stale_size > I40E_MAX_DATA_PER_TXD);
  2304. }
  2305. /* if sum is negative we failed to make sufficient progress */
  2306. if (sum < 0)
  2307. return true;
  2308. if (!nr_frags--)
  2309. break;
  2310. sum -= stale_size;
  2311. }
  2312. return false;
  2313. }
  2314. /**
  2315. * i40e_tx_map - Build the Tx descriptor
  2316. * @tx_ring: ring to send buffer on
  2317. * @skb: send buffer
  2318. * @first: first buffer info buffer to use
  2319. * @tx_flags: collected send information
  2320. * @hdr_len: size of the packet header
  2321. * @td_cmd: the command field in the descriptor
  2322. * @td_offset: offset for checksum or crc
  2323. **/
  2324. #ifdef I40E_FCOE
  2325. inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
  2326. struct i40e_tx_buffer *first, u32 tx_flags,
  2327. const u8 hdr_len, u32 td_cmd, u32 td_offset)
  2328. #else
  2329. static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
  2330. struct i40e_tx_buffer *first, u32 tx_flags,
  2331. const u8 hdr_len, u32 td_cmd, u32 td_offset)
  2332. #endif
  2333. {
  2334. unsigned int data_len = skb->data_len;
  2335. unsigned int size = skb_headlen(skb);
  2336. struct skb_frag_struct *frag;
  2337. struct i40e_tx_buffer *tx_bi;
  2338. struct i40e_tx_desc *tx_desc;
  2339. u16 i = tx_ring->next_to_use;
  2340. u32 td_tag = 0;
  2341. dma_addr_t dma;
  2342. u16 gso_segs;
  2343. u16 desc_count = 0;
  2344. bool tail_bump = true;
  2345. bool do_rs = false;
  2346. if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
  2347. td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
  2348. td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
  2349. I40E_TX_FLAGS_VLAN_SHIFT;
  2350. }
  2351. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
  2352. gso_segs = skb_shinfo(skb)->gso_segs;
  2353. else
  2354. gso_segs = 1;
  2355. /* multiply data chunks by size of headers */
  2356. first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
  2357. first->gso_segs = gso_segs;
  2358. first->skb = skb;
  2359. first->tx_flags = tx_flags;
  2360. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  2361. tx_desc = I40E_TX_DESC(tx_ring, i);
  2362. tx_bi = first;
  2363. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  2364. unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
  2365. if (dma_mapping_error(tx_ring->dev, dma))
  2366. goto dma_error;
  2367. /* record length, and DMA address */
  2368. dma_unmap_len_set(tx_bi, len, size);
  2369. dma_unmap_addr_set(tx_bi, dma, dma);
  2370. /* align size to end of page */
  2371. max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
  2372. tx_desc->buffer_addr = cpu_to_le64(dma);
  2373. while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
  2374. tx_desc->cmd_type_offset_bsz =
  2375. build_ctob(td_cmd, td_offset,
  2376. max_data, td_tag);
  2377. tx_desc++;
  2378. i++;
  2379. desc_count++;
  2380. if (i == tx_ring->count) {
  2381. tx_desc = I40E_TX_DESC(tx_ring, 0);
  2382. i = 0;
  2383. }
  2384. dma += max_data;
  2385. size -= max_data;
  2386. max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
  2387. tx_desc->buffer_addr = cpu_to_le64(dma);
  2388. }
  2389. if (likely(!data_len))
  2390. break;
  2391. tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
  2392. size, td_tag);
  2393. tx_desc++;
  2394. i++;
  2395. desc_count++;
  2396. if (i == tx_ring->count) {
  2397. tx_desc = I40E_TX_DESC(tx_ring, 0);
  2398. i = 0;
  2399. }
  2400. size = skb_frag_size(frag);
  2401. data_len -= size;
  2402. dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
  2403. DMA_TO_DEVICE);
  2404. tx_bi = &tx_ring->tx_bi[i];
  2405. }
  2406. /* set next_to_watch value indicating a packet is present */
  2407. first->next_to_watch = tx_desc;
  2408. i++;
  2409. if (i == tx_ring->count)
  2410. i = 0;
  2411. tx_ring->next_to_use = i;
  2412. netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
  2413. i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
  2414. /* Algorithm to optimize tail and RS bit setting:
  2415. * if xmit_more is supported
  2416. * if xmit_more is true
  2417. * do not update tail and do not mark RS bit.
  2418. * if xmit_more is false and last xmit_more was false
  2419. * if every packet spanned less than 4 desc
  2420. * then set RS bit on 4th packet and update tail
  2421. * on every packet
  2422. * else
  2423. * update tail and set RS bit on every packet.
  2424. * if xmit_more is false and last_xmit_more was true
  2425. * update tail and set RS bit.
  2426. *
  2427. * Optimization: wmb to be issued only in case of tail update.
  2428. * Also optimize the Descriptor WB path for RS bit with the same
  2429. * algorithm.
  2430. *
  2431. * Note: If there are less than 4 packets
  2432. * pending and interrupts were disabled the service task will
  2433. * trigger a force WB.
  2434. */
  2435. if (skb->xmit_more &&
  2436. !netif_xmit_stopped(txring_txq(tx_ring))) {
  2437. tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  2438. tail_bump = false;
  2439. } else if (!skb->xmit_more &&
  2440. !netif_xmit_stopped(txring_txq(tx_ring)) &&
  2441. (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
  2442. (tx_ring->packet_stride < WB_STRIDE) &&
  2443. (desc_count < WB_STRIDE)) {
  2444. tx_ring->packet_stride++;
  2445. } else {
  2446. tx_ring->packet_stride = 0;
  2447. tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  2448. do_rs = true;
  2449. }
  2450. if (do_rs)
  2451. tx_ring->packet_stride = 0;
  2452. tx_desc->cmd_type_offset_bsz =
  2453. build_ctob(td_cmd, td_offset, size, td_tag) |
  2454. cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
  2455. I40E_TX_DESC_CMD_EOP) <<
  2456. I40E_TXD_QW1_CMD_SHIFT);
  2457. /* notify HW of packet */
  2458. if (!tail_bump) {
  2459. prefetchw(tx_desc + 1);
  2460. } else {
  2461. /* Force memory writes to complete before letting h/w
  2462. * know there are new descriptors to fetch. (Only
  2463. * applicable for weak-ordered memory model archs,
  2464. * such as IA-64).
  2465. */
  2466. wmb();
  2467. writel(i, tx_ring->tail);
  2468. }
  2469. return;
  2470. dma_error:
  2471. dev_info(tx_ring->dev, "TX DMA map failed\n");
  2472. /* clear dma mappings for failed tx_bi map */
  2473. for (;;) {
  2474. tx_bi = &tx_ring->tx_bi[i];
  2475. i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
  2476. if (tx_bi == first)
  2477. break;
  2478. if (i == 0)
  2479. i = tx_ring->count;
  2480. i--;
  2481. }
  2482. tx_ring->next_to_use = i;
  2483. }
  2484. /**
  2485. * i40e_xmit_frame_ring - Sends buffer on Tx ring
  2486. * @skb: send buffer
  2487. * @tx_ring: ring to send buffer on
  2488. *
  2489. * Returns NETDEV_TX_OK if sent, else an error code
  2490. **/
  2491. static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
  2492. struct i40e_ring *tx_ring)
  2493. {
  2494. u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
  2495. u32 cd_tunneling = 0, cd_l2tag2 = 0;
  2496. struct i40e_tx_buffer *first;
  2497. u32 td_offset = 0;
  2498. u32 tx_flags = 0;
  2499. __be16 protocol;
  2500. u32 td_cmd = 0;
  2501. u8 hdr_len = 0;
  2502. int tso, count;
  2503. int tsyn;
  2504. /* prefetch the data, we'll need it later */
  2505. prefetch(skb->data);
  2506. count = i40e_xmit_descriptor_count(skb);
  2507. if (i40e_chk_linearize(skb, count)) {
  2508. if (__skb_linearize(skb))
  2509. goto out_drop;
  2510. count = i40e_txd_use_count(skb->len);
  2511. tx_ring->tx_stats.tx_linearize++;
  2512. }
  2513. /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
  2514. * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
  2515. * + 4 desc gap to avoid the cache line where head is,
  2516. * + 1 desc for context descriptor,
  2517. * otherwise try next time
  2518. */
  2519. if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
  2520. tx_ring->tx_stats.tx_busy++;
  2521. return NETDEV_TX_BUSY;
  2522. }
  2523. /* prepare the xmit flags */
  2524. if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
  2525. goto out_drop;
  2526. /* obtain protocol of skb */
  2527. protocol = vlan_get_protocol(skb);
  2528. /* record the location of the first descriptor for this packet */
  2529. first = &tx_ring->tx_bi[tx_ring->next_to_use];
  2530. /* setup IPv4/IPv6 offloads */
  2531. if (protocol == htons(ETH_P_IP))
  2532. tx_flags |= I40E_TX_FLAGS_IPV4;
  2533. else if (protocol == htons(ETH_P_IPV6))
  2534. tx_flags |= I40E_TX_FLAGS_IPV6;
  2535. tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
  2536. if (tso < 0)
  2537. goto out_drop;
  2538. else if (tso)
  2539. tx_flags |= I40E_TX_FLAGS_TSO;
  2540. /* Always offload the checksum, since it's in the data descriptor */
  2541. tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
  2542. tx_ring, &cd_tunneling);
  2543. if (tso < 0)
  2544. goto out_drop;
  2545. tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
  2546. if (tsyn)
  2547. tx_flags |= I40E_TX_FLAGS_TSYN;
  2548. skb_tx_timestamp(skb);
  2549. /* always enable CRC insertion offload */
  2550. td_cmd |= I40E_TX_DESC_CMD_ICRC;
  2551. i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
  2552. cd_tunneling, cd_l2tag2);
  2553. /* Add Flow Director ATR if it's enabled.
  2554. *
  2555. * NOTE: this must always be directly before the data descriptor.
  2556. */
  2557. i40e_atr(tx_ring, skb, tx_flags);
  2558. i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
  2559. td_cmd, td_offset);
  2560. return NETDEV_TX_OK;
  2561. out_drop:
  2562. dev_kfree_skb_any(skb);
  2563. return NETDEV_TX_OK;
  2564. }
  2565. /**
  2566. * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
  2567. * @skb: send buffer
  2568. * @netdev: network interface device structure
  2569. *
  2570. * Returns NETDEV_TX_OK if sent, else an error code
  2571. **/
  2572. netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2573. {
  2574. struct i40e_netdev_priv *np = netdev_priv(netdev);
  2575. struct i40e_vsi *vsi = np->vsi;
  2576. struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
  2577. /* hardware can't handle really short frames, hardware padding works
  2578. * beyond this point
  2579. */
  2580. if (skb_put_padto(skb, I40E_MIN_TX_LEN))
  2581. return NETDEV_TX_OK;
  2582. return i40e_xmit_frame_ring(skb, tx_ring);
  2583. }