phy.c 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239
  1. /* Intel PRO/1000 Linux driver
  2. * Copyright(c) 1999 - 2015 Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * The full GNU General Public License is included in this distribution in
  14. * the file called "COPYING".
  15. *
  16. * Contact Information:
  17. * Linux NICS <linux.nics@intel.com>
  18. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20. */
  21. #include "e1000.h"
  22. static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  23. static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  24. u16 *data, bool read, bool page_set);
  25. static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  26. static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  27. u16 *data, bool read);
  28. /* Cable length tables */
  29. static const u16 e1000_m88_cable_length_table[] = {
  30. 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  31. };
  32. #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  33. ARRAY_SIZE(e1000_m88_cable_length_table)
  34. static const u16 e1000_igp_2_cable_length_table[] = {
  35. 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  36. 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  37. 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  38. 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  39. 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  40. 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  41. 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  42. 124
  43. };
  44. #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  45. ARRAY_SIZE(e1000_igp_2_cable_length_table)
  46. /**
  47. * e1000e_check_reset_block_generic - Check if PHY reset is blocked
  48. * @hw: pointer to the HW structure
  49. *
  50. * Read the PHY management control register and check whether a PHY reset
  51. * is blocked. If a reset is not blocked return 0, otherwise
  52. * return E1000_BLK_PHY_RESET (12).
  53. **/
  54. s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  55. {
  56. u32 manc;
  57. manc = er32(MANC);
  58. return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  59. }
  60. /**
  61. * e1000e_get_phy_id - Retrieve the PHY ID and revision
  62. * @hw: pointer to the HW structure
  63. *
  64. * Reads the PHY registers and stores the PHY ID and possibly the PHY
  65. * revision in the hardware structure.
  66. **/
  67. s32 e1000e_get_phy_id(struct e1000_hw *hw)
  68. {
  69. struct e1000_phy_info *phy = &hw->phy;
  70. s32 ret_val = 0;
  71. u16 phy_id;
  72. u16 retry_count = 0;
  73. if (!phy->ops.read_reg)
  74. return 0;
  75. while (retry_count < 2) {
  76. ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  77. if (ret_val)
  78. return ret_val;
  79. phy->id = (u32)(phy_id << 16);
  80. usleep_range(20, 40);
  81. ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  82. if (ret_val)
  83. return ret_val;
  84. phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  85. phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  86. if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  87. return 0;
  88. retry_count++;
  89. }
  90. return 0;
  91. }
  92. /**
  93. * e1000e_phy_reset_dsp - Reset PHY DSP
  94. * @hw: pointer to the HW structure
  95. *
  96. * Reset the digital signal processor.
  97. **/
  98. s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
  99. {
  100. s32 ret_val;
  101. ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
  102. if (ret_val)
  103. return ret_val;
  104. return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
  105. }
  106. /**
  107. * e1000e_read_phy_reg_mdic - Read MDI control register
  108. * @hw: pointer to the HW structure
  109. * @offset: register offset to be read
  110. * @data: pointer to the read data
  111. *
  112. * Reads the MDI control register in the PHY at offset and stores the
  113. * information read to data.
  114. **/
  115. s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
  116. {
  117. struct e1000_phy_info *phy = &hw->phy;
  118. u32 i, mdic = 0;
  119. if (offset > MAX_PHY_REG_ADDRESS) {
  120. e_dbg("PHY Address %d is out of range\n", offset);
  121. return -E1000_ERR_PARAM;
  122. }
  123. /* Set up Op-code, Phy Address, and register offset in the MDI
  124. * Control register. The MAC will take care of interfacing with the
  125. * PHY to retrieve the desired data.
  126. */
  127. mdic = ((offset << E1000_MDIC_REG_SHIFT) |
  128. (phy->addr << E1000_MDIC_PHY_SHIFT) |
  129. (E1000_MDIC_OP_READ));
  130. ew32(MDIC, mdic);
  131. /* Poll the ready bit to see if the MDI read completed
  132. * Increasing the time out as testing showed failures with
  133. * the lower time out
  134. */
  135. for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
  136. udelay(50);
  137. mdic = er32(MDIC);
  138. if (mdic & E1000_MDIC_READY)
  139. break;
  140. }
  141. if (!(mdic & E1000_MDIC_READY)) {
  142. e_dbg("MDI Read did not complete\n");
  143. return -E1000_ERR_PHY;
  144. }
  145. if (mdic & E1000_MDIC_ERROR) {
  146. e_dbg("MDI Error\n");
  147. return -E1000_ERR_PHY;
  148. }
  149. if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
  150. e_dbg("MDI Read offset error - requested %d, returned %d\n",
  151. offset,
  152. (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
  153. return -E1000_ERR_PHY;
  154. }
  155. *data = (u16)mdic;
  156. /* Allow some time after each MDIC transaction to avoid
  157. * reading duplicate data in the next MDIC transaction.
  158. */
  159. if (hw->mac.type == e1000_pch2lan)
  160. udelay(100);
  161. return 0;
  162. }
  163. /**
  164. * e1000e_write_phy_reg_mdic - Write MDI control register
  165. * @hw: pointer to the HW structure
  166. * @offset: register offset to write to
  167. * @data: data to write to register at offset
  168. *
  169. * Writes data to MDI control register in the PHY at offset.
  170. **/
  171. s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
  172. {
  173. struct e1000_phy_info *phy = &hw->phy;
  174. u32 i, mdic = 0;
  175. if (offset > MAX_PHY_REG_ADDRESS) {
  176. e_dbg("PHY Address %d is out of range\n", offset);
  177. return -E1000_ERR_PARAM;
  178. }
  179. /* Set up Op-code, Phy Address, and register offset in the MDI
  180. * Control register. The MAC will take care of interfacing with the
  181. * PHY to retrieve the desired data.
  182. */
  183. mdic = (((u32)data) |
  184. (offset << E1000_MDIC_REG_SHIFT) |
  185. (phy->addr << E1000_MDIC_PHY_SHIFT) |
  186. (E1000_MDIC_OP_WRITE));
  187. ew32(MDIC, mdic);
  188. /* Poll the ready bit to see if the MDI read completed
  189. * Increasing the time out as testing showed failures with
  190. * the lower time out
  191. */
  192. for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
  193. udelay(50);
  194. mdic = er32(MDIC);
  195. if (mdic & E1000_MDIC_READY)
  196. break;
  197. }
  198. if (!(mdic & E1000_MDIC_READY)) {
  199. e_dbg("MDI Write did not complete\n");
  200. return -E1000_ERR_PHY;
  201. }
  202. if (mdic & E1000_MDIC_ERROR) {
  203. e_dbg("MDI Error\n");
  204. return -E1000_ERR_PHY;
  205. }
  206. if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
  207. e_dbg("MDI Write offset error - requested %d, returned %d\n",
  208. offset,
  209. (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
  210. return -E1000_ERR_PHY;
  211. }
  212. /* Allow some time after each MDIC transaction to avoid
  213. * reading duplicate data in the next MDIC transaction.
  214. */
  215. if (hw->mac.type == e1000_pch2lan)
  216. udelay(100);
  217. return 0;
  218. }
  219. /**
  220. * e1000e_read_phy_reg_m88 - Read m88 PHY register
  221. * @hw: pointer to the HW structure
  222. * @offset: register offset to be read
  223. * @data: pointer to the read data
  224. *
  225. * Acquires semaphore, if necessary, then reads the PHY register at offset
  226. * and storing the retrieved information in data. Release any acquired
  227. * semaphores before exiting.
  228. **/
  229. s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
  230. {
  231. s32 ret_val;
  232. ret_val = hw->phy.ops.acquire(hw);
  233. if (ret_val)
  234. return ret_val;
  235. ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
  236. data);
  237. hw->phy.ops.release(hw);
  238. return ret_val;
  239. }
  240. /**
  241. * e1000e_write_phy_reg_m88 - Write m88 PHY register
  242. * @hw: pointer to the HW structure
  243. * @offset: register offset to write to
  244. * @data: data to write at register offset
  245. *
  246. * Acquires semaphore, if necessary, then writes the data to PHY register
  247. * at the offset. Release any acquired semaphores before exiting.
  248. **/
  249. s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
  250. {
  251. s32 ret_val;
  252. ret_val = hw->phy.ops.acquire(hw);
  253. if (ret_val)
  254. return ret_val;
  255. ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
  256. data);
  257. hw->phy.ops.release(hw);
  258. return ret_val;
  259. }
  260. /**
  261. * e1000_set_page_igp - Set page as on IGP-like PHY(s)
  262. * @hw: pointer to the HW structure
  263. * @page: page to set (shifted left when necessary)
  264. *
  265. * Sets PHY page required for PHY register access. Assumes semaphore is
  266. * already acquired. Note, this function sets phy.addr to 1 so the caller
  267. * must set it appropriately (if necessary) after this function returns.
  268. **/
  269. s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
  270. {
  271. e_dbg("Setting page 0x%x\n", page);
  272. hw->phy.addr = 1;
  273. return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
  274. }
  275. /**
  276. * __e1000e_read_phy_reg_igp - Read igp PHY register
  277. * @hw: pointer to the HW structure
  278. * @offset: register offset to be read
  279. * @data: pointer to the read data
  280. * @locked: semaphore has already been acquired or not
  281. *
  282. * Acquires semaphore, if necessary, then reads the PHY register at offset
  283. * and stores the retrieved information in data. Release any acquired
  284. * semaphores before exiting.
  285. **/
  286. static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
  287. bool locked)
  288. {
  289. s32 ret_val = 0;
  290. if (!locked) {
  291. if (!hw->phy.ops.acquire)
  292. return 0;
  293. ret_val = hw->phy.ops.acquire(hw);
  294. if (ret_val)
  295. return ret_val;
  296. }
  297. if (offset > MAX_PHY_MULTI_PAGE_REG)
  298. ret_val = e1000e_write_phy_reg_mdic(hw,
  299. IGP01E1000_PHY_PAGE_SELECT,
  300. (u16)offset);
  301. if (!ret_val)
  302. ret_val = e1000e_read_phy_reg_mdic(hw,
  303. MAX_PHY_REG_ADDRESS & offset,
  304. data);
  305. if (!locked)
  306. hw->phy.ops.release(hw);
  307. return ret_val;
  308. }
  309. /**
  310. * e1000e_read_phy_reg_igp - Read igp PHY register
  311. * @hw: pointer to the HW structure
  312. * @offset: register offset to be read
  313. * @data: pointer to the read data
  314. *
  315. * Acquires semaphore then reads the PHY register at offset and stores the
  316. * retrieved information in data.
  317. * Release the acquired semaphore before exiting.
  318. **/
  319. s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
  320. {
  321. return __e1000e_read_phy_reg_igp(hw, offset, data, false);
  322. }
  323. /**
  324. * e1000e_read_phy_reg_igp_locked - Read igp PHY register
  325. * @hw: pointer to the HW structure
  326. * @offset: register offset to be read
  327. * @data: pointer to the read data
  328. *
  329. * Reads the PHY register at offset and stores the retrieved information
  330. * in data. Assumes semaphore already acquired.
  331. **/
  332. s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
  333. {
  334. return __e1000e_read_phy_reg_igp(hw, offset, data, true);
  335. }
  336. /**
  337. * e1000e_write_phy_reg_igp - Write igp PHY register
  338. * @hw: pointer to the HW structure
  339. * @offset: register offset to write to
  340. * @data: data to write at register offset
  341. * @locked: semaphore has already been acquired or not
  342. *
  343. * Acquires semaphore, if necessary, then writes the data to PHY register
  344. * at the offset. Release any acquired semaphores before exiting.
  345. **/
  346. static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
  347. bool locked)
  348. {
  349. s32 ret_val = 0;
  350. if (!locked) {
  351. if (!hw->phy.ops.acquire)
  352. return 0;
  353. ret_val = hw->phy.ops.acquire(hw);
  354. if (ret_val)
  355. return ret_val;
  356. }
  357. if (offset > MAX_PHY_MULTI_PAGE_REG)
  358. ret_val = e1000e_write_phy_reg_mdic(hw,
  359. IGP01E1000_PHY_PAGE_SELECT,
  360. (u16)offset);
  361. if (!ret_val)
  362. ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
  363. offset, data);
  364. if (!locked)
  365. hw->phy.ops.release(hw);
  366. return ret_val;
  367. }
  368. /**
  369. * e1000e_write_phy_reg_igp - Write igp PHY register
  370. * @hw: pointer to the HW structure
  371. * @offset: register offset to write to
  372. * @data: data to write at register offset
  373. *
  374. * Acquires semaphore then writes the data to PHY register
  375. * at the offset. Release any acquired semaphores before exiting.
  376. **/
  377. s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
  378. {
  379. return __e1000e_write_phy_reg_igp(hw, offset, data, false);
  380. }
  381. /**
  382. * e1000e_write_phy_reg_igp_locked - Write igp PHY register
  383. * @hw: pointer to the HW structure
  384. * @offset: register offset to write to
  385. * @data: data to write at register offset
  386. *
  387. * Writes the data to PHY register at the offset.
  388. * Assumes semaphore already acquired.
  389. **/
  390. s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
  391. {
  392. return __e1000e_write_phy_reg_igp(hw, offset, data, true);
  393. }
  394. /**
  395. * __e1000_read_kmrn_reg - Read kumeran register
  396. * @hw: pointer to the HW structure
  397. * @offset: register offset to be read
  398. * @data: pointer to the read data
  399. * @locked: semaphore has already been acquired or not
  400. *
  401. * Acquires semaphore, if necessary. Then reads the PHY register at offset
  402. * using the kumeran interface. The information retrieved is stored in data.
  403. * Release any acquired semaphores before exiting.
  404. **/
  405. static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
  406. bool locked)
  407. {
  408. u32 kmrnctrlsta;
  409. if (!locked) {
  410. s32 ret_val = 0;
  411. if (!hw->phy.ops.acquire)
  412. return 0;
  413. ret_val = hw->phy.ops.acquire(hw);
  414. if (ret_val)
  415. return ret_val;
  416. }
  417. kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
  418. E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
  419. ew32(KMRNCTRLSTA, kmrnctrlsta);
  420. e1e_flush();
  421. udelay(2);
  422. kmrnctrlsta = er32(KMRNCTRLSTA);
  423. *data = (u16)kmrnctrlsta;
  424. if (!locked)
  425. hw->phy.ops.release(hw);
  426. return 0;
  427. }
  428. /**
  429. * e1000e_read_kmrn_reg - Read kumeran register
  430. * @hw: pointer to the HW structure
  431. * @offset: register offset to be read
  432. * @data: pointer to the read data
  433. *
  434. * Acquires semaphore then reads the PHY register at offset using the
  435. * kumeran interface. The information retrieved is stored in data.
  436. * Release the acquired semaphore before exiting.
  437. **/
  438. s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
  439. {
  440. return __e1000_read_kmrn_reg(hw, offset, data, false);
  441. }
  442. /**
  443. * e1000e_read_kmrn_reg_locked - Read kumeran register
  444. * @hw: pointer to the HW structure
  445. * @offset: register offset to be read
  446. * @data: pointer to the read data
  447. *
  448. * Reads the PHY register at offset using the kumeran interface. The
  449. * information retrieved is stored in data.
  450. * Assumes semaphore already acquired.
  451. **/
  452. s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
  453. {
  454. return __e1000_read_kmrn_reg(hw, offset, data, true);
  455. }
  456. /**
  457. * __e1000_write_kmrn_reg - Write kumeran register
  458. * @hw: pointer to the HW structure
  459. * @offset: register offset to write to
  460. * @data: data to write at register offset
  461. * @locked: semaphore has already been acquired or not
  462. *
  463. * Acquires semaphore, if necessary. Then write the data to PHY register
  464. * at the offset using the kumeran interface. Release any acquired semaphores
  465. * before exiting.
  466. **/
  467. static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
  468. bool locked)
  469. {
  470. u32 kmrnctrlsta;
  471. if (!locked) {
  472. s32 ret_val = 0;
  473. if (!hw->phy.ops.acquire)
  474. return 0;
  475. ret_val = hw->phy.ops.acquire(hw);
  476. if (ret_val)
  477. return ret_val;
  478. }
  479. kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
  480. E1000_KMRNCTRLSTA_OFFSET) | data;
  481. ew32(KMRNCTRLSTA, kmrnctrlsta);
  482. e1e_flush();
  483. udelay(2);
  484. if (!locked)
  485. hw->phy.ops.release(hw);
  486. return 0;
  487. }
  488. /**
  489. * e1000e_write_kmrn_reg - Write kumeran register
  490. * @hw: pointer to the HW structure
  491. * @offset: register offset to write to
  492. * @data: data to write at register offset
  493. *
  494. * Acquires semaphore then writes the data to the PHY register at the offset
  495. * using the kumeran interface. Release the acquired semaphore before exiting.
  496. **/
  497. s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
  498. {
  499. return __e1000_write_kmrn_reg(hw, offset, data, false);
  500. }
  501. /**
  502. * e1000e_write_kmrn_reg_locked - Write kumeran register
  503. * @hw: pointer to the HW structure
  504. * @offset: register offset to write to
  505. * @data: data to write at register offset
  506. *
  507. * Write the data to PHY register at the offset using the kumeran interface.
  508. * Assumes semaphore already acquired.
  509. **/
  510. s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
  511. {
  512. return __e1000_write_kmrn_reg(hw, offset, data, true);
  513. }
  514. /**
  515. * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
  516. * @hw: pointer to the HW structure
  517. *
  518. * Sets up Master/slave mode
  519. **/
  520. static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
  521. {
  522. s32 ret_val;
  523. u16 phy_data;
  524. /* Resolve Master/Slave mode */
  525. ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
  526. if (ret_val)
  527. return ret_val;
  528. /* load defaults for future use */
  529. hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
  530. ((phy_data & CTL1000_AS_MASTER) ?
  531. e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
  532. switch (hw->phy.ms_type) {
  533. case e1000_ms_force_master:
  534. phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
  535. break;
  536. case e1000_ms_force_slave:
  537. phy_data |= CTL1000_ENABLE_MASTER;
  538. phy_data &= ~(CTL1000_AS_MASTER);
  539. break;
  540. case e1000_ms_auto:
  541. phy_data &= ~CTL1000_ENABLE_MASTER;
  542. /* fall-through */
  543. default:
  544. break;
  545. }
  546. return e1e_wphy(hw, MII_CTRL1000, phy_data);
  547. }
  548. /**
  549. * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
  550. * @hw: pointer to the HW structure
  551. *
  552. * Sets up Carrier-sense on Transmit and downshift values.
  553. **/
  554. s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
  555. {
  556. s32 ret_val;
  557. u16 phy_data;
  558. /* Enable CRS on Tx. This must be set for half-duplex operation. */
  559. ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
  560. if (ret_val)
  561. return ret_val;
  562. phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
  563. /* Enable downshift */
  564. phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
  565. ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
  566. if (ret_val)
  567. return ret_val;
  568. /* Set MDI/MDIX mode */
  569. ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
  570. if (ret_val)
  571. return ret_val;
  572. phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
  573. /* Options:
  574. * 0 - Auto (default)
  575. * 1 - MDI mode
  576. * 2 - MDI-X mode
  577. */
  578. switch (hw->phy.mdix) {
  579. case 1:
  580. break;
  581. case 2:
  582. phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
  583. break;
  584. case 0:
  585. default:
  586. phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
  587. break;
  588. }
  589. ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
  590. if (ret_val)
  591. return ret_val;
  592. return e1000_set_master_slave_mode(hw);
  593. }
  594. /**
  595. * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
  596. * @hw: pointer to the HW structure
  597. *
  598. * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
  599. * and downshift values are set also.
  600. **/
  601. s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
  602. {
  603. struct e1000_phy_info *phy = &hw->phy;
  604. s32 ret_val;
  605. u16 phy_data;
  606. /* Enable CRS on Tx. This must be set for half-duplex operation. */
  607. ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  608. if (ret_val)
  609. return ret_val;
  610. /* For BM PHY this bit is downshift enable */
  611. if (phy->type != e1000_phy_bm)
  612. phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  613. /* Options:
  614. * MDI/MDI-X = 0 (default)
  615. * 0 - Auto for all speeds
  616. * 1 - MDI mode
  617. * 2 - MDI-X mode
  618. * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
  619. */
  620. phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
  621. switch (phy->mdix) {
  622. case 1:
  623. phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
  624. break;
  625. case 2:
  626. phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
  627. break;
  628. case 3:
  629. phy_data |= M88E1000_PSCR_AUTO_X_1000T;
  630. break;
  631. case 0:
  632. default:
  633. phy_data |= M88E1000_PSCR_AUTO_X_MODE;
  634. break;
  635. }
  636. /* Options:
  637. * disable_polarity_correction = 0 (default)
  638. * Automatic Correction for Reversed Cable Polarity
  639. * 0 - Disabled
  640. * 1 - Enabled
  641. */
  642. phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
  643. if (phy->disable_polarity_correction)
  644. phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
  645. /* Enable downshift on BM (disabled by default) */
  646. if (phy->type == e1000_phy_bm) {
  647. /* For 82574/82583, first disable then enable downshift */
  648. if (phy->id == BME1000_E_PHY_ID_R2) {
  649. phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
  650. ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
  651. phy_data);
  652. if (ret_val)
  653. return ret_val;
  654. /* Commit the changes. */
  655. ret_val = phy->ops.commit(hw);
  656. if (ret_val) {
  657. e_dbg("Error committing the PHY changes\n");
  658. return ret_val;
  659. }
  660. }
  661. phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
  662. }
  663. ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
  664. if (ret_val)
  665. return ret_val;
  666. if ((phy->type == e1000_phy_m88) &&
  667. (phy->revision < E1000_REVISION_4) &&
  668. (phy->id != BME1000_E_PHY_ID_R2)) {
  669. /* Force TX_CLK in the Extended PHY Specific Control Register
  670. * to 25MHz clock.
  671. */
  672. ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
  673. if (ret_val)
  674. return ret_val;
  675. phy_data |= M88E1000_EPSCR_TX_CLK_25;
  676. if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
  677. /* 82573L PHY - set the downshift counter to 5x. */
  678. phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
  679. phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
  680. } else {
  681. /* Configure Master and Slave downshift values */
  682. phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
  683. M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
  684. phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
  685. M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
  686. }
  687. ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
  688. if (ret_val)
  689. return ret_val;
  690. }
  691. if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
  692. /* Set PHY page 0, register 29 to 0x0003 */
  693. ret_val = e1e_wphy(hw, 29, 0x0003);
  694. if (ret_val)
  695. return ret_val;
  696. /* Set PHY page 0, register 30 to 0x0000 */
  697. ret_val = e1e_wphy(hw, 30, 0x0000);
  698. if (ret_val)
  699. return ret_val;
  700. }
  701. /* Commit the changes. */
  702. if (phy->ops.commit) {
  703. ret_val = phy->ops.commit(hw);
  704. if (ret_val) {
  705. e_dbg("Error committing the PHY changes\n");
  706. return ret_val;
  707. }
  708. }
  709. if (phy->type == e1000_phy_82578) {
  710. ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
  711. if (ret_val)
  712. return ret_val;
  713. /* 82578 PHY - set the downshift count to 1x. */
  714. phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
  715. phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
  716. ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
  717. if (ret_val)
  718. return ret_val;
  719. }
  720. return 0;
  721. }
  722. /**
  723. * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
  724. * @hw: pointer to the HW structure
  725. *
  726. * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
  727. * igp PHY's.
  728. **/
  729. s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
  730. {
  731. struct e1000_phy_info *phy = &hw->phy;
  732. s32 ret_val;
  733. u16 data;
  734. ret_val = e1000_phy_hw_reset(hw);
  735. if (ret_val) {
  736. e_dbg("Error resetting the PHY.\n");
  737. return ret_val;
  738. }
  739. /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
  740. * timeout issues when LFS is enabled.
  741. */
  742. msleep(100);
  743. /* disable lplu d0 during driver init */
  744. if (hw->phy.ops.set_d0_lplu_state) {
  745. ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
  746. if (ret_val) {
  747. e_dbg("Error Disabling LPLU D0\n");
  748. return ret_val;
  749. }
  750. }
  751. /* Configure mdi-mdix settings */
  752. ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
  753. if (ret_val)
  754. return ret_val;
  755. data &= ~IGP01E1000_PSCR_AUTO_MDIX;
  756. switch (phy->mdix) {
  757. case 1:
  758. data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
  759. break;
  760. case 2:
  761. data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
  762. break;
  763. case 0:
  764. default:
  765. data |= IGP01E1000_PSCR_AUTO_MDIX;
  766. break;
  767. }
  768. ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
  769. if (ret_val)
  770. return ret_val;
  771. /* set auto-master slave resolution settings */
  772. if (hw->mac.autoneg) {
  773. /* when autonegotiation advertisement is only 1000Mbps then we
  774. * should disable SmartSpeed and enable Auto MasterSlave
  775. * resolution as hardware default.
  776. */
  777. if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
  778. /* Disable SmartSpeed */
  779. ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
  780. &data);
  781. if (ret_val)
  782. return ret_val;
  783. data &= ~IGP01E1000_PSCFR_SMART_SPEED;
  784. ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
  785. data);
  786. if (ret_val)
  787. return ret_val;
  788. /* Set auto Master/Slave resolution process */
  789. ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
  790. if (ret_val)
  791. return ret_val;
  792. data &= ~CTL1000_ENABLE_MASTER;
  793. ret_val = e1e_wphy(hw, MII_CTRL1000, data);
  794. if (ret_val)
  795. return ret_val;
  796. }
  797. ret_val = e1000_set_master_slave_mode(hw);
  798. }
  799. return ret_val;
  800. }
  801. /**
  802. * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
  803. * @hw: pointer to the HW structure
  804. *
  805. * Reads the MII auto-neg advertisement register and/or the 1000T control
  806. * register and if the PHY is already setup for auto-negotiation, then
  807. * return successful. Otherwise, setup advertisement and flow control to
  808. * the appropriate values for the wanted auto-negotiation.
  809. **/
  810. static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
  811. {
  812. struct e1000_phy_info *phy = &hw->phy;
  813. s32 ret_val;
  814. u16 mii_autoneg_adv_reg;
  815. u16 mii_1000t_ctrl_reg = 0;
  816. phy->autoneg_advertised &= phy->autoneg_mask;
  817. /* Read the MII Auto-Neg Advertisement Register (Address 4). */
  818. ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
  819. if (ret_val)
  820. return ret_val;
  821. if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
  822. /* Read the MII 1000Base-T Control Register (Address 9). */
  823. ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
  824. if (ret_val)
  825. return ret_val;
  826. }
  827. /* Need to parse both autoneg_advertised and fc and set up
  828. * the appropriate PHY registers. First we will parse for
  829. * autoneg_advertised software override. Since we can advertise
  830. * a plethora of combinations, we need to check each bit
  831. * individually.
  832. */
  833. /* First we clear all the 10/100 mb speed bits in the Auto-Neg
  834. * Advertisement Register (Address 4) and the 1000 mb speed bits in
  835. * the 1000Base-T Control Register (Address 9).
  836. */
  837. mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
  838. ADVERTISE_100HALF |
  839. ADVERTISE_10FULL | ADVERTISE_10HALF);
  840. mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  841. e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
  842. /* Do we want to advertise 10 Mb Half Duplex? */
  843. if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
  844. e_dbg("Advertise 10mb Half duplex\n");
  845. mii_autoneg_adv_reg |= ADVERTISE_10HALF;
  846. }
  847. /* Do we want to advertise 10 Mb Full Duplex? */
  848. if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
  849. e_dbg("Advertise 10mb Full duplex\n");
  850. mii_autoneg_adv_reg |= ADVERTISE_10FULL;
  851. }
  852. /* Do we want to advertise 100 Mb Half Duplex? */
  853. if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
  854. e_dbg("Advertise 100mb Half duplex\n");
  855. mii_autoneg_adv_reg |= ADVERTISE_100HALF;
  856. }
  857. /* Do we want to advertise 100 Mb Full Duplex? */
  858. if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
  859. e_dbg("Advertise 100mb Full duplex\n");
  860. mii_autoneg_adv_reg |= ADVERTISE_100FULL;
  861. }
  862. /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
  863. if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
  864. e_dbg("Advertise 1000mb Half duplex request denied!\n");
  865. /* Do we want to advertise 1000 Mb Full Duplex? */
  866. if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
  867. e_dbg("Advertise 1000mb Full duplex\n");
  868. mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
  869. }
  870. /* Check for a software override of the flow control settings, and
  871. * setup the PHY advertisement registers accordingly. If
  872. * auto-negotiation is enabled, then software will have to set the
  873. * "PAUSE" bits to the correct value in the Auto-Negotiation
  874. * Advertisement Register (MII_ADVERTISE) and re-start auto-
  875. * negotiation.
  876. *
  877. * The possible values of the "fc" parameter are:
  878. * 0: Flow control is completely disabled
  879. * 1: Rx flow control is enabled (we can receive pause frames
  880. * but not send pause frames).
  881. * 2: Tx flow control is enabled (we can send pause frames
  882. * but we do not support receiving pause frames).
  883. * 3: Both Rx and Tx flow control (symmetric) are enabled.
  884. * other: No software override. The flow control configuration
  885. * in the EEPROM is used.
  886. */
  887. switch (hw->fc.current_mode) {
  888. case e1000_fc_none:
  889. /* Flow control (Rx & Tx) is completely disabled by a
  890. * software over-ride.
  891. */
  892. mii_autoneg_adv_reg &=
  893. ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
  894. break;
  895. case e1000_fc_rx_pause:
  896. /* Rx Flow control is enabled, and Tx Flow control is
  897. * disabled, by a software over-ride.
  898. *
  899. * Since there really isn't a way to advertise that we are
  900. * capable of Rx Pause ONLY, we will advertise that we
  901. * support both symmetric and asymmetric Rx PAUSE. Later
  902. * (in e1000e_config_fc_after_link_up) we will disable the
  903. * hw's ability to send PAUSE frames.
  904. */
  905. mii_autoneg_adv_reg |=
  906. (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
  907. break;
  908. case e1000_fc_tx_pause:
  909. /* Tx Flow control is enabled, and Rx Flow control is
  910. * disabled, by a software over-ride.
  911. */
  912. mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
  913. mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
  914. break;
  915. case e1000_fc_full:
  916. /* Flow control (both Rx and Tx) is enabled by a software
  917. * over-ride.
  918. */
  919. mii_autoneg_adv_reg |=
  920. (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
  921. break;
  922. default:
  923. e_dbg("Flow control param set incorrectly\n");
  924. return -E1000_ERR_CONFIG;
  925. }
  926. ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
  927. if (ret_val)
  928. return ret_val;
  929. e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
  930. if (phy->autoneg_mask & ADVERTISE_1000_FULL)
  931. ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
  932. return ret_val;
  933. }
  934. /**
  935. * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
  936. * @hw: pointer to the HW structure
  937. *
  938. * Performs initial bounds checking on autoneg advertisement parameter, then
  939. * configure to advertise the full capability. Setup the PHY to autoneg
  940. * and restart the negotiation process between the link partner. If
  941. * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
  942. **/
  943. static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
  944. {
  945. struct e1000_phy_info *phy = &hw->phy;
  946. s32 ret_val;
  947. u16 phy_ctrl;
  948. /* Perform some bounds checking on the autoneg advertisement
  949. * parameter.
  950. */
  951. phy->autoneg_advertised &= phy->autoneg_mask;
  952. /* If autoneg_advertised is zero, we assume it was not defaulted
  953. * by the calling code so we set to advertise full capability.
  954. */
  955. if (!phy->autoneg_advertised)
  956. phy->autoneg_advertised = phy->autoneg_mask;
  957. e_dbg("Reconfiguring auto-neg advertisement params\n");
  958. ret_val = e1000_phy_setup_autoneg(hw);
  959. if (ret_val) {
  960. e_dbg("Error Setting up Auto-Negotiation\n");
  961. return ret_val;
  962. }
  963. e_dbg("Restarting Auto-Neg\n");
  964. /* Restart auto-negotiation by setting the Auto Neg Enable bit and
  965. * the Auto Neg Restart bit in the PHY control register.
  966. */
  967. ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
  968. if (ret_val)
  969. return ret_val;
  970. phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
  971. ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
  972. if (ret_val)
  973. return ret_val;
  974. /* Does the user want to wait for Auto-Neg to complete here, or
  975. * check at a later time (for example, callback routine).
  976. */
  977. if (phy->autoneg_wait_to_complete) {
  978. ret_val = e1000_wait_autoneg(hw);
  979. if (ret_val) {
  980. e_dbg("Error while waiting for autoneg to complete\n");
  981. return ret_val;
  982. }
  983. }
  984. hw->mac.get_link_status = true;
  985. return ret_val;
  986. }
  987. /**
  988. * e1000e_setup_copper_link - Configure copper link settings
  989. * @hw: pointer to the HW structure
  990. *
  991. * Calls the appropriate function to configure the link for auto-neg or forced
  992. * speed and duplex. Then we check for link, once link is established calls
  993. * to configure collision distance and flow control are called. If link is
  994. * not established, we return -E1000_ERR_PHY (-2).
  995. **/
  996. s32 e1000e_setup_copper_link(struct e1000_hw *hw)
  997. {
  998. s32 ret_val;
  999. bool link;
  1000. if (hw->mac.autoneg) {
  1001. /* Setup autoneg and flow control advertisement and perform
  1002. * autonegotiation.
  1003. */
  1004. ret_val = e1000_copper_link_autoneg(hw);
  1005. if (ret_val)
  1006. return ret_val;
  1007. } else {
  1008. /* PHY will be set to 10H, 10F, 100H or 100F
  1009. * depending on user settings.
  1010. */
  1011. e_dbg("Forcing Speed and Duplex\n");
  1012. ret_val = hw->phy.ops.force_speed_duplex(hw);
  1013. if (ret_val) {
  1014. e_dbg("Error Forcing Speed and Duplex\n");
  1015. return ret_val;
  1016. }
  1017. }
  1018. /* Check link status. Wait up to 100 microseconds for link to become
  1019. * valid.
  1020. */
  1021. ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
  1022. &link);
  1023. if (ret_val)
  1024. return ret_val;
  1025. if (link) {
  1026. e_dbg("Valid link established!!!\n");
  1027. hw->mac.ops.config_collision_dist(hw);
  1028. ret_val = e1000e_config_fc_after_link_up(hw);
  1029. } else {
  1030. e_dbg("Unable to establish link!!!\n");
  1031. }
  1032. return ret_val;
  1033. }
  1034. /**
  1035. * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
  1036. * @hw: pointer to the HW structure
  1037. *
  1038. * Calls the PHY setup function to force speed and duplex. Clears the
  1039. * auto-crossover to force MDI manually. Waits for link and returns
  1040. * successful if link up is successful, else -E1000_ERR_PHY (-2).
  1041. **/
  1042. s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
  1043. {
  1044. struct e1000_phy_info *phy = &hw->phy;
  1045. s32 ret_val;
  1046. u16 phy_data;
  1047. bool link;
  1048. ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
  1049. if (ret_val)
  1050. return ret_val;
  1051. e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
  1052. ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
  1053. if (ret_val)
  1054. return ret_val;
  1055. /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
  1056. * forced whenever speed and duplex are forced.
  1057. */
  1058. ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
  1059. if (ret_val)
  1060. return ret_val;
  1061. phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
  1062. phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
  1063. ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
  1064. if (ret_val)
  1065. return ret_val;
  1066. e_dbg("IGP PSCR: %X\n", phy_data);
  1067. udelay(1);
  1068. if (phy->autoneg_wait_to_complete) {
  1069. e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
  1070. ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
  1071. 100000, &link);
  1072. if (ret_val)
  1073. return ret_val;
  1074. if (!link)
  1075. e_dbg("Link taking longer than expected.\n");
  1076. /* Try once more */
  1077. ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
  1078. 100000, &link);
  1079. }
  1080. return ret_val;
  1081. }
  1082. /**
  1083. * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
  1084. * @hw: pointer to the HW structure
  1085. *
  1086. * Calls the PHY setup function to force speed and duplex. Clears the
  1087. * auto-crossover to force MDI manually. Resets the PHY to commit the
  1088. * changes. If time expires while waiting for link up, we reset the DSP.
  1089. * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
  1090. * successful completion, else return corresponding error code.
  1091. **/
  1092. s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
  1093. {
  1094. struct e1000_phy_info *phy = &hw->phy;
  1095. s32 ret_val;
  1096. u16 phy_data;
  1097. bool link;
  1098. /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
  1099. * forced whenever speed and duplex are forced.
  1100. */
  1101. ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  1102. if (ret_val)
  1103. return ret_val;
  1104. phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
  1105. ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
  1106. if (ret_val)
  1107. return ret_val;
  1108. e_dbg("M88E1000 PSCR: %X\n", phy_data);
  1109. ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
  1110. if (ret_val)
  1111. return ret_val;
  1112. e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
  1113. ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
  1114. if (ret_val)
  1115. return ret_val;
  1116. /* Reset the phy to commit changes. */
  1117. if (hw->phy.ops.commit) {
  1118. ret_val = hw->phy.ops.commit(hw);
  1119. if (ret_val)
  1120. return ret_val;
  1121. }
  1122. if (phy->autoneg_wait_to_complete) {
  1123. e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
  1124. ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
  1125. 100000, &link);
  1126. if (ret_val)
  1127. return ret_val;
  1128. if (!link) {
  1129. if (hw->phy.type != e1000_phy_m88) {
  1130. e_dbg("Link taking longer than expected.\n");
  1131. } else {
  1132. /* We didn't get link.
  1133. * Reset the DSP and cross our fingers.
  1134. */
  1135. ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
  1136. 0x001d);
  1137. if (ret_val)
  1138. return ret_val;
  1139. ret_val = e1000e_phy_reset_dsp(hw);
  1140. if (ret_val)
  1141. return ret_val;
  1142. }
  1143. }
  1144. /* Try once more */
  1145. ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
  1146. 100000, &link);
  1147. if (ret_val)
  1148. return ret_val;
  1149. }
  1150. if (hw->phy.type != e1000_phy_m88)
  1151. return 0;
  1152. ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
  1153. if (ret_val)
  1154. return ret_val;
  1155. /* Resetting the phy means we need to re-force TX_CLK in the
  1156. * Extended PHY Specific Control Register to 25MHz clock from
  1157. * the reset value of 2.5MHz.
  1158. */
  1159. phy_data |= M88E1000_EPSCR_TX_CLK_25;
  1160. ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
  1161. if (ret_val)
  1162. return ret_val;
  1163. /* In addition, we must re-enable CRS on Tx for both half and full
  1164. * duplex.
  1165. */
  1166. ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  1167. if (ret_val)
  1168. return ret_val;
  1169. phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  1170. ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
  1171. return ret_val;
  1172. }
  1173. /**
  1174. * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
  1175. * @hw: pointer to the HW structure
  1176. *
  1177. * Forces the speed and duplex settings of the PHY.
  1178. * This is a function pointer entry point only called by
  1179. * PHY setup routines.
  1180. **/
  1181. s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
  1182. {
  1183. struct e1000_phy_info *phy = &hw->phy;
  1184. s32 ret_val;
  1185. u16 data;
  1186. bool link;
  1187. ret_val = e1e_rphy(hw, MII_BMCR, &data);
  1188. if (ret_val)
  1189. return ret_val;
  1190. e1000e_phy_force_speed_duplex_setup(hw, &data);
  1191. ret_val = e1e_wphy(hw, MII_BMCR, data);
  1192. if (ret_val)
  1193. return ret_val;
  1194. /* Disable MDI-X support for 10/100 */
  1195. ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
  1196. if (ret_val)
  1197. return ret_val;
  1198. data &= ~IFE_PMC_AUTO_MDIX;
  1199. data &= ~IFE_PMC_FORCE_MDIX;
  1200. ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
  1201. if (ret_val)
  1202. return ret_val;
  1203. e_dbg("IFE PMC: %X\n", data);
  1204. udelay(1);
  1205. if (phy->autoneg_wait_to_complete) {
  1206. e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
  1207. ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
  1208. 100000, &link);
  1209. if (ret_val)
  1210. return ret_val;
  1211. if (!link)
  1212. e_dbg("Link taking longer than expected.\n");
  1213. /* Try once more */
  1214. ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
  1215. 100000, &link);
  1216. if (ret_val)
  1217. return ret_val;
  1218. }
  1219. return 0;
  1220. }
  1221. /**
  1222. * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
  1223. * @hw: pointer to the HW structure
  1224. * @phy_ctrl: pointer to current value of MII_BMCR
  1225. *
  1226. * Forces speed and duplex on the PHY by doing the following: disable flow
  1227. * control, force speed/duplex on the MAC, disable auto speed detection,
  1228. * disable auto-negotiation, configure duplex, configure speed, configure
  1229. * the collision distance, write configuration to CTRL register. The
  1230. * caller must write to the MII_BMCR register for these settings to
  1231. * take affect.
  1232. **/
  1233. void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
  1234. {
  1235. struct e1000_mac_info *mac = &hw->mac;
  1236. u32 ctrl;
  1237. /* Turn off flow control when forcing speed/duplex */
  1238. hw->fc.current_mode = e1000_fc_none;
  1239. /* Force speed/duplex on the mac */
  1240. ctrl = er32(CTRL);
  1241. ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
  1242. ctrl &= ~E1000_CTRL_SPD_SEL;
  1243. /* Disable Auto Speed Detection */
  1244. ctrl &= ~E1000_CTRL_ASDE;
  1245. /* Disable autoneg on the phy */
  1246. *phy_ctrl &= ~BMCR_ANENABLE;
  1247. /* Forcing Full or Half Duplex? */
  1248. if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
  1249. ctrl &= ~E1000_CTRL_FD;
  1250. *phy_ctrl &= ~BMCR_FULLDPLX;
  1251. e_dbg("Half Duplex\n");
  1252. } else {
  1253. ctrl |= E1000_CTRL_FD;
  1254. *phy_ctrl |= BMCR_FULLDPLX;
  1255. e_dbg("Full Duplex\n");
  1256. }
  1257. /* Forcing 10mb or 100mb? */
  1258. if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
  1259. ctrl |= E1000_CTRL_SPD_100;
  1260. *phy_ctrl |= BMCR_SPEED100;
  1261. *phy_ctrl &= ~BMCR_SPEED1000;
  1262. e_dbg("Forcing 100mb\n");
  1263. } else {
  1264. ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
  1265. *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
  1266. e_dbg("Forcing 10mb\n");
  1267. }
  1268. hw->mac.ops.config_collision_dist(hw);
  1269. ew32(CTRL, ctrl);
  1270. }
  1271. /**
  1272. * e1000e_set_d3_lplu_state - Sets low power link up state for D3
  1273. * @hw: pointer to the HW structure
  1274. * @active: boolean used to enable/disable lplu
  1275. *
  1276. * Success returns 0, Failure returns 1
  1277. *
  1278. * The low power link up (lplu) state is set to the power management level D3
  1279. * and SmartSpeed is disabled when active is true, else clear lplu for D3
  1280. * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
  1281. * is used during Dx states where the power conservation is most important.
  1282. * During driver activity, SmartSpeed should be enabled so performance is
  1283. * maintained.
  1284. **/
  1285. s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
  1286. {
  1287. struct e1000_phy_info *phy = &hw->phy;
  1288. s32 ret_val;
  1289. u16 data;
  1290. ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
  1291. if (ret_val)
  1292. return ret_val;
  1293. if (!active) {
  1294. data &= ~IGP02E1000_PM_D3_LPLU;
  1295. ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
  1296. if (ret_val)
  1297. return ret_val;
  1298. /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
  1299. * during Dx states where the power conservation is most
  1300. * important. During driver activity we should enable
  1301. * SmartSpeed, so performance is maintained.
  1302. */
  1303. if (phy->smart_speed == e1000_smart_speed_on) {
  1304. ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
  1305. &data);
  1306. if (ret_val)
  1307. return ret_val;
  1308. data |= IGP01E1000_PSCFR_SMART_SPEED;
  1309. ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
  1310. data);
  1311. if (ret_val)
  1312. return ret_val;
  1313. } else if (phy->smart_speed == e1000_smart_speed_off) {
  1314. ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
  1315. &data);
  1316. if (ret_val)
  1317. return ret_val;
  1318. data &= ~IGP01E1000_PSCFR_SMART_SPEED;
  1319. ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
  1320. data);
  1321. if (ret_val)
  1322. return ret_val;
  1323. }
  1324. } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
  1325. (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
  1326. (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
  1327. data |= IGP02E1000_PM_D3_LPLU;
  1328. ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
  1329. if (ret_val)
  1330. return ret_val;
  1331. /* When LPLU is enabled, we should disable SmartSpeed */
  1332. ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
  1333. if (ret_val)
  1334. return ret_val;
  1335. data &= ~IGP01E1000_PSCFR_SMART_SPEED;
  1336. ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
  1337. }
  1338. return ret_val;
  1339. }
  1340. /**
  1341. * e1000e_check_downshift - Checks whether a downshift in speed occurred
  1342. * @hw: pointer to the HW structure
  1343. *
  1344. * Success returns 0, Failure returns 1
  1345. *
  1346. * A downshift is detected by querying the PHY link health.
  1347. **/
  1348. s32 e1000e_check_downshift(struct e1000_hw *hw)
  1349. {
  1350. struct e1000_phy_info *phy = &hw->phy;
  1351. s32 ret_val;
  1352. u16 phy_data, offset, mask;
  1353. switch (phy->type) {
  1354. case e1000_phy_m88:
  1355. case e1000_phy_gg82563:
  1356. case e1000_phy_bm:
  1357. case e1000_phy_82578:
  1358. offset = M88E1000_PHY_SPEC_STATUS;
  1359. mask = M88E1000_PSSR_DOWNSHIFT;
  1360. break;
  1361. case e1000_phy_igp_2:
  1362. case e1000_phy_igp_3:
  1363. offset = IGP01E1000_PHY_LINK_HEALTH;
  1364. mask = IGP01E1000_PLHR_SS_DOWNGRADE;
  1365. break;
  1366. default:
  1367. /* speed downshift not supported */
  1368. phy->speed_downgraded = false;
  1369. return 0;
  1370. }
  1371. ret_val = e1e_rphy(hw, offset, &phy_data);
  1372. if (!ret_val)
  1373. phy->speed_downgraded = !!(phy_data & mask);
  1374. return ret_val;
  1375. }
  1376. /**
  1377. * e1000_check_polarity_m88 - Checks the polarity.
  1378. * @hw: pointer to the HW structure
  1379. *
  1380. * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
  1381. *
  1382. * Polarity is determined based on the PHY specific status register.
  1383. **/
  1384. s32 e1000_check_polarity_m88(struct e1000_hw *hw)
  1385. {
  1386. struct e1000_phy_info *phy = &hw->phy;
  1387. s32 ret_val;
  1388. u16 data;
  1389. ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
  1390. if (!ret_val)
  1391. phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
  1392. ? e1000_rev_polarity_reversed
  1393. : e1000_rev_polarity_normal);
  1394. return ret_val;
  1395. }
  1396. /**
  1397. * e1000_check_polarity_igp - Checks the polarity.
  1398. * @hw: pointer to the HW structure
  1399. *
  1400. * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
  1401. *
  1402. * Polarity is determined based on the PHY port status register, and the
  1403. * current speed (since there is no polarity at 100Mbps).
  1404. **/
  1405. s32 e1000_check_polarity_igp(struct e1000_hw *hw)
  1406. {
  1407. struct e1000_phy_info *phy = &hw->phy;
  1408. s32 ret_val;
  1409. u16 data, offset, mask;
  1410. /* Polarity is determined based on the speed of
  1411. * our connection.
  1412. */
  1413. ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
  1414. if (ret_val)
  1415. return ret_val;
  1416. if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
  1417. IGP01E1000_PSSR_SPEED_1000MBPS) {
  1418. offset = IGP01E1000_PHY_PCS_INIT_REG;
  1419. mask = IGP01E1000_PHY_POLARITY_MASK;
  1420. } else {
  1421. /* This really only applies to 10Mbps since
  1422. * there is no polarity for 100Mbps (always 0).
  1423. */
  1424. offset = IGP01E1000_PHY_PORT_STATUS;
  1425. mask = IGP01E1000_PSSR_POLARITY_REVERSED;
  1426. }
  1427. ret_val = e1e_rphy(hw, offset, &data);
  1428. if (!ret_val)
  1429. phy->cable_polarity = ((data & mask)
  1430. ? e1000_rev_polarity_reversed
  1431. : e1000_rev_polarity_normal);
  1432. return ret_val;
  1433. }
  1434. /**
  1435. * e1000_check_polarity_ife - Check cable polarity for IFE PHY
  1436. * @hw: pointer to the HW structure
  1437. *
  1438. * Polarity is determined on the polarity reversal feature being enabled.
  1439. **/
  1440. s32 e1000_check_polarity_ife(struct e1000_hw *hw)
  1441. {
  1442. struct e1000_phy_info *phy = &hw->phy;
  1443. s32 ret_val;
  1444. u16 phy_data, offset, mask;
  1445. /* Polarity is determined based on the reversal feature being enabled.
  1446. */
  1447. if (phy->polarity_correction) {
  1448. offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
  1449. mask = IFE_PESC_POLARITY_REVERSED;
  1450. } else {
  1451. offset = IFE_PHY_SPECIAL_CONTROL;
  1452. mask = IFE_PSC_FORCE_POLARITY;
  1453. }
  1454. ret_val = e1e_rphy(hw, offset, &phy_data);
  1455. if (!ret_val)
  1456. phy->cable_polarity = ((phy_data & mask)
  1457. ? e1000_rev_polarity_reversed
  1458. : e1000_rev_polarity_normal);
  1459. return ret_val;
  1460. }
  1461. /**
  1462. * e1000_wait_autoneg - Wait for auto-neg completion
  1463. * @hw: pointer to the HW structure
  1464. *
  1465. * Waits for auto-negotiation to complete or for the auto-negotiation time
  1466. * limit to expire, which ever happens first.
  1467. **/
  1468. static s32 e1000_wait_autoneg(struct e1000_hw *hw)
  1469. {
  1470. s32 ret_val = 0;
  1471. u16 i, phy_status;
  1472. /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
  1473. for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
  1474. ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
  1475. if (ret_val)
  1476. break;
  1477. ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
  1478. if (ret_val)
  1479. break;
  1480. if (phy_status & BMSR_ANEGCOMPLETE)
  1481. break;
  1482. msleep(100);
  1483. }
  1484. /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
  1485. * has completed.
  1486. */
  1487. return ret_val;
  1488. }
  1489. /**
  1490. * e1000e_phy_has_link_generic - Polls PHY for link
  1491. * @hw: pointer to the HW structure
  1492. * @iterations: number of times to poll for link
  1493. * @usec_interval: delay between polling attempts
  1494. * @success: pointer to whether polling was successful or not
  1495. *
  1496. * Polls the PHY status register for link, 'iterations' number of times.
  1497. **/
  1498. s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
  1499. u32 usec_interval, bool *success)
  1500. {
  1501. s32 ret_val = 0;
  1502. u16 i, phy_status;
  1503. *success = false;
  1504. for (i = 0; i < iterations; i++) {
  1505. /* Some PHYs require the MII_BMSR register to be read
  1506. * twice due to the link bit being sticky. No harm doing
  1507. * it across the board.
  1508. */
  1509. ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
  1510. if (ret_val) {
  1511. /* If the first read fails, another entity may have
  1512. * ownership of the resources, wait and try again to
  1513. * see if they have relinquished the resources yet.
  1514. */
  1515. if (usec_interval >= 1000)
  1516. msleep(usec_interval / 1000);
  1517. else
  1518. udelay(usec_interval);
  1519. }
  1520. ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
  1521. if (ret_val)
  1522. break;
  1523. if (phy_status & BMSR_LSTATUS) {
  1524. *success = true;
  1525. break;
  1526. }
  1527. if (usec_interval >= 1000)
  1528. msleep(usec_interval / 1000);
  1529. else
  1530. udelay(usec_interval);
  1531. }
  1532. return ret_val;
  1533. }
  1534. /**
  1535. * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
  1536. * @hw: pointer to the HW structure
  1537. *
  1538. * Reads the PHY specific status register to retrieve the cable length
  1539. * information. The cable length is determined by averaging the minimum and
  1540. * maximum values to get the "average" cable length. The m88 PHY has four
  1541. * possible cable length values, which are:
  1542. * Register Value Cable Length
  1543. * 0 < 50 meters
  1544. * 1 50 - 80 meters
  1545. * 2 80 - 110 meters
  1546. * 3 110 - 140 meters
  1547. * 4 > 140 meters
  1548. **/
  1549. s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
  1550. {
  1551. struct e1000_phy_info *phy = &hw->phy;
  1552. s32 ret_val;
  1553. u16 phy_data, index;
  1554. ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  1555. if (ret_val)
  1556. return ret_val;
  1557. index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
  1558. M88E1000_PSSR_CABLE_LENGTH_SHIFT);
  1559. if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
  1560. return -E1000_ERR_PHY;
  1561. phy->min_cable_length = e1000_m88_cable_length_table[index];
  1562. phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
  1563. phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
  1564. return 0;
  1565. }
  1566. /**
  1567. * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
  1568. * @hw: pointer to the HW structure
  1569. *
  1570. * The automatic gain control (agc) normalizes the amplitude of the
  1571. * received signal, adjusting for the attenuation produced by the
  1572. * cable. By reading the AGC registers, which represent the
  1573. * combination of coarse and fine gain value, the value can be put
  1574. * into a lookup table to obtain the approximate cable length
  1575. * for each channel.
  1576. **/
  1577. s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
  1578. {
  1579. struct e1000_phy_info *phy = &hw->phy;
  1580. s32 ret_val;
  1581. u16 phy_data, i, agc_value = 0;
  1582. u16 cur_agc_index, max_agc_index = 0;
  1583. u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
  1584. static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
  1585. IGP02E1000_PHY_AGC_A,
  1586. IGP02E1000_PHY_AGC_B,
  1587. IGP02E1000_PHY_AGC_C,
  1588. IGP02E1000_PHY_AGC_D
  1589. };
  1590. /* Read the AGC registers for all channels */
  1591. for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
  1592. ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
  1593. if (ret_val)
  1594. return ret_val;
  1595. /* Getting bits 15:9, which represent the combination of
  1596. * coarse and fine gain values. The result is a number
  1597. * that can be put into the lookup table to obtain the
  1598. * approximate cable length.
  1599. */
  1600. cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
  1601. IGP02E1000_AGC_LENGTH_MASK);
  1602. /* Array index bound check. */
  1603. if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
  1604. (cur_agc_index == 0))
  1605. return -E1000_ERR_PHY;
  1606. /* Remove min & max AGC values from calculation. */
  1607. if (e1000_igp_2_cable_length_table[min_agc_index] >
  1608. e1000_igp_2_cable_length_table[cur_agc_index])
  1609. min_agc_index = cur_agc_index;
  1610. if (e1000_igp_2_cable_length_table[max_agc_index] <
  1611. e1000_igp_2_cable_length_table[cur_agc_index])
  1612. max_agc_index = cur_agc_index;
  1613. agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
  1614. }
  1615. agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
  1616. e1000_igp_2_cable_length_table[max_agc_index]);
  1617. agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
  1618. /* Calculate cable length with the error range of +/- 10 meters. */
  1619. phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
  1620. (agc_value - IGP02E1000_AGC_RANGE) : 0);
  1621. phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
  1622. phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
  1623. return 0;
  1624. }
  1625. /**
  1626. * e1000e_get_phy_info_m88 - Retrieve PHY information
  1627. * @hw: pointer to the HW structure
  1628. *
  1629. * Valid for only copper links. Read the PHY status register (sticky read)
  1630. * to verify that link is up. Read the PHY special control register to
  1631. * determine the polarity and 10base-T extended distance. Read the PHY
  1632. * special status register to determine MDI/MDIx and current speed. If
  1633. * speed is 1000, then determine cable length, local and remote receiver.
  1634. **/
  1635. s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
  1636. {
  1637. struct e1000_phy_info *phy = &hw->phy;
  1638. s32 ret_val;
  1639. u16 phy_data;
  1640. bool link;
  1641. if (phy->media_type != e1000_media_type_copper) {
  1642. e_dbg("Phy info is only valid for copper media\n");
  1643. return -E1000_ERR_CONFIG;
  1644. }
  1645. ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
  1646. if (ret_val)
  1647. return ret_val;
  1648. if (!link) {
  1649. e_dbg("Phy info is only valid if link is up\n");
  1650. return -E1000_ERR_CONFIG;
  1651. }
  1652. ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  1653. if (ret_val)
  1654. return ret_val;
  1655. phy->polarity_correction = !!(phy_data &
  1656. M88E1000_PSCR_POLARITY_REVERSAL);
  1657. ret_val = e1000_check_polarity_m88(hw);
  1658. if (ret_val)
  1659. return ret_val;
  1660. ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  1661. if (ret_val)
  1662. return ret_val;
  1663. phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
  1664. if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
  1665. ret_val = hw->phy.ops.get_cable_length(hw);
  1666. if (ret_val)
  1667. return ret_val;
  1668. ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
  1669. if (ret_val)
  1670. return ret_val;
  1671. phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
  1672. ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
  1673. phy->remote_rx = (phy_data & LPA_1000REMRXOK)
  1674. ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
  1675. } else {
  1676. /* Set values to "undefined" */
  1677. phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
  1678. phy->local_rx = e1000_1000t_rx_status_undefined;
  1679. phy->remote_rx = e1000_1000t_rx_status_undefined;
  1680. }
  1681. return ret_val;
  1682. }
  1683. /**
  1684. * e1000e_get_phy_info_igp - Retrieve igp PHY information
  1685. * @hw: pointer to the HW structure
  1686. *
  1687. * Read PHY status to determine if link is up. If link is up, then
  1688. * set/determine 10base-T extended distance and polarity correction. Read
  1689. * PHY port status to determine MDI/MDIx and speed. Based on the speed,
  1690. * determine on the cable length, local and remote receiver.
  1691. **/
  1692. s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
  1693. {
  1694. struct e1000_phy_info *phy = &hw->phy;
  1695. s32 ret_val;
  1696. u16 data;
  1697. bool link;
  1698. ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
  1699. if (ret_val)
  1700. return ret_val;
  1701. if (!link) {
  1702. e_dbg("Phy info is only valid if link is up\n");
  1703. return -E1000_ERR_CONFIG;
  1704. }
  1705. phy->polarity_correction = true;
  1706. ret_val = e1000_check_polarity_igp(hw);
  1707. if (ret_val)
  1708. return ret_val;
  1709. ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
  1710. if (ret_val)
  1711. return ret_val;
  1712. phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
  1713. if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
  1714. IGP01E1000_PSSR_SPEED_1000MBPS) {
  1715. ret_val = phy->ops.get_cable_length(hw);
  1716. if (ret_val)
  1717. return ret_val;
  1718. ret_val = e1e_rphy(hw, MII_STAT1000, &data);
  1719. if (ret_val)
  1720. return ret_val;
  1721. phy->local_rx = (data & LPA_1000LOCALRXOK)
  1722. ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
  1723. phy->remote_rx = (data & LPA_1000REMRXOK)
  1724. ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
  1725. } else {
  1726. phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
  1727. phy->local_rx = e1000_1000t_rx_status_undefined;
  1728. phy->remote_rx = e1000_1000t_rx_status_undefined;
  1729. }
  1730. return ret_val;
  1731. }
  1732. /**
  1733. * e1000_get_phy_info_ife - Retrieves various IFE PHY states
  1734. * @hw: pointer to the HW structure
  1735. *
  1736. * Populates "phy" structure with various feature states.
  1737. **/
  1738. s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
  1739. {
  1740. struct e1000_phy_info *phy = &hw->phy;
  1741. s32 ret_val;
  1742. u16 data;
  1743. bool link;
  1744. ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
  1745. if (ret_val)
  1746. return ret_val;
  1747. if (!link) {
  1748. e_dbg("Phy info is only valid if link is up\n");
  1749. return -E1000_ERR_CONFIG;
  1750. }
  1751. ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
  1752. if (ret_val)
  1753. return ret_val;
  1754. phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
  1755. if (phy->polarity_correction) {
  1756. ret_val = e1000_check_polarity_ife(hw);
  1757. if (ret_val)
  1758. return ret_val;
  1759. } else {
  1760. /* Polarity is forced */
  1761. phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
  1762. ? e1000_rev_polarity_reversed
  1763. : e1000_rev_polarity_normal);
  1764. }
  1765. ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
  1766. if (ret_val)
  1767. return ret_val;
  1768. phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
  1769. /* The following parameters are undefined for 10/100 operation. */
  1770. phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
  1771. phy->local_rx = e1000_1000t_rx_status_undefined;
  1772. phy->remote_rx = e1000_1000t_rx_status_undefined;
  1773. return 0;
  1774. }
  1775. /**
  1776. * e1000e_phy_sw_reset - PHY software reset
  1777. * @hw: pointer to the HW structure
  1778. *
  1779. * Does a software reset of the PHY by reading the PHY control register and
  1780. * setting/write the control register reset bit to the PHY.
  1781. **/
  1782. s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
  1783. {
  1784. s32 ret_val;
  1785. u16 phy_ctrl;
  1786. ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
  1787. if (ret_val)
  1788. return ret_val;
  1789. phy_ctrl |= BMCR_RESET;
  1790. ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
  1791. if (ret_val)
  1792. return ret_val;
  1793. udelay(1);
  1794. return ret_val;
  1795. }
  1796. /**
  1797. * e1000e_phy_hw_reset_generic - PHY hardware reset
  1798. * @hw: pointer to the HW structure
  1799. *
  1800. * Verify the reset block is not blocking us from resetting. Acquire
  1801. * semaphore (if necessary) and read/set/write the device control reset
  1802. * bit in the PHY. Wait the appropriate delay time for the device to
  1803. * reset and release the semaphore (if necessary).
  1804. **/
  1805. s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
  1806. {
  1807. struct e1000_phy_info *phy = &hw->phy;
  1808. s32 ret_val;
  1809. u32 ctrl;
  1810. if (phy->ops.check_reset_block) {
  1811. ret_val = phy->ops.check_reset_block(hw);
  1812. if (ret_val)
  1813. return 0;
  1814. }
  1815. ret_val = phy->ops.acquire(hw);
  1816. if (ret_val)
  1817. return ret_val;
  1818. ctrl = er32(CTRL);
  1819. ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
  1820. e1e_flush();
  1821. udelay(phy->reset_delay_us);
  1822. ew32(CTRL, ctrl);
  1823. e1e_flush();
  1824. usleep_range(150, 300);
  1825. phy->ops.release(hw);
  1826. return phy->ops.get_cfg_done(hw);
  1827. }
  1828. /**
  1829. * e1000e_get_cfg_done_generic - Generic configuration done
  1830. * @hw: pointer to the HW structure
  1831. *
  1832. * Generic function to wait 10 milli-seconds for configuration to complete
  1833. * and return success.
  1834. **/
  1835. s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
  1836. {
  1837. mdelay(10);
  1838. return 0;
  1839. }
  1840. /**
  1841. * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
  1842. * @hw: pointer to the HW structure
  1843. *
  1844. * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
  1845. **/
  1846. s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
  1847. {
  1848. e_dbg("Running IGP 3 PHY init script\n");
  1849. /* PHY init IGP 3 */
  1850. /* Enable rise/fall, 10-mode work in class-A */
  1851. e1e_wphy(hw, 0x2F5B, 0x9018);
  1852. /* Remove all caps from Replica path filter */
  1853. e1e_wphy(hw, 0x2F52, 0x0000);
  1854. /* Bias trimming for ADC, AFE and Driver (Default) */
  1855. e1e_wphy(hw, 0x2FB1, 0x8B24);
  1856. /* Increase Hybrid poly bias */
  1857. e1e_wphy(hw, 0x2FB2, 0xF8F0);
  1858. /* Add 4% to Tx amplitude in Gig mode */
  1859. e1e_wphy(hw, 0x2010, 0x10B0);
  1860. /* Disable trimming (TTT) */
  1861. e1e_wphy(hw, 0x2011, 0x0000);
  1862. /* Poly DC correction to 94.6% + 2% for all channels */
  1863. e1e_wphy(hw, 0x20DD, 0x249A);
  1864. /* ABS DC correction to 95.9% */
  1865. e1e_wphy(hw, 0x20DE, 0x00D3);
  1866. /* BG temp curve trim */
  1867. e1e_wphy(hw, 0x28B4, 0x04CE);
  1868. /* Increasing ADC OPAMP stage 1 currents to max */
  1869. e1e_wphy(hw, 0x2F70, 0x29E4);
  1870. /* Force 1000 ( required for enabling PHY regs configuration) */
  1871. e1e_wphy(hw, 0x0000, 0x0140);
  1872. /* Set upd_freq to 6 */
  1873. e1e_wphy(hw, 0x1F30, 0x1606);
  1874. /* Disable NPDFE */
  1875. e1e_wphy(hw, 0x1F31, 0xB814);
  1876. /* Disable adaptive fixed FFE (Default) */
  1877. e1e_wphy(hw, 0x1F35, 0x002A);
  1878. /* Enable FFE hysteresis */
  1879. e1e_wphy(hw, 0x1F3E, 0x0067);
  1880. /* Fixed FFE for short cable lengths */
  1881. e1e_wphy(hw, 0x1F54, 0x0065);
  1882. /* Fixed FFE for medium cable lengths */
  1883. e1e_wphy(hw, 0x1F55, 0x002A);
  1884. /* Fixed FFE for long cable lengths */
  1885. e1e_wphy(hw, 0x1F56, 0x002A);
  1886. /* Enable Adaptive Clip Threshold */
  1887. e1e_wphy(hw, 0x1F72, 0x3FB0);
  1888. /* AHT reset limit to 1 */
  1889. e1e_wphy(hw, 0x1F76, 0xC0FF);
  1890. /* Set AHT master delay to 127 msec */
  1891. e1e_wphy(hw, 0x1F77, 0x1DEC);
  1892. /* Set scan bits for AHT */
  1893. e1e_wphy(hw, 0x1F78, 0xF9EF);
  1894. /* Set AHT Preset bits */
  1895. e1e_wphy(hw, 0x1F79, 0x0210);
  1896. /* Change integ_factor of channel A to 3 */
  1897. e1e_wphy(hw, 0x1895, 0x0003);
  1898. /* Change prop_factor of channels BCD to 8 */
  1899. e1e_wphy(hw, 0x1796, 0x0008);
  1900. /* Change cg_icount + enable integbp for channels BCD */
  1901. e1e_wphy(hw, 0x1798, 0xD008);
  1902. /* Change cg_icount + enable integbp + change prop_factor_master
  1903. * to 8 for channel A
  1904. */
  1905. e1e_wphy(hw, 0x1898, 0xD918);
  1906. /* Disable AHT in Slave mode on channel A */
  1907. e1e_wphy(hw, 0x187A, 0x0800);
  1908. /* Enable LPLU and disable AN to 1000 in non-D0a states,
  1909. * Enable SPD+B2B
  1910. */
  1911. e1e_wphy(hw, 0x0019, 0x008D);
  1912. /* Enable restart AN on an1000_dis change */
  1913. e1e_wphy(hw, 0x001B, 0x2080);
  1914. /* Enable wh_fifo read clock in 10/100 modes */
  1915. e1e_wphy(hw, 0x0014, 0x0045);
  1916. /* Restart AN, Speed selection is 1000 */
  1917. e1e_wphy(hw, 0x0000, 0x1340);
  1918. return 0;
  1919. }
  1920. /**
  1921. * e1000e_get_phy_type_from_id - Get PHY type from id
  1922. * @phy_id: phy_id read from the phy
  1923. *
  1924. * Returns the phy type from the id.
  1925. **/
  1926. enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
  1927. {
  1928. enum e1000_phy_type phy_type = e1000_phy_unknown;
  1929. switch (phy_id) {
  1930. case M88E1000_I_PHY_ID:
  1931. case M88E1000_E_PHY_ID:
  1932. case M88E1111_I_PHY_ID:
  1933. case M88E1011_I_PHY_ID:
  1934. phy_type = e1000_phy_m88;
  1935. break;
  1936. case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
  1937. phy_type = e1000_phy_igp_2;
  1938. break;
  1939. case GG82563_E_PHY_ID:
  1940. phy_type = e1000_phy_gg82563;
  1941. break;
  1942. case IGP03E1000_E_PHY_ID:
  1943. phy_type = e1000_phy_igp_3;
  1944. break;
  1945. case IFE_E_PHY_ID:
  1946. case IFE_PLUS_E_PHY_ID:
  1947. case IFE_C_E_PHY_ID:
  1948. phy_type = e1000_phy_ife;
  1949. break;
  1950. case BME1000_E_PHY_ID:
  1951. case BME1000_E_PHY_ID_R2:
  1952. phy_type = e1000_phy_bm;
  1953. break;
  1954. case I82578_E_PHY_ID:
  1955. phy_type = e1000_phy_82578;
  1956. break;
  1957. case I82577_E_PHY_ID:
  1958. phy_type = e1000_phy_82577;
  1959. break;
  1960. case I82579_E_PHY_ID:
  1961. phy_type = e1000_phy_82579;
  1962. break;
  1963. case I217_E_PHY_ID:
  1964. phy_type = e1000_phy_i217;
  1965. break;
  1966. default:
  1967. phy_type = e1000_phy_unknown;
  1968. break;
  1969. }
  1970. return phy_type;
  1971. }
  1972. /**
  1973. * e1000e_determine_phy_address - Determines PHY address.
  1974. * @hw: pointer to the HW structure
  1975. *
  1976. * This uses a trial and error method to loop through possible PHY
  1977. * addresses. It tests each by reading the PHY ID registers and
  1978. * checking for a match.
  1979. **/
  1980. s32 e1000e_determine_phy_address(struct e1000_hw *hw)
  1981. {
  1982. u32 phy_addr = 0;
  1983. u32 i;
  1984. enum e1000_phy_type phy_type = e1000_phy_unknown;
  1985. hw->phy.id = phy_type;
  1986. for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
  1987. hw->phy.addr = phy_addr;
  1988. i = 0;
  1989. do {
  1990. e1000e_get_phy_id(hw);
  1991. phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
  1992. /* If phy_type is valid, break - we found our
  1993. * PHY address
  1994. */
  1995. if (phy_type != e1000_phy_unknown)
  1996. return 0;
  1997. usleep_range(1000, 2000);
  1998. i++;
  1999. } while (i < 10);
  2000. }
  2001. return -E1000_ERR_PHY_TYPE;
  2002. }
  2003. /**
  2004. * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
  2005. * @page: page to access
  2006. *
  2007. * Returns the phy address for the page requested.
  2008. **/
  2009. static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
  2010. {
  2011. u32 phy_addr = 2;
  2012. if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
  2013. phy_addr = 1;
  2014. return phy_addr;
  2015. }
  2016. /**
  2017. * e1000e_write_phy_reg_bm - Write BM PHY register
  2018. * @hw: pointer to the HW structure
  2019. * @offset: register offset to write to
  2020. * @data: data to write at register offset
  2021. *
  2022. * Acquires semaphore, if necessary, then writes the data to PHY register
  2023. * at the offset. Release any acquired semaphores before exiting.
  2024. **/
  2025. s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
  2026. {
  2027. s32 ret_val;
  2028. u32 page = offset >> IGP_PAGE_SHIFT;
  2029. ret_val = hw->phy.ops.acquire(hw);
  2030. if (ret_val)
  2031. return ret_val;
  2032. /* Page 800 works differently than the rest so it has its own func */
  2033. if (page == BM_WUC_PAGE) {
  2034. ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
  2035. false, false);
  2036. goto release;
  2037. }
  2038. hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
  2039. if (offset > MAX_PHY_MULTI_PAGE_REG) {
  2040. u32 page_shift, page_select;
  2041. /* Page select is register 31 for phy address 1 and 22 for
  2042. * phy address 2 and 3. Page select is shifted only for
  2043. * phy address 1.
  2044. */
  2045. if (hw->phy.addr == 1) {
  2046. page_shift = IGP_PAGE_SHIFT;
  2047. page_select = IGP01E1000_PHY_PAGE_SELECT;
  2048. } else {
  2049. page_shift = 0;
  2050. page_select = BM_PHY_PAGE_SELECT;
  2051. }
  2052. /* Page is shifted left, PHY expects (page x 32) */
  2053. ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
  2054. (page << page_shift));
  2055. if (ret_val)
  2056. goto release;
  2057. }
  2058. ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
  2059. data);
  2060. release:
  2061. hw->phy.ops.release(hw);
  2062. return ret_val;
  2063. }
  2064. /**
  2065. * e1000e_read_phy_reg_bm - Read BM PHY register
  2066. * @hw: pointer to the HW structure
  2067. * @offset: register offset to be read
  2068. * @data: pointer to the read data
  2069. *
  2070. * Acquires semaphore, if necessary, then reads the PHY register at offset
  2071. * and storing the retrieved information in data. Release any acquired
  2072. * semaphores before exiting.
  2073. **/
  2074. s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
  2075. {
  2076. s32 ret_val;
  2077. u32 page = offset >> IGP_PAGE_SHIFT;
  2078. ret_val = hw->phy.ops.acquire(hw);
  2079. if (ret_val)
  2080. return ret_val;
  2081. /* Page 800 works differently than the rest so it has its own func */
  2082. if (page == BM_WUC_PAGE) {
  2083. ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
  2084. true, false);
  2085. goto release;
  2086. }
  2087. hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
  2088. if (offset > MAX_PHY_MULTI_PAGE_REG) {
  2089. u32 page_shift, page_select;
  2090. /* Page select is register 31 for phy address 1 and 22 for
  2091. * phy address 2 and 3. Page select is shifted only for
  2092. * phy address 1.
  2093. */
  2094. if (hw->phy.addr == 1) {
  2095. page_shift = IGP_PAGE_SHIFT;
  2096. page_select = IGP01E1000_PHY_PAGE_SELECT;
  2097. } else {
  2098. page_shift = 0;
  2099. page_select = BM_PHY_PAGE_SELECT;
  2100. }
  2101. /* Page is shifted left, PHY expects (page x 32) */
  2102. ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
  2103. (page << page_shift));
  2104. if (ret_val)
  2105. goto release;
  2106. }
  2107. ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
  2108. data);
  2109. release:
  2110. hw->phy.ops.release(hw);
  2111. return ret_val;
  2112. }
  2113. /**
  2114. * e1000e_read_phy_reg_bm2 - Read BM PHY register
  2115. * @hw: pointer to the HW structure
  2116. * @offset: register offset to be read
  2117. * @data: pointer to the read data
  2118. *
  2119. * Acquires semaphore, if necessary, then reads the PHY register at offset
  2120. * and storing the retrieved information in data. Release any acquired
  2121. * semaphores before exiting.
  2122. **/
  2123. s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
  2124. {
  2125. s32 ret_val;
  2126. u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
  2127. ret_val = hw->phy.ops.acquire(hw);
  2128. if (ret_val)
  2129. return ret_val;
  2130. /* Page 800 works differently than the rest so it has its own func */
  2131. if (page == BM_WUC_PAGE) {
  2132. ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
  2133. true, false);
  2134. goto release;
  2135. }
  2136. hw->phy.addr = 1;
  2137. if (offset > MAX_PHY_MULTI_PAGE_REG) {
  2138. /* Page is shifted left, PHY expects (page x 32) */
  2139. ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
  2140. page);
  2141. if (ret_val)
  2142. goto release;
  2143. }
  2144. ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
  2145. data);
  2146. release:
  2147. hw->phy.ops.release(hw);
  2148. return ret_val;
  2149. }
  2150. /**
  2151. * e1000e_write_phy_reg_bm2 - Write BM PHY register
  2152. * @hw: pointer to the HW structure
  2153. * @offset: register offset to write to
  2154. * @data: data to write at register offset
  2155. *
  2156. * Acquires semaphore, if necessary, then writes the data to PHY register
  2157. * at the offset. Release any acquired semaphores before exiting.
  2158. **/
  2159. s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
  2160. {
  2161. s32 ret_val;
  2162. u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
  2163. ret_val = hw->phy.ops.acquire(hw);
  2164. if (ret_val)
  2165. return ret_val;
  2166. /* Page 800 works differently than the rest so it has its own func */
  2167. if (page == BM_WUC_PAGE) {
  2168. ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
  2169. false, false);
  2170. goto release;
  2171. }
  2172. hw->phy.addr = 1;
  2173. if (offset > MAX_PHY_MULTI_PAGE_REG) {
  2174. /* Page is shifted left, PHY expects (page x 32) */
  2175. ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
  2176. page);
  2177. if (ret_val)
  2178. goto release;
  2179. }
  2180. ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
  2181. data);
  2182. release:
  2183. hw->phy.ops.release(hw);
  2184. return ret_val;
  2185. }
  2186. /**
  2187. * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
  2188. * @hw: pointer to the HW structure
  2189. * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
  2190. *
  2191. * Assumes semaphore already acquired and phy_reg points to a valid memory
  2192. * address to store contents of the BM_WUC_ENABLE_REG register.
  2193. **/
  2194. s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
  2195. {
  2196. s32 ret_val;
  2197. u16 temp;
  2198. /* All page select, port ctrl and wakeup registers use phy address 1 */
  2199. hw->phy.addr = 1;
  2200. /* Select Port Control Registers page */
  2201. ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
  2202. if (ret_val) {
  2203. e_dbg("Could not set Port Control page\n");
  2204. return ret_val;
  2205. }
  2206. ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
  2207. if (ret_val) {
  2208. e_dbg("Could not read PHY register %d.%d\n",
  2209. BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
  2210. return ret_val;
  2211. }
  2212. /* Enable both PHY wakeup mode and Wakeup register page writes.
  2213. * Prevent a power state change by disabling ME and Host PHY wakeup.
  2214. */
  2215. temp = *phy_reg;
  2216. temp |= BM_WUC_ENABLE_BIT;
  2217. temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
  2218. ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
  2219. if (ret_val) {
  2220. e_dbg("Could not write PHY register %d.%d\n",
  2221. BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
  2222. return ret_val;
  2223. }
  2224. /* Select Host Wakeup Registers page - caller now able to write
  2225. * registers on the Wakeup registers page
  2226. */
  2227. return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
  2228. }
  2229. /**
  2230. * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
  2231. * @hw: pointer to the HW structure
  2232. * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
  2233. *
  2234. * Restore BM_WUC_ENABLE_REG to its original value.
  2235. *
  2236. * Assumes semaphore already acquired and *phy_reg is the contents of the
  2237. * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
  2238. * caller.
  2239. **/
  2240. s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
  2241. {
  2242. s32 ret_val;
  2243. /* Select Port Control Registers page */
  2244. ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
  2245. if (ret_val) {
  2246. e_dbg("Could not set Port Control page\n");
  2247. return ret_val;
  2248. }
  2249. /* Restore 769.17 to its original value */
  2250. ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
  2251. if (ret_val)
  2252. e_dbg("Could not restore PHY register %d.%d\n",
  2253. BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
  2254. return ret_val;
  2255. }
  2256. /**
  2257. * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
  2258. * @hw: pointer to the HW structure
  2259. * @offset: register offset to be read or written
  2260. * @data: pointer to the data to read or write
  2261. * @read: determines if operation is read or write
  2262. * @page_set: BM_WUC_PAGE already set and access enabled
  2263. *
  2264. * Read the PHY register at offset and store the retrieved information in
  2265. * data, or write data to PHY register at offset. Note the procedure to
  2266. * access the PHY wakeup registers is different than reading the other PHY
  2267. * registers. It works as such:
  2268. * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
  2269. * 2) Set page to 800 for host (801 if we were manageability)
  2270. * 3) Write the address using the address opcode (0x11)
  2271. * 4) Read or write the data using the data opcode (0x12)
  2272. * 5) Restore 769.17.2 to its original value
  2273. *
  2274. * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
  2275. * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
  2276. *
  2277. * Assumes semaphore is already acquired. When page_set==true, assumes
  2278. * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
  2279. * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
  2280. **/
  2281. static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  2282. u16 *data, bool read, bool page_set)
  2283. {
  2284. s32 ret_val;
  2285. u16 reg = BM_PHY_REG_NUM(offset);
  2286. u16 page = BM_PHY_REG_PAGE(offset);
  2287. u16 phy_reg = 0;
  2288. /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
  2289. if ((hw->mac.type == e1000_pchlan) &&
  2290. (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
  2291. e_dbg("Attempting to access page %d while gig enabled.\n",
  2292. page);
  2293. if (!page_set) {
  2294. /* Enable access to PHY wakeup registers */
  2295. ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
  2296. if (ret_val) {
  2297. e_dbg("Could not enable PHY wakeup reg access\n");
  2298. return ret_val;
  2299. }
  2300. }
  2301. e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
  2302. /* Write the Wakeup register page offset value using opcode 0x11 */
  2303. ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
  2304. if (ret_val) {
  2305. e_dbg("Could not write address opcode to page %d\n", page);
  2306. return ret_val;
  2307. }
  2308. if (read) {
  2309. /* Read the Wakeup register page value using opcode 0x12 */
  2310. ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
  2311. data);
  2312. } else {
  2313. /* Write the Wakeup register page value using opcode 0x12 */
  2314. ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
  2315. *data);
  2316. }
  2317. if (ret_val) {
  2318. e_dbg("Could not access PHY reg %d.%d\n", page, reg);
  2319. return ret_val;
  2320. }
  2321. if (!page_set)
  2322. ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
  2323. return ret_val;
  2324. }
  2325. /**
  2326. * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
  2327. * @hw: pointer to the HW structure
  2328. *
  2329. * In the case of a PHY power down to save power, or to turn off link during a
  2330. * driver unload, or wake on lan is not enabled, restore the link to previous
  2331. * settings.
  2332. **/
  2333. void e1000_power_up_phy_copper(struct e1000_hw *hw)
  2334. {
  2335. u16 mii_reg = 0;
  2336. /* The PHY will retain its settings across a power down/up cycle */
  2337. e1e_rphy(hw, MII_BMCR, &mii_reg);
  2338. mii_reg &= ~BMCR_PDOWN;
  2339. e1e_wphy(hw, MII_BMCR, mii_reg);
  2340. }
  2341. /**
  2342. * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
  2343. * @hw: pointer to the HW structure
  2344. *
  2345. * In the case of a PHY power down to save power, or to turn off link during a
  2346. * driver unload, or wake on lan is not enabled, restore the link to previous
  2347. * settings.
  2348. **/
  2349. void e1000_power_down_phy_copper(struct e1000_hw *hw)
  2350. {
  2351. u16 mii_reg = 0;
  2352. /* The PHY will retain its settings across a power down/up cycle */
  2353. e1e_rphy(hw, MII_BMCR, &mii_reg);
  2354. mii_reg |= BMCR_PDOWN;
  2355. e1e_wphy(hw, MII_BMCR, mii_reg);
  2356. usleep_range(1000, 2000);
  2357. }
  2358. /**
  2359. * __e1000_read_phy_reg_hv - Read HV PHY register
  2360. * @hw: pointer to the HW structure
  2361. * @offset: register offset to be read
  2362. * @data: pointer to the read data
  2363. * @locked: semaphore has already been acquired or not
  2364. *
  2365. * Acquires semaphore, if necessary, then reads the PHY register at offset
  2366. * and stores the retrieved information in data. Release any acquired
  2367. * semaphore before exiting.
  2368. **/
  2369. static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
  2370. bool locked, bool page_set)
  2371. {
  2372. s32 ret_val;
  2373. u16 page = BM_PHY_REG_PAGE(offset);
  2374. u16 reg = BM_PHY_REG_NUM(offset);
  2375. u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
  2376. if (!locked) {
  2377. ret_val = hw->phy.ops.acquire(hw);
  2378. if (ret_val)
  2379. return ret_val;
  2380. }
  2381. /* Page 800 works differently than the rest so it has its own func */
  2382. if (page == BM_WUC_PAGE) {
  2383. ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
  2384. true, page_set);
  2385. goto out;
  2386. }
  2387. if (page > 0 && page < HV_INTC_FC_PAGE_START) {
  2388. ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
  2389. data, true);
  2390. goto out;
  2391. }
  2392. if (!page_set) {
  2393. if (page == HV_INTC_FC_PAGE_START)
  2394. page = 0;
  2395. if (reg > MAX_PHY_MULTI_PAGE_REG) {
  2396. /* Page is shifted left, PHY expects (page x 32) */
  2397. ret_val = e1000_set_page_igp(hw,
  2398. (page << IGP_PAGE_SHIFT));
  2399. hw->phy.addr = phy_addr;
  2400. if (ret_val)
  2401. goto out;
  2402. }
  2403. }
  2404. e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
  2405. page << IGP_PAGE_SHIFT, reg);
  2406. ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
  2407. out:
  2408. if (!locked)
  2409. hw->phy.ops.release(hw);
  2410. return ret_val;
  2411. }
  2412. /**
  2413. * e1000_read_phy_reg_hv - Read HV PHY register
  2414. * @hw: pointer to the HW structure
  2415. * @offset: register offset to be read
  2416. * @data: pointer to the read data
  2417. *
  2418. * Acquires semaphore then reads the PHY register at offset and stores
  2419. * the retrieved information in data. Release the acquired semaphore
  2420. * before exiting.
  2421. **/
  2422. s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
  2423. {
  2424. return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
  2425. }
  2426. /**
  2427. * e1000_read_phy_reg_hv_locked - Read HV PHY register
  2428. * @hw: pointer to the HW structure
  2429. * @offset: register offset to be read
  2430. * @data: pointer to the read data
  2431. *
  2432. * Reads the PHY register at offset and stores the retrieved information
  2433. * in data. Assumes semaphore already acquired.
  2434. **/
  2435. s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
  2436. {
  2437. return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
  2438. }
  2439. /**
  2440. * e1000_read_phy_reg_page_hv - Read HV PHY register
  2441. * @hw: pointer to the HW structure
  2442. * @offset: register offset to write to
  2443. * @data: data to write at register offset
  2444. *
  2445. * Reads the PHY register at offset and stores the retrieved information
  2446. * in data. Assumes semaphore already acquired and page already set.
  2447. **/
  2448. s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
  2449. {
  2450. return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
  2451. }
  2452. /**
  2453. * __e1000_write_phy_reg_hv - Write HV PHY register
  2454. * @hw: pointer to the HW structure
  2455. * @offset: register offset to write to
  2456. * @data: data to write at register offset
  2457. * @locked: semaphore has already been acquired or not
  2458. *
  2459. * Acquires semaphore, if necessary, then writes the data to PHY register
  2460. * at the offset. Release any acquired semaphores before exiting.
  2461. **/
  2462. static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
  2463. bool locked, bool page_set)
  2464. {
  2465. s32 ret_val;
  2466. u16 page = BM_PHY_REG_PAGE(offset);
  2467. u16 reg = BM_PHY_REG_NUM(offset);
  2468. u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
  2469. if (!locked) {
  2470. ret_val = hw->phy.ops.acquire(hw);
  2471. if (ret_val)
  2472. return ret_val;
  2473. }
  2474. /* Page 800 works differently than the rest so it has its own func */
  2475. if (page == BM_WUC_PAGE) {
  2476. ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
  2477. false, page_set);
  2478. goto out;
  2479. }
  2480. if (page > 0 && page < HV_INTC_FC_PAGE_START) {
  2481. ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
  2482. &data, false);
  2483. goto out;
  2484. }
  2485. if (!page_set) {
  2486. if (page == HV_INTC_FC_PAGE_START)
  2487. page = 0;
  2488. /* Workaround MDIO accesses being disabled after entering IEEE
  2489. * Power Down (when bit 11 of the PHY Control register is set)
  2490. */
  2491. if ((hw->phy.type == e1000_phy_82578) &&
  2492. (hw->phy.revision >= 1) &&
  2493. (hw->phy.addr == 2) &&
  2494. !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
  2495. u16 data2 = 0x7EFF;
  2496. ret_val = e1000_access_phy_debug_regs_hv(hw,
  2497. BIT(6) | 0x3,
  2498. &data2, false);
  2499. if (ret_val)
  2500. goto out;
  2501. }
  2502. if (reg > MAX_PHY_MULTI_PAGE_REG) {
  2503. /* Page is shifted left, PHY expects (page x 32) */
  2504. ret_val = e1000_set_page_igp(hw,
  2505. (page << IGP_PAGE_SHIFT));
  2506. hw->phy.addr = phy_addr;
  2507. if (ret_val)
  2508. goto out;
  2509. }
  2510. }
  2511. e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
  2512. page << IGP_PAGE_SHIFT, reg);
  2513. ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
  2514. data);
  2515. out:
  2516. if (!locked)
  2517. hw->phy.ops.release(hw);
  2518. return ret_val;
  2519. }
  2520. /**
  2521. * e1000_write_phy_reg_hv - Write HV PHY register
  2522. * @hw: pointer to the HW structure
  2523. * @offset: register offset to write to
  2524. * @data: data to write at register offset
  2525. *
  2526. * Acquires semaphore then writes the data to PHY register at the offset.
  2527. * Release the acquired semaphores before exiting.
  2528. **/
  2529. s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
  2530. {
  2531. return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
  2532. }
  2533. /**
  2534. * e1000_write_phy_reg_hv_locked - Write HV PHY register
  2535. * @hw: pointer to the HW structure
  2536. * @offset: register offset to write to
  2537. * @data: data to write at register offset
  2538. *
  2539. * Writes the data to PHY register at the offset. Assumes semaphore
  2540. * already acquired.
  2541. **/
  2542. s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
  2543. {
  2544. return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
  2545. }
  2546. /**
  2547. * e1000_write_phy_reg_page_hv - Write HV PHY register
  2548. * @hw: pointer to the HW structure
  2549. * @offset: register offset to write to
  2550. * @data: data to write at register offset
  2551. *
  2552. * Writes the data to PHY register at the offset. Assumes semaphore
  2553. * already acquired and page already set.
  2554. **/
  2555. s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
  2556. {
  2557. return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
  2558. }
  2559. /**
  2560. * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
  2561. * @page: page to be accessed
  2562. **/
  2563. static u32 e1000_get_phy_addr_for_hv_page(u32 page)
  2564. {
  2565. u32 phy_addr = 2;
  2566. if (page >= HV_INTC_FC_PAGE_START)
  2567. phy_addr = 1;
  2568. return phy_addr;
  2569. }
  2570. /**
  2571. * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
  2572. * @hw: pointer to the HW structure
  2573. * @offset: register offset to be read or written
  2574. * @data: pointer to the data to be read or written
  2575. * @read: determines if operation is read or write
  2576. *
  2577. * Reads the PHY register at offset and stores the retreived information
  2578. * in data. Assumes semaphore already acquired. Note that the procedure
  2579. * to access these regs uses the address port and data port to read/write.
  2580. * These accesses done with PHY address 2 and without using pages.
  2581. **/
  2582. static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  2583. u16 *data, bool read)
  2584. {
  2585. s32 ret_val;
  2586. u32 addr_reg;
  2587. u32 data_reg;
  2588. /* This takes care of the difference with desktop vs mobile phy */
  2589. addr_reg = ((hw->phy.type == e1000_phy_82578) ?
  2590. I82578_ADDR_REG : I82577_ADDR_REG);
  2591. data_reg = addr_reg + 1;
  2592. /* All operations in this function are phy address 2 */
  2593. hw->phy.addr = 2;
  2594. /* masking with 0x3F to remove the page from offset */
  2595. ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
  2596. if (ret_val) {
  2597. e_dbg("Could not write the Address Offset port register\n");
  2598. return ret_val;
  2599. }
  2600. /* Read or write the data value next */
  2601. if (read)
  2602. ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
  2603. else
  2604. ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
  2605. if (ret_val)
  2606. e_dbg("Could not access the Data port register\n");
  2607. return ret_val;
  2608. }
  2609. /**
  2610. * e1000_link_stall_workaround_hv - Si workaround
  2611. * @hw: pointer to the HW structure
  2612. *
  2613. * This function works around a Si bug where the link partner can get
  2614. * a link up indication before the PHY does. If small packets are sent
  2615. * by the link partner they can be placed in the packet buffer without
  2616. * being properly accounted for by the PHY and will stall preventing
  2617. * further packets from being received. The workaround is to clear the
  2618. * packet buffer after the PHY detects link up.
  2619. **/
  2620. s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
  2621. {
  2622. s32 ret_val = 0;
  2623. u16 data;
  2624. if (hw->phy.type != e1000_phy_82578)
  2625. return 0;
  2626. /* Do not apply workaround if in PHY loopback bit 14 set */
  2627. e1e_rphy(hw, MII_BMCR, &data);
  2628. if (data & BMCR_LOOPBACK)
  2629. return 0;
  2630. /* check if link is up and at 1Gbps */
  2631. ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
  2632. if (ret_val)
  2633. return ret_val;
  2634. data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
  2635. BM_CS_STATUS_SPEED_MASK);
  2636. if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
  2637. BM_CS_STATUS_SPEED_1000))
  2638. return 0;
  2639. msleep(200);
  2640. /* flush the packets in the fifo buffer */
  2641. ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
  2642. (HV_MUX_DATA_CTRL_GEN_TO_MAC |
  2643. HV_MUX_DATA_CTRL_FORCE_SPEED));
  2644. if (ret_val)
  2645. return ret_val;
  2646. return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
  2647. }
  2648. /**
  2649. * e1000_check_polarity_82577 - Checks the polarity.
  2650. * @hw: pointer to the HW structure
  2651. *
  2652. * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
  2653. *
  2654. * Polarity is determined based on the PHY specific status register.
  2655. **/
  2656. s32 e1000_check_polarity_82577(struct e1000_hw *hw)
  2657. {
  2658. struct e1000_phy_info *phy = &hw->phy;
  2659. s32 ret_val;
  2660. u16 data;
  2661. ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
  2662. if (!ret_val)
  2663. phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
  2664. ? e1000_rev_polarity_reversed
  2665. : e1000_rev_polarity_normal);
  2666. return ret_val;
  2667. }
  2668. /**
  2669. * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
  2670. * @hw: pointer to the HW structure
  2671. *
  2672. * Calls the PHY setup function to force speed and duplex.
  2673. **/
  2674. s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
  2675. {
  2676. struct e1000_phy_info *phy = &hw->phy;
  2677. s32 ret_val;
  2678. u16 phy_data;
  2679. bool link;
  2680. ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
  2681. if (ret_val)
  2682. return ret_val;
  2683. e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
  2684. ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
  2685. if (ret_val)
  2686. return ret_val;
  2687. udelay(1);
  2688. if (phy->autoneg_wait_to_complete) {
  2689. e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
  2690. ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
  2691. 100000, &link);
  2692. if (ret_val)
  2693. return ret_val;
  2694. if (!link)
  2695. e_dbg("Link taking longer than expected.\n");
  2696. /* Try once more */
  2697. ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
  2698. 100000, &link);
  2699. }
  2700. return ret_val;
  2701. }
  2702. /**
  2703. * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
  2704. * @hw: pointer to the HW structure
  2705. *
  2706. * Read PHY status to determine if link is up. If link is up, then
  2707. * set/determine 10base-T extended distance and polarity correction. Read
  2708. * PHY port status to determine MDI/MDIx and speed. Based on the speed,
  2709. * determine on the cable length, local and remote receiver.
  2710. **/
  2711. s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
  2712. {
  2713. struct e1000_phy_info *phy = &hw->phy;
  2714. s32 ret_val;
  2715. u16 data;
  2716. bool link;
  2717. ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
  2718. if (ret_val)
  2719. return ret_val;
  2720. if (!link) {
  2721. e_dbg("Phy info is only valid if link is up\n");
  2722. return -E1000_ERR_CONFIG;
  2723. }
  2724. phy->polarity_correction = true;
  2725. ret_val = e1000_check_polarity_82577(hw);
  2726. if (ret_val)
  2727. return ret_val;
  2728. ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
  2729. if (ret_val)
  2730. return ret_val;
  2731. phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
  2732. if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
  2733. I82577_PHY_STATUS2_SPEED_1000MBPS) {
  2734. ret_val = hw->phy.ops.get_cable_length(hw);
  2735. if (ret_val)
  2736. return ret_val;
  2737. ret_val = e1e_rphy(hw, MII_STAT1000, &data);
  2738. if (ret_val)
  2739. return ret_val;
  2740. phy->local_rx = (data & LPA_1000LOCALRXOK)
  2741. ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
  2742. phy->remote_rx = (data & LPA_1000REMRXOK)
  2743. ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
  2744. } else {
  2745. phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
  2746. phy->local_rx = e1000_1000t_rx_status_undefined;
  2747. phy->remote_rx = e1000_1000t_rx_status_undefined;
  2748. }
  2749. return 0;
  2750. }
  2751. /**
  2752. * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
  2753. * @hw: pointer to the HW structure
  2754. *
  2755. * Reads the diagnostic status register and verifies result is valid before
  2756. * placing it in the phy_cable_length field.
  2757. **/
  2758. s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
  2759. {
  2760. struct e1000_phy_info *phy = &hw->phy;
  2761. s32 ret_val;
  2762. u16 phy_data, length;
  2763. ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
  2764. if (ret_val)
  2765. return ret_val;
  2766. length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
  2767. I82577_DSTATUS_CABLE_LENGTH_SHIFT);
  2768. if (length == E1000_CABLE_LENGTH_UNDEFINED)
  2769. return -E1000_ERR_PHY;
  2770. phy->cable_length = length;
  2771. return 0;
  2772. }