123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974 |
- /* java.lang.Math -- common mathematical functions, native allowed
- Copyright (C) 1998, 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
- This file is part of GNU Classpath.
- GNU Classpath is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
- GNU Classpath is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GNU Classpath; see the file COPYING. If not, write to the
- Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
- 02110-1301 USA.
- Linking this library statically or dynamically with other modules is
- making a combined work based on this library. Thus, the terms and
- conditions of the GNU General Public License cover the whole
- combination.
- As a special exception, the copyright holders of this library give you
- permission to link this library with independent modules to produce an
- executable, regardless of the license terms of these independent
- modules, and to copy and distribute the resulting executable under
- terms of your choice, provided that you also meet, for each linked
- independent module, the terms and conditions of the license of that
- module. An independent module is a module which is not derived from
- or based on this library. If you modify this library, you may extend
- this exception to your version of the library, but you are not
- obligated to do so. If you do not wish to do so, delete this
- exception statement from your version. */
- package java.lang;
- import gnu.classpath.Configuration;
- import java.util.Random;
- /**
- * Helper class containing useful mathematical functions and constants.
- * <P>
- *
- * Note that angles are specified in radians. Conversion functions are
- * provided for your convenience.
- *
- * @author Paul Fisher
- * @author John Keiser
- * @author Eric Blake (ebb9@email.byu.edu)
- * @since 1.0
- */
- public final class Math
- {
- /**
- * Math is non-instantiable
- */
- private Math()
- {
- }
- static
- {
- if (Configuration.INIT_LOAD_LIBRARY)
- {
- System.loadLibrary("javalang");
- }
- }
- /**
- * A random number generator, initialized on first use.
- */
- private static Random rand;
- /**
- * The most accurate approximation to the mathematical constant <em>e</em>:
- * <code>2.718281828459045</code>. Used in natural log and exp.
- *
- * @see #log(double)
- * @see #exp(double)
- */
- public static final double E = 2.718281828459045;
- /**
- * The most accurate approximation to the mathematical constant <em>pi</em>:
- * <code>3.141592653589793</code>. This is the ratio of a circle's diameter
- * to its circumference.
- */
- public static final double PI = 3.141592653589793;
- /**
- * Take the absolute value of the argument.
- * (Absolute value means make it positive.)
- * <P>
- *
- * Note that the the largest negative value (Integer.MIN_VALUE) cannot
- * be made positive. In this case, because of the rules of negation in
- * a computer, MIN_VALUE is what will be returned.
- * This is a <em>negative</em> value. You have been warned.
- *
- * @param i the number to take the absolute value of
- * @return the absolute value
- * @see Integer#MIN_VALUE
- */
- public static int abs(int i)
- {
- return (i < 0) ? -i : i;
- }
- /**
- * Take the absolute value of the argument.
- * (Absolute value means make it positive.)
- * <P>
- *
- * Note that the the largest negative value (Long.MIN_VALUE) cannot
- * be made positive. In this case, because of the rules of negation in
- * a computer, MIN_VALUE is what will be returned.
- * This is a <em>negative</em> value. You have been warned.
- *
- * @param l the number to take the absolute value of
- * @return the absolute value
- * @see Long#MIN_VALUE
- */
- public static long abs(long l)
- {
- return (l < 0) ? -l : l;
- }
- /**
- * Take the absolute value of the argument.
- * (Absolute value means make it positive.)
- * <P>
- *
- * This is equivalent, but faster than, calling
- * <code>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</code>.
- *
- * @param f the number to take the absolute value of
- * @return the absolute value
- */
- public static float abs(float f)
- {
- return (f <= 0) ? 0 - f : f;
- }
- /**
- * Take the absolute value of the argument.
- * (Absolute value means make it positive.)
- *
- * This is equivalent, but faster than, calling
- * <code>Double.longBitsToDouble(Double.doubleToLongBits(a)
- * << 1) >>> 1);</code>.
- *
- * @param d the number to take the absolute value of
- * @return the absolute value
- */
- public static double abs(double d)
- {
- return (d <= 0) ? 0 - d : d;
- }
- /**
- * Return whichever argument is smaller.
- *
- * @param a the first number
- * @param b a second number
- * @return the smaller of the two numbers
- */
- public static int min(int a, int b)
- {
- return (a < b) ? a : b;
- }
- /**
- * Return whichever argument is smaller.
- *
- * @param a the first number
- * @param b a second number
- * @return the smaller of the two numbers
- */
- public static long min(long a, long b)
- {
- return (a < b) ? a : b;
- }
- /**
- * Return whichever argument is smaller. If either argument is NaN, the
- * result is NaN, and when comparing 0 and -0, -0 is always smaller.
- *
- * @param a the first number
- * @param b a second number
- * @return the smaller of the two numbers
- */
- public static float min(float a, float b)
- {
- // this check for NaN, from JLS 15.21.1, saves a method call
- if (a != a)
- return a;
- // no need to check if b is NaN; < will work correctly
- // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
- if (a == 0 && b == 0)
- return -(-a - b);
- return (a < b) ? a : b;
- }
- /**
- * Return whichever argument is smaller. If either argument is NaN, the
- * result is NaN, and when comparing 0 and -0, -0 is always smaller.
- *
- * @param a the first number
- * @param b a second number
- * @return the smaller of the two numbers
- */
- public static double min(double a, double b)
- {
- // this check for NaN, from JLS 15.21.1, saves a method call
- if (a != a)
- return a;
- // no need to check if b is NaN; < will work correctly
- // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
- if (a == 0 && b == 0)
- return -(-a - b);
- return (a < b) ? a : b;
- }
- /**
- * Return whichever argument is larger.
- *
- * @param a the first number
- * @param b a second number
- * @return the larger of the two numbers
- */
- public static int max(int a, int b)
- {
- return (a > b) ? a : b;
- }
- /**
- * Return whichever argument is larger.
- *
- * @param a the first number
- * @param b a second number
- * @return the larger of the two numbers
- */
- public static long max(long a, long b)
- {
- return (a > b) ? a : b;
- }
- /**
- * Return whichever argument is larger. If either argument is NaN, the
- * result is NaN, and when comparing 0 and -0, 0 is always larger.
- *
- * @param a the first number
- * @param b a second number
- * @return the larger of the two numbers
- */
- public static float max(float a, float b)
- {
- // this check for NaN, from JLS 15.21.1, saves a method call
- if (a != a)
- return a;
- // no need to check if b is NaN; > will work correctly
- // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
- if (a == 0 && b == 0)
- return a - -b;
- return (a > b) ? a : b;
- }
- /**
- * Return whichever argument is larger. If either argument is NaN, the
- * result is NaN, and when comparing 0 and -0, 0 is always larger.
- *
- * @param a the first number
- * @param b a second number
- * @return the larger of the two numbers
- */
- public static double max(double a, double b)
- {
- // this check for NaN, from JLS 15.21.1, saves a method call
- if (a != a)
- return a;
- // no need to check if b is NaN; > will work correctly
- // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
- if (a == 0 && b == 0)
- return a - -b;
- return (a > b) ? a : b;
- }
- /**
- * The trigonometric function <em>sin</em>. The sine of NaN or infinity is
- * NaN, and the sine of 0 retains its sign. This is accurate within 1 ulp,
- * and is semi-monotonic.
- *
- * @param a the angle (in radians)
- * @return sin(a)
- */
- public static native double sin(double a);
- /**
- * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
- * NaN. This is accurate within 1 ulp, and is semi-monotonic.
- *
- * @param a the angle (in radians)
- * @return cos(a)
- */
- public static native double cos(double a);
- /**
- * The trigonometric function <em>tan</em>. The tangent of NaN or infinity
- * is NaN, and the tangent of 0 retains its sign. This is accurate within 1
- * ulp, and is semi-monotonic.
- *
- * @param a the angle (in radians)
- * @return tan(a)
- */
- public static native double tan(double a);
- /**
- * The trigonometric function <em>arcsin</em>. The range of angles returned
- * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
- * its absolute value is beyond 1, the result is NaN; and the arcsine of
- * 0 retains its sign. This is accurate within 1 ulp, and is semi-monotonic.
- *
- * @param a the sin to turn back into an angle
- * @return arcsin(a)
- */
- public static native double asin(double a);
- /**
- * The trigonometric function <em>arccos</em>. The range of angles returned
- * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
- * its absolute value is beyond 1, the result is NaN. This is accurate
- * within 1 ulp, and is semi-monotonic.
- *
- * @param a the cos to turn back into an angle
- * @return arccos(a)
- */
- public static native double acos(double a);
- /**
- * The trigonometric function <em>arcsin</em>. The range of angles returned
- * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
- * result is NaN; and the arctangent of 0 retains its sign. This is accurate
- * within 1 ulp, and is semi-monotonic.
- *
- * @param a the tan to turn back into an angle
- * @return arcsin(a)
- * @see #atan2(double, double)
- */
- public static native double atan(double a);
- /**
- * A special version of the trigonometric function <em>arctan</em>, for
- * converting rectangular coordinates <em>(x, y)</em> to polar
- * <em>(r, theta)</em>. This computes the arctangent of x/y in the range
- * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
- * <li>If either argument is NaN, the result is NaN.</li>
- * <li>If the first argument is positive zero and the second argument is
- * positive, or the first argument is positive and finite and the second
- * argument is positive infinity, then the result is positive zero.</li>
- * <li>If the first argument is negative zero and the second argument is
- * positive, or the first argument is negative and finite and the second
- * argument is positive infinity, then the result is negative zero.</li>
- * <li>If the first argument is positive zero and the second argument is
- * negative, or the first argument is positive and finite and the second
- * argument is negative infinity, then the result is the double value
- * closest to pi.</li>
- * <li>If the first argument is negative zero and the second argument is
- * negative, or the first argument is negative and finite and the second
- * argument is negative infinity, then the result is the double value
- * closest to -pi.</li>
- * <li>If the first argument is positive and the second argument is
- * positive zero or negative zero, or the first argument is positive
- * infinity and the second argument is finite, then the result is the
- * double value closest to pi/2.</li>
- * <li>If the first argument is negative and the second argument is
- * positive zero or negative zero, or the first argument is negative
- * infinity and the second argument is finite, then the result is the
- * double value closest to -pi/2.</li>
- * <li>If both arguments are positive infinity, then the result is the
- * double value closest to pi/4.</li>
- * <li>If the first argument is positive infinity and the second argument
- * is negative infinity, then the result is the double value closest to
- * 3*pi/4.</li>
- * <li>If the first argument is negative infinity and the second argument
- * is positive infinity, then the result is the double value closest to
- * -pi/4.</li>
- * <li>If both arguments are negative infinity, then the result is the
- * double value closest to -3*pi/4.</li>
- *
- * </ul><p>This is accurate within 2 ulps, and is semi-monotonic. To get r,
- * use sqrt(x*x+y*y).
- *
- * @param y the y position
- * @param x the x position
- * @return <em>theta</em> in the conversion of (x, y) to (r, theta)
- * @see #atan(double)
- */
- public static native double atan2(double y, double x);
- /**
- * Take <em>e</em><sup>a</sup>. The opposite of <code>log()</code>. If the
- * argument is NaN, the result is NaN; if the argument is positive infinity,
- * the result is positive infinity; and if the argument is negative
- * infinity, the result is positive zero. This is accurate within 1 ulp,
- * and is semi-monotonic.
- *
- * @param a the number to raise to the power
- * @return the number raised to the power of <em>e</em>
- * @see #log(double)
- * @see #pow(double, double)
- */
- public static native double exp(double a);
- /**
- * Take ln(a) (the natural log). The opposite of <code>exp()</code>. If the
- * argument is NaN or negative, the result is NaN; if the argument is
- * positive infinity, the result is positive infinity; and if the argument
- * is either zero, the result is negative infinity. This is accurate within
- * 1 ulp, and is semi-monotonic.
- *
- * <p>Note that the way to get log<sub>b</sub>(a) is to do this:
- * <code>ln(a) / ln(b)</code>.
- *
- * @param a the number to take the natural log of
- * @return the natural log of <code>a</code>
- * @see #exp(double)
- */
- public static native double log(double a);
- /**
- * Take a square root. If the argument is NaN or negative, the result is
- * NaN; if the argument is positive infinity, the result is positive
- * infinity; and if the result is either zero, the result is the same.
- * This is accurate within the limits of doubles.
- *
- * <p>For other roots, use pow(a, 1 / rootNumber).
- *
- * @param a the numeric argument
- * @return the square root of the argument
- * @see #pow(double, double)
- */
- public static native double sqrt(double a);
- /**
- * Raise a number to a power. Special cases:<ul>
- * <li>If the second argument is positive or negative zero, then the result
- * is 1.0.</li>
- * <li>If the second argument is 1.0, then the result is the same as the
- * first argument.</li>
- * <li>If the second argument is NaN, then the result is NaN.</li>
- * <li>If the first argument is NaN and the second argument is nonzero,
- * then the result is NaN.</li>
- * <li>If the absolute value of the first argument is greater than 1 and
- * the second argument is positive infinity, or the absolute value of the
- * first argument is less than 1 and the second argument is negative
- * infinity, then the result is positive infinity.</li>
- * <li>If the absolute value of the first argument is greater than 1 and
- * the second argument is negative infinity, or the absolute value of the
- * first argument is less than 1 and the second argument is positive
- * infinity, then the result is positive zero.</li>
- * <li>If the absolute value of the first argument equals 1 and the second
- * argument is infinite, then the result is NaN.</li>
- * <li>If the first argument is positive zero and the second argument is
- * greater than zero, or the first argument is positive infinity and the
- * second argument is less than zero, then the result is positive zero.</li>
- * <li>If the first argument is positive zero and the second argument is
- * less than zero, or the first argument is positive infinity and the
- * second argument is greater than zero, then the result is positive
- * infinity.</li>
- * <li>If the first argument is negative zero and the second argument is
- * greater than zero but not a finite odd integer, or the first argument is
- * negative infinity and the second argument is less than zero but not a
- * finite odd integer, then the result is positive zero.</li>
- * <li>If the first argument is negative zero and the second argument is a
- * positive finite odd integer, or the first argument is negative infinity
- * and the second argument is a negative finite odd integer, then the result
- * is negative zero.</li>
- * <li>If the first argument is negative zero and the second argument is
- * less than zero but not a finite odd integer, or the first argument is
- * negative infinity and the second argument is greater than zero but not a
- * finite odd integer, then the result is positive infinity.</li>
- * <li>If the first argument is negative zero and the second argument is a
- * negative finite odd integer, or the first argument is negative infinity
- * and the second argument is a positive finite odd integer, then the result
- * is negative infinity.</li>
- * <li>If the first argument is less than zero and the second argument is a
- * finite even integer, then the result is equal to the result of raising
- * the absolute value of the first argument to the power of the second
- * argument.</li>
- * <li>If the first argument is less than zero and the second argument is a
- * finite odd integer, then the result is equal to the negative of the
- * result of raising the absolute value of the first argument to the power
- * of the second argument.</li>
- * <li>If the first argument is finite and less than zero and the second
- * argument is finite and not an integer, then the result is NaN.</li>
- * <li>If both arguments are integers, then the result is exactly equal to
- * the mathematical result of raising the first argument to the power of
- * the second argument if that result can in fact be represented exactly as
- * a double value.</li>
- *
- * </ul><p>(In the foregoing descriptions, a floating-point value is
- * considered to be an integer if and only if it is a fixed point of the
- * method {@link #ceil(double)} or, equivalently, a fixed point of the
- * method {@link #floor(double)}. A value is a fixed point of a one-argument
- * method if and only if the result of applying the method to the value is
- * equal to the value.) This is accurate within 1 ulp, and is semi-monotonic.
- *
- * @param a the number to raise
- * @param b the power to raise it to
- * @return a<sup>b</sup>
- */
- public static native double pow(double a, double b);
- /**
- * Get the IEEE 754 floating point remainder on two numbers. This is the
- * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
- * double to <code>x / y</code> (ties go to the even n); for a zero
- * remainder, the sign is that of <code>x</code>. If either argument is NaN,
- * the first argument is infinite, or the second argument is zero, the result
- * is NaN; if x is finite but y is infinite, the result is x. This is
- * accurate within the limits of doubles.
- *
- * @param x the dividend (the top half)
- * @param y the divisor (the bottom half)
- * @return the IEEE 754-defined floating point remainder of x/y
- * @see #rint(double)
- */
- public static native double IEEEremainder(double x, double y);
- /**
- * Take the nearest integer that is that is greater than or equal to the
- * argument. If the argument is NaN, infinite, or zero, the result is the
- * same; if the argument is between -1 and 0, the result is negative zero.
- * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
- *
- * @param a the value to act upon
- * @return the nearest integer >= <code>a</code>
- */
- public static native double ceil(double a);
- /**
- * Take the nearest integer that is that is less than or equal to the
- * argument. If the argument is NaN, infinite, or zero, the result is the
- * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
- *
- * @param a the value to act upon
- * @return the nearest integer <= <code>a</code>
- */
- public static native double floor(double a);
- /**
- * Take the nearest integer to the argument. If it is exactly between
- * two integers, the even integer is taken. If the argument is NaN,
- * infinite, or zero, the result is the same.
- *
- * @param a the value to act upon
- * @return the nearest integer to <code>a</code>
- */
- public static native double rint(double a);
- /**
- * Take the nearest integer to the argument. This is equivalent to
- * <code>(int) Math.floor(a + 0.5f)</code>. If the argument is NaN, the result
- * is 0; otherwise if the argument is outside the range of int, the result
- * will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
- *
- * @param a the argument to round
- * @return the nearest integer to the argument
- * @see Integer#MIN_VALUE
- * @see Integer#MAX_VALUE
- */
- public static int round(float a)
- {
- // this check for NaN, from JLS 15.21.1, saves a method call
- if (a != a)
- return 0;
- return (int) floor(a + 0.5f);
- }
- /**
- * Take the nearest long to the argument. This is equivalent to
- * <code>(long) Math.floor(a + 0.5)</code>. If the argument is NaN, the
- * result is 0; otherwise if the argument is outside the range of long, the
- * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
- *
- * @param a the argument to round
- * @return the nearest long to the argument
- * @see Long#MIN_VALUE
- * @see Long#MAX_VALUE
- */
- public static long round(double a)
- {
- // this check for NaN, from JLS 15.21.1, saves a method call
- if (a != a)
- return 0;
- return (long) floor(a + 0.5d);
- }
- /**
- * Get a random number. This behaves like Random.nextDouble(), seeded by
- * System.currentTimeMillis() when first called. In other words, the number
- * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
- * This random sequence is only used by this method, and is threadsafe,
- * although you may want your own random number generator if it is shared
- * among threads.
- *
- * @return a random number
- * @see Random#nextDouble()
- * @see System#currentTimeMillis()
- */
- public static synchronized double random()
- {
- if (rand == null)
- rand = new Random();
- return rand.nextDouble();
- }
- /**
- * Convert from degrees to radians. The formula for this is
- * radians = degrees * (pi/180); however it is not always exact given the
- * limitations of floating point numbers.
- *
- * @param degrees an angle in degrees
- * @return the angle in radians
- * @since 1.2
- */
- public static double toRadians(double degrees)
- {
- return (degrees * PI) / 180;
- }
- /**
- * Convert from radians to degrees. The formula for this is
- * degrees = radians * (180/pi); however it is not always exact given the
- * limitations of floating point numbers.
- *
- * @param rads an angle in radians
- * @return the angle in degrees
- * @since 1.2
- */
- public static double toDegrees(double rads)
- {
- return (rads * 180) / PI;
- }
- /**
- * <p>
- * Take a cube root. If the argument is <code>NaN</code>, an infinity or
- * zero, then the original value is returned. The returned result is
- * within 1 ulp of the exact result. For a finite value, <code>x</code>,
- * the cube root of <code>-x</code> is equal to the negation of the cube root
- * of <code>x</code>.
- * </p>
- * <p>
- * For a square root, use <code>sqrt</code>. For other roots, use
- * <code>pow(a, 1 / rootNumber)</code>.
- * </p>
- *
- * @param a the numeric argument
- * @return the cube root of the argument
- * @see #sqrt(double)
- * @see #pow(double, double)
- * @since 1.5
- */
- public static native double cbrt(double a);
- /**
- * <p>
- * Returns the hyperbolic cosine of the given value. For a value,
- * <code>x</code>, the hyperbolic cosine is <code>(e<sup>x</sup> +
- * e<sup>-x</sup>)/2</code>
- * with <code>e</code> being <a href="#E">Euler's number</a>. The returned
- * result is within 2.5 ulps of the exact result.
- * </p>
- * <p>
- * If the supplied value is <code>NaN</code>, then the original value is
- * returned. For either infinity, positive infinity is returned.
- * The hyperbolic cosine of zero is 1.0.
- * </p>
- *
- * @param a the numeric argument
- * @return the hyperbolic cosine of <code>a</code>.
- * @since 1.5
- */
- public static native double cosh(double a);
- /**
- * <p>
- * Returns <code>e<sup>a</sup> - 1. For values close to 0, the
- * result of <code>expm1(a) + 1</code> tend to be much closer to the
- * exact result than simply <code>exp(x)</code>. The result is within
- * 1 ulp of the exact result, and results are semi-monotonic. For finite
- * inputs, the returned value is greater than or equal to -1.0. Once
- * a result enters within half a ulp of this limit, the limit is returned.
- * </p>
- * <p>
- * For <code>NaN</code>, positive infinity and zero, the original value
- * is returned. Negative infinity returns a result of -1.0 (the limit).
- * </p>
- *
- * @param a the numeric argument
- * @return <code>e<sup>a</sup> - 1</code>
- * @since 1.5
- */
- public static native double expm1(double a);
- /**
- * <p>
- * Returns the hypotenuse, <code>a<sup>2</sup> + b<sup>2</sup></code>,
- * without intermediate overflow or underflow. The returned result is
- * within 1 ulp of the exact result. If one parameter is held constant,
- * then the result in the other parameter is semi-monotonic.
- * </p>
- * <p>
- * If either of the arguments is an infinity, then the returned result
- * is positive infinity. Otherwise, if either argument is <code>NaN</code>,
- * then <code>NaN</code> is returned.
- * </p>
- *
- * @param a the first parameter.
- * @param b the second parameter.
- * @return the hypotenuse matching the supplied parameters.
- * @since 1.5
- */
- public static native double hypot(double a, double b);
- /**
- * <p>
- * Returns the base 10 logarithm of the supplied value. The returned
- * result is within 1 ulp of the exact result, and the results are
- * semi-monotonic.
- * </p>
- * <p>
- * Arguments of either <code>NaN</code> or less than zero return
- * <code>NaN</code>. An argument of positive infinity returns positive
- * infinity. Negative infinity is returned if either positive or negative
- * zero is supplied. Where the argument is the result of
- * <code>10<sup>n</sup</code>, then <code>n</code> is returned.
- * </p>
- *
- * @param a the numeric argument.
- * @return the base 10 logarithm of <code>a</code>.
- * @since 1.5
- */
- public static native double log10(double a);
- /**
- * <p>
- * Returns the natural logarithm resulting from the sum of the argument,
- * <code>a</code> and 1. For values close to 0, the
- * result of <code>log1p(a)</code> tend to be much closer to the
- * exact result than simply <code>log(1.0+a)</code>. The returned
- * result is within 1 ulp of the exact result, and the results are
- * semi-monotonic.
- * </p>
- * <p>
- * Arguments of either <code>NaN</code> or less than -1 return
- * <code>NaN</code>. An argument of positive infinity or zero
- * returns the original argument. Negative infinity is returned from an
- * argument of -1.
- * </p>
- *
- * @param a the numeric argument.
- * @return the natural logarithm of <code>a</code> + 1.
- * @since 1.5
- */
- public static native double log1p(double a);
- /**
- * <p>
- * Returns the sign of the argument as follows:
- * </p>
- * <ul>
- * <li>If <code>a</code> is greater than zero, the result is 1.0.</li>
- * <li>If <code>a</code> is less than zero, the result is -1.0.</li>
- * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
- * <li>If <code>a</code> is positive or negative zero, the result is the
- * same.</li>
- * </ul>
- *
- * @param a the numeric argument.
- * @return the sign of the argument.
- * @since 1.5.
- */
- public static double signum(double a)
- {
- if (Double.isNaN(a))
- return Double.NaN;
- if (a > 0)
- return 1.0;
- if (a < 0)
- return -1.0;
- return a;
- }
- /**
- * <p>
- * Returns the sign of the argument as follows:
- * </p>
- * <ul>
- * <li>If <code>a</code> is greater than zero, the result is 1.0f.</li>
- * <li>If <code>a</code> is less than zero, the result is -1.0f.</li>
- * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
- * <li>If <code>a</code> is positive or negative zero, the result is the
- * same.</li>
- * </ul>
- *
- * @param a the numeric argument.
- * @return the sign of the argument.
- * @since 1.5.
- */
- public static float signum(float a)
- {
- if (Float.isNaN(a))
- return Float.NaN;
- if (a > 0)
- return 1.0f;
- if (a < 0)
- return -1.0f;
- return a;
- }
- /**
- * <p>
- * Returns the hyperbolic sine of the given value. For a value,
- * <code>x</code>, the hyperbolic sine is <code>(e<sup>x</sup> -
- * e<sup>-x</sup>)/2</code>
- * with <code>e</code> being <a href="#E">Euler's number</a>. The returned
- * result is within 2.5 ulps of the exact result.
- * </p>
- * <p>
- * If the supplied value is <code>NaN</code>, an infinity or a zero, then the
- * original value is returned.
- * </p>
- *
- * @param a the numeric argument
- * @return the hyperbolic sine of <code>a</code>.
- * @since 1.5
- */
- public static native double sinh(double a);
- /**
- * <p>
- * Returns the hyperbolic tangent of the given value. For a value,
- * <code>x</code>, the hyperbolic tangent is <code>(e<sup>x</sup> -
- * e<sup>-x</sup>)/(e<sup>x</sup> + e<sup>-x</sup>)</code>
- * (i.e. <code>sinh(a)/cosh(a)</code>)
- * with <code>e</code> being <a href="#E">Euler's number</a>. The returned
- * result is within 2.5 ulps of the exact result. The absolute value
- * of the exact result is always less than 1. Computed results are thus
- * less than or equal to 1 for finite arguments, with results within
- * half a ulp of either positive or negative 1 returning the appropriate
- * limit value (i.e. as if the argument was an infinity).
- * </p>
- * <p>
- * If the supplied value is <code>NaN</code> or zero, then the original
- * value is returned. Positive infinity returns +1.0 and negative infinity
- * returns -1.0.
- * </p>
- *
- * @param a the numeric argument
- * @return the hyperbolic tangent of <code>a</code>.
- * @since 1.5
- */
- public static native double tanh(double a);
- /**
- * Return the ulp for the given double argument. The ulp is the
- * difference between the argument and the next larger double. Note
- * that the sign of the double argument is ignored, that is,
- * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
- * If the argument is an infinity, then +Inf is returned. If the
- * argument is zero (either positive or negative), then
- * {@link Double#MIN_VALUE} is returned.
- * @param d the double whose ulp should be returned
- * @return the difference between the argument and the next larger double
- * @since 1.5
- */
- public static double ulp(double d)
- {
- if (Double.isNaN(d))
- return d;
- if (Double.isInfinite(d))
- return Double.POSITIVE_INFINITY;
- // This handles both +0.0 and -0.0.
- if (d == 0.0)
- return Double.MIN_VALUE;
- long bits = Double.doubleToLongBits(d);
- final int mantissaBits = 52;
- final int exponentBits = 11;
- final long mantMask = (1L << mantissaBits) - 1;
- long mantissa = bits & mantMask;
- final long expMask = (1L << exponentBits) - 1;
- long exponent = (bits >>> mantissaBits) & expMask;
- // Denormal number, so the answer is easy.
- if (exponent == 0)
- {
- long result = (exponent << mantissaBits) | 1L;
- return Double.longBitsToDouble(result);
- }
- // Conceptually we want to have '1' as the mantissa. Then we would
- // shift the mantissa over to make a normal number. If this underflows
- // the exponent, we will make a denormal result.
- long newExponent = exponent - mantissaBits;
- long newMantissa;
- if (newExponent > 0)
- newMantissa = 0;
- else
- {
- newMantissa = 1L << -(newExponent - 1);
- newExponent = 0;
- }
- return Double.longBitsToDouble((newExponent << mantissaBits) | newMantissa);
- }
- /**
- * Return the ulp for the given float argument. The ulp is the
- * difference between the argument and the next larger float. Note
- * that the sign of the float argument is ignored, that is,
- * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
- * If the argument is an infinity, then +Inf is returned. If the
- * argument is zero (either positive or negative), then
- * {@link Float#MIN_VALUE} is returned.
- * @param f the float whose ulp should be returned
- * @return the difference between the argument and the next larger float
- * @since 1.5
- */
- public static float ulp(float f)
- {
- if (Float.isNaN(f))
- return f;
- if (Float.isInfinite(f))
- return Float.POSITIVE_INFINITY;
- // This handles both +0.0 and -0.0.
- if (f == 0.0)
- return Float.MIN_VALUE;
- int bits = Float.floatToIntBits(f);
- final int mantissaBits = 23;
- final int exponentBits = 8;
- final int mantMask = (1 << mantissaBits) - 1;
- int mantissa = bits & mantMask;
- final int expMask = (1 << exponentBits) - 1;
- int exponent = (bits >>> mantissaBits) & expMask;
- // Denormal number, so the answer is easy.
- if (exponent == 0)
- {
- int result = (exponent << mantissaBits) | 1;
- return Float.intBitsToFloat(result);
- }
- // Conceptually we want to have '1' as the mantissa. Then we would
- // shift the mantissa over to make a normal number. If this underflows
- // the exponent, we will make a denormal result.
- int newExponent = exponent - mantissaBits;
- int newMantissa;
- if (newExponent > 0)
- newMantissa = 0;
- else
- {
- newMantissa = 1 << -(newExponent - 1);
- newExponent = 0;
- }
- return Float.intBitsToFloat((newExponent << mantissaBits) | newMantissa);
- }
- }
|