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Problem 1

Let 𝐴 and 𝐵 be non-empty subsets of ℝ such that 𝑎 ≤ 𝑏 for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Show
that sup 𝐴 ≤ inf 𝐵 and that the equality holds if and only if for all 𝜀 > 0, there are
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑏 − 𝑎 < 𝜀.

Solution.

Proof. For the first part, ”sup 𝐴 ≤ inf 𝐵” , we will prove this by contradiction. Let’s assume
that

sup 𝐴 > inf 𝐵 (1)

Therefore, we can always find a number 𝑐 > 0, such that sup 𝐴 = inf 𝐵 + 𝑐, which is
equivalent to inf 𝐵 = sup 𝐴 − 𝑐. By the definiton of 𝑠𝑢𝑝𝑟𝑒𝑚𝑒 and the proposition we learnt
in the autumn term of Analysis I, we have

∃ 𝑎0 ∈ 𝐴, such that 𝑎0 > inf 𝐵. (2)

Now, by the definition given of the subsets 𝐴 and 𝐵, we have

∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵 ⟹ 𝑎 ≤ 𝑏.

Therefore, for every 𝑎 ∈ 𝐴, 𝑎 is a lower bound of 𝐵. Hence, by the definiton of 𝑖𝑛𝑓𝑖𝑚𝑢𝑚,
we have

∀𝑎 ∈ 𝐴, 𝑎 ≤ inf 𝐵.

which is a contradiction of (2). Therefore, by the axiom of Trichotomy, we have

sup 𝐴 ≤ inf 𝐵.

For the second part, ”sup 𝐴 = inf 𝐵 ⟺ ∀𝜀 > 0, ∃𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵, such that 𝑏 − 𝑎 < 𝜀” , we
first prove the ”⟹” direction.
”⟹”:
We suppose that sup 𝐴 = inf 𝐵 and let 𝜀 > 0 be arbitrary. Then, we can choose a 𝑎 ∈ 𝐴,
such that

sup 𝐴 − 𝜀
2 < 𝑎 ≤ sup 𝐴 (3)

and 𝑏 ∈ 𝐵, such that
inf 𝐵 ≤ 𝑏 < inf 𝐵 + 𝜀

2 (4)

This is possible since sup 𝐴 and inf 𝐵 are the least upper bound and the greatest lower bound
of 𝐴 and 𝐵, respectively. Then, we combine (3) and (4), by the property of inequalities,

𝑏 − 𝑎 < inf 𝐵 + 𝜀
2 − (sup 𝐴 − 𝜀

2) = inf 𝐵 − sup 𝐴 + 𝜀 = 𝜀 (5)

since sup 𝐴 = inf 𝐵, and we have proved the ”⟹” direction.
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”⟸”:
For this, we will prove this by contradiction. We suppose that ∀𝜀 > 0, ∃𝑎 ∈ 𝐴, ∃𝑏 ∈
𝐵, such that 𝑏 − 𝑎 < 𝜀. We have already proved that sup 𝐴 ≤ inf 𝐵, so we can only assume
that sup 𝐴 < inf 𝐵. Then, we set

𝜀 = inf 𝐵 − sup 𝐴 > 0

By the assumption, we can find 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, such that 𝑏 − 𝑎 < inf 𝐵 − sup 𝐴. But this
implies that

𝑏 < inf 𝐵 + 𝑎 − sup 𝐴. (6)

By the definition of 𝑠𝑢𝑝𝑟𝑒𝑚𝑒 and 𝑖𝑛𝑓𝑖𝑚𝑢𝑚, we have

𝑎 ≤ sup 𝐴 ⟺ 𝑎 − sup 𝐴 ≤ 0 (7)

𝑏 ≥ inf 𝐵 ⟺ 𝑏 − inf 𝐵 ≥ 0 (8)

We combine (6) and (7) by the property of inequlities, we have

𝑏 < inf 𝐵 + 𝑎 − sup 𝐴 ≤ inf 𝐵 + 0 = inf 𝐵
⇓

𝑏 < inf 𝐵

But this contradicts to (8). Therefore, inf 𝐵 could not be greater than sup 𝐴, and we have
proved the ”⟸” direction.

Problem 2

Using lower and upper sums, show that the function 𝑡 ↦ 𝑡2 is integrable on [0, 𝑥] for
all 𝑥 > 0 and that ∫𝑥

0 𝑡2𝑑𝑡 = 𝑥3
3 .

Solution.

Proof. To show that the function 𝑡 ↦ 𝑡2 is integrable on [0, 𝑥] for all 𝑥 > 0, we need to show
that for any 𝜀 > 0, there exists a partition 𝑃 of [0, 𝑥] such that the upper sum 𝑈(𝑓, 𝑃 ) and
the lower sum 𝐿(𝑓, 𝑃 ) satisfy

𝑈(𝑡2, 𝑃 ) − 𝐿(𝑡2, 𝑃 ) < 𝜀

This is equivalent to showing that

lim
𝑛→∞

𝑈(𝑡2, 𝑃𝑛) = lim
𝑛→∞

𝐿(𝑡2, 𝑃𝑛)

where (𝑃𝑛) is a sequence of partitions, i.e 𝑃𝑛 = {𝑡0, 𝑡1, … , 𝑡𝑛}. To find the upper and lower
sums, we need to find the maximum and minimum values of 𝑡2 on each subinterval in [0, 𝑥].
Since 𝑑(𝑡2)

𝑑𝑡 = 2𝑡 > 0 for∀𝑡 ∈ [0, 𝑥], 𝑡2 is an increasing function on [0, 𝑥]. Hence, the maximum
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value on each subinterval is attained at the right endpoint. So if we divide [0, 𝑥] into 𝑛 equal
subintervals of length 𝛥𝑡 = 𝑥/𝑛, then for each 𝑖 = 1, 2, … , 𝑛, we have

𝑀𝑖 = sup{𝑡2 ∶ 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖]} = (𝑡𝑖)2 = (𝑖𝑥
𝑛 )

2
(9)

The minimum value on each subinterval is attained at the left endpoint. So for each 𝑖 =
1, 2, … , 𝑛, we have

𝑚𝑖 = inf{𝑡2 ∶ 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖]}𝑡2 = (𝑡𝑖−1)2 = ((𝑖 − 1)𝑥
𝑛 )

2
(10)

Now, using (9) and (10), we can compute the upper and lower sums as follows. For the
upper sum, we have

𝑈(𝑡2, 𝑃𝑛) =
𝑛

∑
𝑖=1

𝑀𝑖(𝑡𝑖 − 𝑡𝑖−1) =
𝑛

∑
𝑖=1

(𝑖𝑥
𝑛 )

2 𝑥
𝑛 = 𝑥3

𝑛3

𝑛
∑
𝑖=1

𝑖2 (11)

and for the lower sum, we have

𝐿(𝑡2, 𝑃𝑛) =
𝑛

∑
𝑖=1

𝑚𝑖(𝑡𝑖 − 𝑡𝑖−1) =
𝑛

∑
𝑖=1

((𝑖 − 1)𝑥
𝑛 )

2 𝑥
𝑛 = 𝑥3

𝑛3

𝑛
∑
𝑖=1

(𝑖 − 1)2 (12)

Using some formulas for sums of squares, we can simplify (11) and (12) as:

𝑈(𝑡2, 𝑃𝑛) = 𝑥3

𝑛3

𝑛
∑
𝑖=1

𝑖2 = 𝑥3

𝑛3 (𝑛(𝑛 + 1)(2𝑛 + 1)
6 ) = 𝑥3

6 (2 + 3
𝑛 + 1

𝑛2 ) (13)

𝐿(𝑡2, 𝑃𝑛) = 𝑥3

𝑛3

𝑛
∑
𝑖=1

(𝑖 − 1)2 = 𝑥3

𝑛3 (𝑛(𝑛 − 1)(2𝑛 − 1)
6 ) = 𝑥3

6 (2 − 3
𝑛 + 1

𝑛2 ) (14)

Now we can see that as 𝑛 increases, both upper and lower sums converge to the same limit:

lim
𝑛→∞

𝑈(𝑡2, 𝑃𝑛) = lim
𝑛→∞

𝐿(𝑡2, 𝑃𝑛) = 𝑥3

3

Therefore, the function 𝑡 ↦ 𝑡2 is integrable on [0, 𝑥] for all 𝑥 > 0. Since the value of the
limits of the upper and lower sums are the same as 𝑥3

3 , we can conclude that the definite
integral of 𝑡2 on [0, 𝑥] is

∫
𝑥

0
𝑡2𝑑𝑡 = 𝑥3

3
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