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2 Numbers
2.1 Rational numbers
Recall Q = {(p,q) ∈ Z× N}, where ∼ is the quaivalence ralation.

(p1, q1) ∼ (p2, q2) ⇐⇒ p1q2 = p2q1

and we write the equivalence calss of (p,q) as p
q . Each equivalence class has a

distinguished element (p′, q′) such that /∃ n∈ N with n>1 and n | p′,n | q′.We
say p′

q′ is ”in lowest terms”. We define:

p1
q1

+
p2
q2

:=
p1q2 + p2q1

q1q2
,

p1
q1

− p2
q2

:=
p1q2 − p2q1

q1q2
,

p1
q1

× p2
q2

:=
p1p2
q1q2

,

p1
q1

÷ p2
q2

:=
p1q2
q1p2

, p2 ̸= 0,

p1
q1

≤ p2
q2

⇐⇒ q1p2 ≤ p2q1.

These satisfy certain axioms that we list next.
Axioms : 2.1.1

1.a+ b = b+ a ∀a, b ∈ Q (+ is commutative)

2.a× b = b× a ∀a, b ∈ Q (× is commutative)

3.a+ (b+ c) = (a+ b) + c (+isassociative)

4.a× (b× c) = (a× b)× c (× is associative)

5.a× (b+ c) = (a× b) + (a× c) (× is distributive over +)

6.∃0 ∈ Q : a+ 0 = a∀a ∈ Q
7.∃1 ∈ Q : 0 ̸= 1, a× 1 = a∀a ∈ Q
8.∀a ∈ Q, ∃(−a) ∈ Q such that a+ (−a) = 0

9.∀a ∈ Q\{0}, ∃a−1 ∈ Qsuch that a× (a−1) = 1

Axioms : 2.1.2

10. For each x ∈ Q precisely one of (a), (b), (c) holds :

(a)x > 0or(b)x = 0or(c)− x > 0 (Trichotomy axiom)

11.x > 0, y > 0 =⇒ x+ y > 0 ∀x, y ∈ Q
12.x > 0, y > 0 =⇒ xy > 0 ∀x, y ∈ Q
13.∀x ∈ Q, ∃n ∈ Nsuchthatn > x (Archimedean axiom)
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The real numbers R satisfy the exact same axioms,plus one more - the com-
pleteness axiom - disigned to fixed the problem that Q has holes.

2.2 Decimals
2.2.1 Finite decimals

Definition : 2.2.1

For a0 ∈ Z and ai ∈ 0, 1, ..., 9 we define the finite decimal a0.a1...ai as
follows. If a0 ≥ 0 the a0.a1...ai is set to be

a0 +
a1

10 + a2

100 + a3

1000 + ...+ ai

10i ∈ Q

For a0 < 0 we set a0.a1...ai to be −(|a0|.a1...ai)

2.2.2 Eventually periodic decimals

Let us see this first
1 + x+ x2 + . . .+ xn = 1−xn+1

1−x , x ̸= 1,
As we haven’t prove that

1 + x+ x2 + . . .+ xn + . . . = limn→∞
1−xn+1

1−x = 1
1−x , −1 < x < 1,

so for now we simply take it as a definition.
Definition : 2.2.2

For a0 ∈ N, ai>0 ∈ {0, 1, ..., 9} we define

a0.a1...aiai+1ai+2...aj

to be the rational number

a0 +
a1

10 + a2

100 + . . .+ ai

10i + (
ai+1ai+2...aj

10j )( 1
1−10i−j )

Proposition : 2.2.1

Condider two eventually periodic decimals differing in only one place:

a = a0.a1a2 . . . an−1anan+1 . . . , b = a0.a1a2 . . . an−1bnbn+1 . . . (2.6)

that if a < b if and only if an < bn.

Thus, any eventually periodic decimal expansion gives a rational number.
Conversely, periodic decimals give all the rational numbers.

Theorem : 2.2.1

∀x ∈ Q is equal to an eventually periodic decimal expansion: x =
a0.a1...aiai+1ai+2...aj (al ∈ {0, 1, ..., 9} for l ≥ 1).
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Proof. • Without loss of generality we take x ≥ 0 and we ues the notation
x := x− [x] ∈ [0, 1) for the non-integer part of x.

• Let a0 := [x] and e0 := x so

x = a0 + e0, a0 ∈ N, e0 ∈ [0, 1). (2.9)

• Now repeat for 10e0 ∈ [0, 10), setting a1 := [10e0] e1 := 10e0, so we
have:

10e0 = a1 + e1, a1 ∈ {0, 1, . . . , 9}, ek ∈ [0, 1).

so inductively, given ai ∈ 0, 1, . . . , 9 and ei ∈ [0, 1) for i < k so we set
ak := [10ek−1] and ek := 10ek−1,so

10ek−1 = ak + ek, ak ∈ {0, 1, . . . , 9}, ek ∈ [0, 1). (2.10)

and we plug each eqation into the x = ao + e0,then we have:

x = a0 +
a1
10

+
a2
102

+ . . .+
ak
10k

+
ek
10k

, ek ∈ [0, 1). (2.11)

• Remember x = p
q (p, q ∈ N) is a rational number, so if we use p to mulitple

the both sides of the equation (2.9), we get:

p = qa0 + r0,

where r0 := qe0 = p − qa0 ∈ [0, q) must be an integer (Actually, it is the
remainder of p dividing q ). Inductively, q× (2.10) gives that rk := qek is
an integer in [0, q).

• As the remainder rk is an integer, it lies in a finite set {0, 1, . . . , q−1}.After
a while, they must repeat:rj = ri for some j > i.Also ek repeats: ej = ei,
so in the contruction (2.10), we can see that ak also reapeats:aj+1 = ai+1,
so we produce a periodic decimal expansion:

a0.a1a2 . . . ai+1ai+2 . . . aj (2.12)

• Comparing with the definition of rational number,we must prove that

ei
10i

=
ai+1ai+2 . . . aj

10j
1

1− 10i−j
.

and we can change this equation to

10−iei − 10−jej = 10−j(ai+1ai+2 . . . aj). (2.13)

by mulitplying (1 − 10i−j) at the both sides and we add the equalities
101−kek−1ek = ak

10k
of (2.10) for k = i+ 1, i+ 2, . . . j,we can get

10−iei − 10−jej =
ai+1

10i+1
+ . . .+

aj
10j

,

which is precisely (2.13), so it is done!
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However, not all eventually periodic decimals give different rational num-
bers:by (2.6)

0.9 =

(
9

10

)(
1

1− 10−1

)
= 1

so we have this proposition
Proposition : 2.2.2

If x ∈ Q has two different decimal expansions then they are of the form

x = a0.a1a2...ana9 = a0.a1a2...(an + 1) with an ∈ {0, 1, ...8}.

2.2.3 Arbitrary decimals: the real numbers

We can define the real numbers as the set of decimal expansions which do not
end in 9̄, it is not a good definiton,obviously. We will give a better one later.

Definition : 2.2.3

R:={a0.a1a2... : a0 ∈ Z, ai≥1 ∈ {0, 1, ..., 9}, ∄ such that ai=9 ∀i ≥ N}

2.3 Countability
Definition : 2.3.1

A set S is countably infinite if and only if there exists a bijection f : N →
S.

NOTE : A set that is finite, or countably infinite, is said to be
countable.

Proposition : 2.3.1

Suppose S ⊂ N is infinite. Then S is countably infinite.

Proof. We define f : N → S as follows:

1. f(1) = min{S}.

2. Assume f(1), . . . , f(n−1) is defined. Since S is infinite, S\{f(1), . . . , f(n−
1)} is nonempty, and ∀s ∈ S are s ≥ 0, so we define:

f(n) := min{S\{f(1), . . . , f(n− 1)}}.

We want to prove that f is injective and surjective.
Let’s check injectivity firstly. To show f is injective, note that for distinct
i, j ∈ N, we have either i < j or j < i and therefore eitehr f(i) < f(j) or
f(j) < f(i). By definition, we have f(1) < f(2) < f(3) < . . . < f(n) < . . ., so
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it is injective.
As for surjectivity, let’s do it by contraditon. If it is not surjective, then there
exists a smallest s ∈ S\im(f). (im(f) maeans the image of f .) Because f(1) =
min{S}, f(1) ∈ im(S), s ̸= min{S}. We know ∃s′ ∈ S that s′ < s. Pick the
largest such s′, then s′ = f(n) for some n ∈ N, and by our definition, we must
have s = f(n+ 1), but f(n+ 1) ∈ im(f), which is a contraditon.

Proposition : 2.3.2

Z is countably infinite.

Proof. Formally, we can find the bijection f : N → Z.

f(n) =

{
n
2 (n = 2k),

−n−1
2 (n = 2k + 1).

where k ∈ N.
Or the Dr. Chandra’s way: f : N → Z, for k ≥ 1,{

f(2k − 1) := −(k − 1),

f(2k) := k.

It is very easy to check both of the ways are bijection maybe we can do it
as exercise.

Theorem : 2.3.1

Q is countably infinite.

Proof. • (Pairing funciton) Without loss of generality,let us consider Q>0.
We know that any rational number can be expressed as p

q , and gcd(p, q) =
1, p, q ∈ N, q ̸= 0, which means we can regard a rational number as a
pair of numbers (p, q). Therefore, we can construct a pairing function
π : N× N → N, which is a bijection, so the proof is done.

• We can also do like Dr. Chandra, which is more explicit. Firstly, let’s
show Q>0 is countably infinite. Define:

f : Q>0 → N>0, f(m/n) := 2m3n.

where m,n > 1 and m/n is in lowest terms.
As every natural number greater than 1 has a unique factorization(The
Fundametal Theorem of Arithmetic of the Part II of IUM). If a natural
number can be expressed as the form of 2m3n, the pair of (m,n) is unique.
Therefore, f is injective. im(f) is an infinite subset of N, so it is countably
infinite by Proposition 2.31. Therefore, we have a bijection F : N>0 →
Q>0, which is the inverse function of f . Now we can proof the countability
of Q - define a bijection: g : N>0 → Q, then we set:
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g(1) := 0 and

{
g(2k) := F (k),

g(2k + 1) := −F (k).

Then, if q1, q2 . . . (qi := F (i)) is our lists of elements of Q>0 then our new
list is 0, q1,−q1, q2,−q2, . . . so it is done!

NOTE : The set Qc(irrational numbers)(regarding R is Ω.) is un-
countable, which tells us that the number of the irrational numbers is
much much more than the number of rational numbers. The way to
prove it is the same as to prove R is uncountable: Cantor’s Diagonal
Argument,which is as follows.

Theorem : 2.3.2

R is uncountable.

Proof. (Cantor’s Diagonal Argument) We proof this by contraditon. If R is
countable, then we can list all the real numbers just as follows, using decimal
expansions with no 9s:

x1 = a1.a11a12a13a14 . . .

x2 = a2.a21a22a23a24 . . .

x3 = a3.a31a32a33a34 . . .

...
xm = am.am1am2am3am4 . . .

...

As usual a1, a2, a3, . . . ∈ Z and a11, a12, . . . ∈ {0, 1, 2, . . . , 9}.
Now we can produce a real number x := 0.b1b2 . . . bn . . . not on the list:

Pick b1 ∈ {0, 1, . . . , 8} such that b1 ̸= a11,

...
Pick b2 ∈ {0, 1, . . . , 8} such that b2 ̸= a22,

P ick bn ∈ {0, 1, . . . , 8} such that bn ̸= ann,

...

Since we don’t allow 9 we don’t end up with a decimal ending in 9̄ and we really
have x ∈ R,then ∀i ≥ 1, we see x ̸= xi, because it differs in ith decimal place
aii. Therefore we found an x ∈ R not on the list. It is done!
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2.3.1 Extra

Definition : 2.3.2

Algebraic numbers: There exits a set A with Q ⊂ A ⊂ R called the
set of algebraic numbers: A is the collection of x ∈ R which satisfy a
polynomial equation p(x) = 0,where p has integer coefficients.

Proposition : 2.3.3

Any rational numbers p/q satisfies an equation p(x) := qx− p = 0,so we
indeed have Q ⊂ A.

Proposition : 2.3.4

n
√
m satisfies p(x) := xn −m, so n

√
m ∈ A.

Examples of transcendental numbers are e and π .The set of transcendental
numbers - real numbers which are not algebraic - is uncountable.

2.4 The Completeness Axioms
Exercise 2.4.1. Show if a subset S ⊂ R has a maximum then it is unique.

Definition : 2.4.1

∅ ̸= S ⊂ R is bounded above if and only if

∃M ∈ R such that ∀x ∈ S, x ≤ M.

Such an M is called an upper bound for S.
S is bounder below if and only if

∃M ∈ R such that ∀x ∈ S,M ≤ x.

Such an M is called a lower bound.
S is bounded if and only if S is bounded above and below.

Exercise 2.4.2. Show that S is bounded if and only if

∃R > 0 such that ∀x ∈ S, −R ≤ x ≤ R.

Definition : 2.4.2

Suppose ∅ ̸= S ⊂ R is bounder above. We say x ∈ R is a least upper
bound of S of supremum of S if and only if

• x is an upper bound for S (i.e. x ≥ s ∀s ∈ S), and

• x ≤ y for any y is an upper bound for S (y ≥ s ∀s ∈ S =⇒ x ≤ y).
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Example 2.4.1. Let S = (0, 1). Let’s find sup(S) and inf(S).

Solution. Let’t claim that 1 = sup(S).
• claim: 1 is an upper bound. It is obvious that ∀x ∈ (0, 1), x < 1.

• claim: 1 is the least upper bound. Let’s do it by contraditon. If 1 is not
the least upper bound of (0.1), then ∃y is an upper bound of(0, 1) with
y < 1. Since y is an upper bound, y > 1

2 ∈ (0, 1), then y+1
2 ∈ (0, 1),

asy < 1. But y+1
2 > y as 1 > y, so y is not an upper bound, which is a

contradiction.
□

Theorem : 2.4.1

Completeness axiom of R: Suppose that S ⊂ R is nonempty and
bounded above, then S has a supremum and sup S ∈ R.

Proof. • Without loss of generality, we may assume S ̸= ∅ and has s positive
element 0 ≤ s ∈ S and we replace S by S + a := s+ a : s ∈ S. This will
simplify things, because positive decimals behave better than negative
decimals.

• Now, S has a positve element and S is bounded above by some N ∈ N.
We can replace finding the supremum of S by finding the supremum of
S ∩ [0, N ]. One has a supremum if and only if the other one does and the
two supremums are equal.

• Next, we will create the sup S = a0.a1a2a3... ≥ 0 digit by digit.

• Leading integer : Let s ∈ S ∩ [0, N ] be arbitrary and we write it as a
decimal s0.s1s2s3... not ending in 9 and as s ∈ [0, N ], s0 ∈ {0, 1, ..., N}
which is a finite set. So the set of leading integer s0 is finite then it must
contain a maximum, we set a0 as the max{0, 1, ..., N}.

• First decimal place : Now let’s consider the set S ∩ [a0, a0 + 1), it is
not empty and we may replace S by it. All the elements are of the form
a0.s1s2... with s1 ∈ {0, 1, ..., 9} which is a finite set then it must contain a
maximum, we set it as a1.

• Second decimal place : Now let’s consider the set S∩[a0.a1, a0.(a1+1))(If
a1 = 9 we mean S ∩ [a0.9, a0 + 1)), it is not empty and we may replace
S by it. All the elements are of the form a0.a1s2... with s2 ∈ {0, 1, ..., 9}
which is a finite set then it must contain a maximum, we set it as a2.

• n-th decimal place : Let’s continue inductively, assume we’ve defined
a0, ..., an−1 and shown that

S ∩ [a0.a1...an−1, a0.a1...(an−1 + 1))

is nonempty and has the same upper bounds as the original S. Any
element in the set is the form of s = a0.a1...an−1snsn+1... with sn ∈
{0, 1, ..., 9}, which is a finite set. Thus there is a maxiumu, we set it as
an.
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• We have already produced a decimal expansions

a0.a1a2...an... with an ∈ N and aj ∈ {0, 1, ..., 9}.

If this decimal has repeating 9’s, then we assume we have rounded up so
that we have

x = a0.a1a2...an.. ∈ R.

• Check x is an upper bound. Let s ∈ S be arbitrary, it can be expressed
as s = s0.s1s2.... By our construction, we have

i. s0 < a0. If in this case, we have done.
ii. s0 = a0.

if in the second case, then we have

i. s1 < a1. If in this case, we have done.
ii. s1 = a1.

then we can finish this by induction.

• Check x is the least upper bound. Let’s do it by contradiction.
Suppose b < x and b is an upper bound of S and n is the first digit where
b differs from x.

b = a0.a1a2 . . . an−1bn . . . with bn < an

But by our construction, ∃s ∈ S of the form s = a0.a1 . . . an−1an . . . so
s > b which is a contradiction.

NOTE : The completeness axiom means R ⊃ Q fills in all the holes,
and the completeness axiom is the only axiom that R satisfies while
Q doesn’t.

Proposition : 2.4.1

There exists 0 < x ∈ R such that x3 = 3. We call x :=
√
3.

Proof. • Since there is no such a number in Q that x2 = 3, we’d better use
the completeness axiom.

• Therefore,we need to define a subset S ⊂ R

S := {0 < a ∈ R : a2 < 3}.

then we set x := sup(S) so we must check:

1. S is nonempty.
2. S is bounded above.
3. x2 = 3.
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• It is very easy to check 1 and 2. For 1, 1 ∈ S which is obvious. For 2, let’s
choose the number 2. If a = 2 then a2 = 4 > 3, so 2 is an upper bound of
S.

• As for 3, we need to show x2 ≮ 3 ∩ x2 ≯ 3 then x2 = 3 by trichotomy
axiom.(Axiom 2.1.2 13).

• First, let’s see what will happen if x2 < 3. If x2 < 3 then we can find
a sufficiently small ϵ > 0 such that (x + ϵ)2 < 3 and this will make a
contradiction that (x+ ϵ)S as (x+ ϵ)2 < 3, but (x+ ϵ) > x as ϵ > 0 while
x = sup(S), which is a contradiction. Let’s be more explicit:

(x+ ϵ)2 = x2 + ϵ(2x+ ϵ) ≤ x2 + ϵ(2× 2 + 1) = x2 + 5ϵ < 3.

as ϵ should be as small as possible and 2 is the upper bound of S so 2 ≥ x.
Then, we have 5ϵ < 3− x2.
Therefore, if we set

ϵ := min(1,
3− x2

10
),

then ϵ > 0 as x2 < 3 =⇒ 3−x2

10 > 0 and (x+ϵ)2 < 3. Therefore,(x+ϵ) ∈ S
is larger than x = sup(S), which is the contradiction.

• Now, let’s prove x2 ≯ 3, also by contradiction. Let’s assume x2 > 3, then
we can find a sufficiently small ϵ > 0 such that (x− 3)2 ≤ 3, then (x− ϵ)
is an upper bound of S but (x− ϵ) < x as ϵ > 0. Let’s be more explicit.

(x− ϵ)2 = x2 − 2ϵx+ ϵ2 ≤ x2 − 4ϵ ≤ 3

as x ≤ 2 and ϵ ≥ 0, so we have 4ϵ ≤ x2 − 3. So if we set

ϵ0 :=
x2 − 3

4

then (x − ϵ)2 > 3 for all 0 ≤ ϵ ≤ ϵ0. So ∀y ∈ [x − ϵ0, x], we have
y2 ≥ 3,which means y is the uppre bound of S but y < x so y is not an
upper bound, which is a contradiction.

Exercise 2.4.3. Show 3
√
2 exists.

Proposition : 2.4.2

uppose ∅ ̸= S ⊂ R and y is an upper bound for S, then y = sup S ⇐⇒
∀ε ∈ S ∃s ∈ S : s > y − ε.

Proof. • =⇒ direction: Suppose y = sup S. Let ϵ > 0, y− ϵ < y, so y− ϵ is
not an upper bound for S. Therefore, ∃s ∈ S, s > y − ϵ.

• ⇐= direction: We know y is an upper bound and ∀ϵ > 0, ∃s ∈ S, s > y−ϵ
and we want to prove y is the least upper bound. Suppose x < y and x is
an upper bound of S. Set ϵ = y−x, ∃s ∈ S, s > y− (y−x) = x, meaning
s > x, which is a contradiction.

13



2.5 Alternative approach: Dedekind cuts
Definition : 2.5.1

We say a nonempty subset S ⊂ Q is a Dedekind cut if it satisfies (i) and
(ii) below.

(i) If s ∈ S and s > t ∈ Q then t ∈ S(S is a semi-infinite interval to
the left).

(ii) S is bounded above but has no maximum.

Definition : 2.5.2

R := {Dedekind cuts S ⊂ Q}.

We can again extend operations from Q to our newly constructed R; eg if
S ⊂ Q and T ⊂ Q are Dedekind cuts, we define:

S + T := {s+ t : s ∈ S, t ∈ T} ⊂ Q.

Exercise 2.5.1. Check this is a Dedekind cut and gives the ususal + on Q:i.e.
Sq1 + Sq2 = Sq1+q2 .

Similarly, we can define < on R to be just ⊊ on Dedekind cuts:

S < T ⇐⇒ S ⊊ T.

Exercise 2.5.2. Show a set of real numbers A ⊂ R is bounded above if and only
if A is a set of Dedekind cuts S all contained in some fixed intervel (−∞, N)∩Q
for some N ∈ N.

Exercise 2.5.3. If A is bounded above nonempty set of Dedekind cuts, define

supA :=
∪
S∈A

⊂ Q.

Show that this is also a Dedekind cut(a real number) and check it is the least
upper bound of A.

2.6 Triangle inequalities
Theorem : 2.4.1

For all a, b ∈ R, we have

|a+ b| ≤ |a|+ |b|.

There are so many ways to prove this inequality, what we do here is a very
easy way.
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Proof. Suppose by contradiction that |a+ b| > |a|+ |b|then

|a+ b||a+ b| > (|a|+ |b|)|a+ b| > (|a|+ |b|)2 = |a|2 + 2|a||b|+ |b|2.

But this contradicts

|a+ b|2 = (a+ b)2 = a2 + 2ab+ b2 ≤ |a|2 + 2|a||b|+ |b|2.
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3 Sequences
3.1 Introduction

Definition : 3.1.1

A sequence is a function a : N → R.

Exercise 3.1.1. Show any sequence(an) can be written as a series an =
∑n

i=1 bi
for an appropriate choice of sequence (bn).

3.2 Convergence of Sequences
Definition : 3.2.1 (Convergence)

We say that an → a as n → ∞ if and only if

∀ϵ > 0∃N ∈ N such that ∀n ≥ N, |an − a| < ϵ.

Read this as follows:
However close (∀ϵ > 0) I want to get to the limit a, there is a point in the
sequence (∃N ∈ N) beyond which (n ≥ N) all an are indeed that close to
the limit a(|an − a| < ϵ).

Remark: N depends on ϵ ! For a while we will sometimes denote
it Nϵ, as a reminder.
Equivalently:

∀ϵ > 0, ∃Nϵ ∈ N such that [n ≥ Nϵ → |an − a| < ϵ]

or equivalently:

∀ϵ > 0, ∃Nϵ ∈ N such that |an − a| < ϵ ∀n ≥ Nϵ.

Example 3.2.1. Prove 1
n → 0 as n → ∞.

Rough working: Fix ϵ > 0, we want to find Nϵ ∈ N such that |an − a| =
| 1n − 0| = 1

n < ϵ ∀n ≥ Nϵ. As this is equivalent to n > ϵ−1 then it is enough to
take Nϵ > ϵ−1 which we know exists by Archimedean axiom (e.g.Nϵ = [ 1ϵ ] + 1).

Proof. Let ϵ > 0 be arbitrary and let Nϵ =
1
ϵ + 1, then for any n ≥ Nϵ we have

| 1ϵ − 0| = 1
n ≤ 1

Nϵ
< ϵ since Nϵ >

1
ϵ .

How to prove an → a

∀ϵ > 0, ∃Nϵ ∈ N such that |an − a| < ϵ ∀n ≥ Nϵ

(I) Fix ϵ > 0.

(II) Calculate |an − a|.

(II’) Find a good estimate |an − a| ≤ bn.
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(III) Try to solve bn < ϵ.

(IV) Find Nϵ ∈ N such that (∗) holds whenever n ≥ Nϵ.

(V) Put everything together into a logical proof(usually involves rewritng ev-
erything in reverse order).

Example 3.2.2. Prove that an = n+5
n+1 → 1.

Proof. Let ϵ > 0, fix Nϵ ∈ N with Nϵ >
4
ϵ . Then ∀n ≥ Nϵ,

|an − 1| = 4

n+ 1
≤ 4

Nϵ + 1
≤ 4

Nϵ
< ϵ.

Example 3.2.3. Define an by setting a1 = a2 = 0 and an = n+2
n−2 for n ≥ 3.

Prove an → 1.

Rough work:

Proof. Let ϵ > 0 ,choose Nϵ ∈ N with Nϵ > max(4, 8
ϵ ). For n ≥ Nϵ |an − 1| =

4
n−2 (when n ≥ 3) ≤ 8

n (when n ≥ 4) ≤ 8
Nϵ

< ϵ.

Example 3.2.4. Prove that an = n+2
|n−2| → 1.

Proof.

We now say what it means for a sequence to converge.
Definition : 3.2.2

We say an converges if and only if ∃a ∈ R such that an → a, i.e.

∃a such that ∀ϵ > 0∃N ∈ N such that ∀n ≥ N =⇒ |an − a| < ϵ.

Negating the above statement gives the following:
Definition : 3.2.3

We say an diverges if and only if it does not converge (to any a ∈ R), i.e.

∀a ∃ϵ > 0 such that ∀N ∈ N, ∃n ≥ N such that |an − a| ≥ ϵ.

Definition : 3.2.5

Fix a sequence of real numbers (an)n≥1. Consider

∀n ≥ 1∃ϵ > 0 such that |an| < ϵ.

then we say this sequence is bounded.

We can also define limits for complex sequences. Let |z| :=
√
(Re z)2 + (Im z)2.
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Definition : 3.2.4

an ∈ C, ∀n ≥ 1. We say an → a ∈ C if and only if

∀ϵ > 0, ∃N ∈ N such that n ≥ N =⇒ |an − a| < ϵ.

Example 3.2.5. Prove an = ein

n3−n2−6 → 0 as n → ∞.

Proof.

Example 3.2.6. Set δ = 10−1000000, an = (−1)nδ. Prove that an diverges,
that is it does not converge to ant a ∈ R.

Proof.

Theorem : 3.2.1

Limits are unique. If an → a and an → b, then a = b.

Proof 1.

Proof 2.
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