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Problem 1

Part I: For any integer n ≥ 0 define

I+(n) ≡
∫ 1

0

ey sin(nπy)dy, I−(n) ≡
∫ 1

0

e−y sin(nπy)dy.

(i) Calculate these two integrals explicitly.
(ii) Use the result of part (i) to find the Fourier sine series of both sinh y and cosh

y over the interval [0, 1] (you should use ideas from the ”Calculus and Applications”
course).

Part II: Consider the electric circuit shown in the Figure where the vertical edges
have conductance c and the horizontal edges have conductance d. Node 2 N + 1 is set
to unit voltage, while nodes 0 and N + 1 to 2 N are grounded (set to zero voltage).
Kirchhoff’s current law holds at nodes 1 to N. Let x̂ denote the voltages at nodes 1 to
N. The nodes should be ordered as follows: 1, 2, . . . , 2 N− 1, 2 N, 0, 2 N + 1.

(a) Show that the conductance-weighted Laplacian matrix is

K =

 cKN + dIN −dIN −cP

−dIN dIN 0

−cPT 0 cI2

 ,

where Ij denotes the j-by- j identity matrix and KN is the N -by- N matrix familiar
from lectures. You should find the N -by-2 matrix P.

(b) Let {Φj | j = 1, . . . , N} and {λj | j = 1, . . . , N} denote the orthonormal eigen-
vectors and corresponding eigenvalues of KN . By writing

x̂ =

N∑
j=1

aj(µ)Φj , µ =
d

c

find the coefficients {aj(µ) | j = 1, . . . , N}.

(c) Show that the n-th element of x̂ can also be written as
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λ+(µ)
n − λ−(µ)

n

λ+(µ)N+1 − λ−(µ)N+1
, n = 1, . . . , N,

for suitable choices of the parameters λ±(µ).
(d) The uniqueness theorem for harmonic potentials discussed in lectures has an

analogous version when the conductances are not all equal. Use this fact to establish
a discrete identity involving your answers to parts (b) and (c).

(e) Now pick µ to be given by

µ =
1

(N + 1)2

and introduce the new variable

y =
n

(N + 1)

Find the limit of both left- and right-hand sides of the discrete identity you found
in part (d) as N → ∞ with y taken to be fixed.

Solution.

Part I: (i)

I+(n) =

∫ 1

0

ey sin(nπy)dy

=

∫ 1

0

sin(nπy)d(ey)

= sin(nπy)ey
∣∣∣∣1
0

− nπ

∫ 1

0

ey cos(nπy)dy

= −nπ

∫ 1

0

ey cos(nπy)dy

= −nπ

∫ 1

0

cos(nπy)d(ey)

= −nπ cos(nπy)ey
∣∣∣∣1
0

− n2π2

∫ 1

0

ey sin(nπy)dy

= −nπ(cos(nπ)e− 1)− n2π2I+(n)

(n2π2 + 1)I+(n) = nπ(1− (−1)ne)

I+(n) =
nπ(1− (−1)ne)

n2π2 + 1

I−(n) =

∫ 1

0

e−y sin(nπy)dy

= −
∫ 1

0

sin(nπy)d(e−y)

= −e−y sin(nπy)

∣∣∣∣1
0

+ nπ

∫ 1

0

e−y cos(nπy)dy

= −nπ

∫ 1

0

cos(nπy)d(e−y)
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= −nπ cos(nπy)e−y

∣∣∣∣1
0

− n2π2

∫ 1

0

e−y sin(nπy)dy

= −nπ(cos(nπ)e−1 − 1)− n2π2I−(n)

I−(n) + n2π2I−(n) = nπ(1− (−1)ne−1)

I−(n) =
nπ(1− (−1)ne−1)

n2π2 + 1

As conclusion, we have

I+(n) =
nπ(1− (−1)ne)

n2π2 + 1

I−(n) =
nπ(1− (−1)ne−1)

n2π2 + 1

(ii) As sinh y is an odd function, we have an = 0 for all n. Therefore, at the interval
[0, 1], we have

bn = 2

∫ 1

0

ey − e−y

2
sin(nπy)dy

=

∫
ey sin(nπy)dy −

∫ 1

0

e−y sin(nπy)dy

= I+(n)− I−(n)

Hence, the Fourier sine series of sinh y is

sinh y =

∞∑
n=1

bn sin(nπy) =

∞∑
n=1

(I+(n)−I−(n)) sin(nπy) =

∞∑
n=1

nπ(−1)n(e−1 − e)

n2π + 1
sin(nπy)

For cosh y, it is an even function. We can do the odd extension of cosh y to get
the Fourier sine series of cosh y. Hence,

bn = 2

∫ 1

0

ey + e−y

2
sin(nπy)dy

=

∫ 1

0

ey sin(nπy)dy +

∫ 1

0

e−y sin(nπy)dy

= I+(n) + I−(n)

Hence, the Fourier sine series of cosh y is

cosh y =

∞∑
n=1

bn sin(nπy) =

∞∑
n=1

(I+(n)+I−(n)) sin(nπy) =

n∑
n=1

2nπ(−1)n(e−1 + e)

n2π + 1
sin(nπy)

As conclusion, we have

sinh y =

∞∑
n=1

nπ(−1)n(e−1 − e)

n2π + 1
sin(nπy)
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cosh y =

n∑
n=1

2nπ(−1)n(e−1 + e)

n2π + 1
sin(nπy)

Part II: (a) By the order given, The conductance-weighted Laplacian matrix of the graph is
given by

which is equal to

K =

cKN + dIN −dIN −cP

−dIN dIN 0

−cPT 0 cI2

 ,

where Ij denotes the j-by- j identity matrix and KN is the N -by- N matrix
familiar from lectures and the N -by-N matrix P is given by

P =



1 0

0 0

0 0
...

...
0 0

0 1


(b) For this electric circuit, we have:

KX = f (1)cKN + dIN −dIN −cP

−dIN dIN 0

−cPT 0 cI2


x̂0
ê

 =

 0

Ceff

f̂

 (2)

where x̂ is the vector of the voltages at the nodes 1 to N . Since the nodes at
N + 1 to 2N are grounded, the voltages there are all 0 and ê is the vector of the
voltages at the voltage source 2N + 1 and 0, Ceff is the vector of the effective
conductance, and f̂ is the vector of the applied voltages. As KCL holds at nodes
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1 to N , the flux of nodes 1 to N are all zero. In ditails, we have

ê =

[
0

1

]
f̂ =

[
−f0

f0

]

The linear system (2) is equivalent to

cKN x̂+ dIN x̂− dIN0− cPê = 0 (3)

dIN x̂− dIN0 = Ceff (4)

−cPT ê = f̂ (5)

Let’s consider equation (3), it impies that

cKN x̂+ dIN x̂ = cPê (6)

cKN x̂+ dx̂ = cPê =


0

0
...
c

 (7)

Let us solve equation (7) using the eigenvectors of KN , which we learnt in the
lecture.

KNΦj = λΦj , j = 1, 2, · · · , N (8)

where

Φj =

√
2

N + 1



sin
(

jπ
N+1

)
sin
(

2jπ
N+1

)
·
·

sin
(

njπ
N+1

)


, j = 1, . . . , N

which has corresponding eigenvalue

λj = 2− 2 cos

(
πj

N + 1

)
, j = 1, . . . , N.

This orthonormal set of vectors can be used as a basis of the solution space. As

x̂ =

N∑
j=1

aj(µ)Φj , µ =
d

c

for some set of coefficients {aj(µ) | j = 1, . . . , N} to be determined. The equation
(7) now tells us that

cKN x̂+ dx̂ = cKN (

N∑
j=1

aj(µ)Φj) (9)
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= c

N∑
j=1

aj(µ)λjΦj + d

N∑
j=1

aj(µ)Φj (10)

=

N∑
j=1

(caj(µ)λj + daj(µ))Φj =

N∑
j=1

aj(µ)(cλj + d)Φj =


0

0
...
c

 (11)

The orthonormality of the eigenvectors can be exploited to find the coefficients
aj(µ). To see this, note that on multiplying (11) by ΦT

j , it follows that

N∑
j=1

aj(µ)(cλj + d)ΦT
mΦj = ΦT

m


0

0
...
c

 = c

√
2

N + 1
sin(

Nmπ

N + 1
).

By the orthonormality of the eigenvectors, we have

ΦT
mΦj = δmj .

where δmj is the Kronecker delta. Therefore, we have

am(µ)(cλm + d) = c

√
2

N + 1
sin(

Nmπ

N + 1
)

am(µ) =
c
√

2
N+1 sin(

Nmπ
N+1 )

cλm + d

As µ = d
c , we have

am(µ) =

√
2

N + 1

sin(Nmπ
N+1 )

λm + µ
=

√
2

N + 1

sin(Nmπ
N+1 )

(2− 2 cos(Nmπ
N+1 )) + µ

Therefore, we have the coefficients {aj(µ)|j = 1, ..., N} as

aj(µ) =

√
2

N + 1

sin( Njπ
N+1 )

(2− 2 cos( Njπ
N+1 )) + µ

(c) As KCL holds at nodes 1 to N and node 2N + 1 is set to unit voltage and node
0 is grounded, we have

x0 = 1, , x2N+1 = 1

For n = 1, 2, ..., N

c(xn+1 − xn) = dxn + c(xn−1 − xn)

xn =
c

2c+ d
(xn+1 + xn−1)
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=
xn+1 + xn−1

µ+ 2

where µ = d
c . Therefore, we have

(2 + µ)xn = xn−1 + xn+1, n = 1, 2, ..., N

We get such a recrussion relation and it is linear, then we can solve it like this.
We can transfer the relation into a characteristic equation,

(2 + µ)λn = λn−1 + λn+1 (12)

λn+1 − (2 + µ)λn + λn−1 = 0 (13)

λn−1(λ2 − (2 + µ)λ+ 1) = 0 (14)

As n = 1, 2, ..., N , λn−1 ̸= 0, then it must have λ2 − (2 + µ)λ + 1 = 0, then we
can get the solution of λ,

λ =
1

2
(µ+ 2±

√
4µ+ µ2)

Therefore, we have

xn =
( 12 (µ+ 2 +

√
4µ+ µ2))n − ( 12 (µ+ 2−

√
4µ+ µ2))n

( 12 (µ+ 2 +
√
4µ+ µ2))N+1 − ( 12 (µ+ 2−

√
4µ+ µ2))N+1

We set

λ+(µ) =
1

2
(µ+ 2 +

√
4µ+ µ2)

λ−(µ) =
1

2
(µ+ 2−

√
4µ+ µ2),

Then, we have

xn =
λ+(µ)

n − λ−(µ)
n

λ+(µ)N+1 − λ−(µ)N+1
n = 1, 2, ..., N

(d) By the uniqueness theorem of hormonic potentials, the results from (b) and (c)

must be equal. Therefore, we have

λ+(µ)
n − λ−(µ)

n

λ+(µ)N+1 − λ−(µ)N+1
=

N∑
j=1

2

N + 1

sin( Njπ
N+1 )

(2− 2 cos( jπ
N+1 )) + µ

sin(
njπ

N + 1
) (15)

λ+(µ)
n − λ−(µ)

n

λ+(µ)N+1 − λ−(µ)N+1
=

2

N + 1

N∑
j=1

sin( Njπ
N+1 )

(2− 2 cos( jπ
N+1 )) + µ

sin(
njπ

N + 1
) (16)

which is the discrete identity.
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(e) We take the limit N → ∞ at the both sides of identity (16) and use

µ =
1

(N + 1)2
, y =

n

N + 1
.

then we get,

lim
N→∞

( 12 (µ+ 2 +
√

4µ+ µ2))n − ( 12 (µ+ 2−
√

4µ+ µ2))n

( 12 (µ+ 2 +
√

4µ+ µ2))N+1 − ( 12 (µ+ 2−
√

4µ+ µ2))N+1

= lim
N→∞

∞∑
j=1

2

N + 1

sin( Njπ
N+1 )

(2− 2 cos( jπ
N+1 )) +

1
(N+1)2

sin(jπy)

As N → ∞, the jπ
N+1 is very small and we use the Taylor series,

2− 2 cos(
jπ

N + 1
) = 2(1− cos(

jπ

N + 1
)) = 2(1− (1− 1

2!

j2π2

(N + 1)2
) + . . .) =

j2π2

(N + 1)2
+ . . .

sin(
jπ

N + 1
) =

πj

N + 1
+ . . .

Let us see the limitation again. From the Calculus and Applications course, we
know that,

lim
N→∞

(
1

2

((
1

(N + 1)2

)
+ 2 +

√
4

1

(N + 1)2
+

1

(N + 1)2

))n

−(
1

2

((
1

(N + 1)2

)
+ 2−

√
4

1

(N + 1)2
+

1

(N + 1)2

))n

= 0

lim
N→∞

(
1

2

((
1

(N + 1)2

)
+ 2 +

√
4

1

(N + 1)2
+

1

(N + 1)2

))N+1

−

(
1

2

((
1

(N + 1)2

)
+ 2−

√
4

1

(N + 1)2
+

1

(N + 1)2

))N+1

= e− 1

e

For the identity, use the Taylor expansion of 2− 2 cos( jπ
N+1 ),

0

e− e−1
= lim

N→∞

∞∑
j=1

2(N + 1) sin( Njπ
N+1 )

j2π2 + 1
sin(jπy)

0 = lim
N→∞

∞∑
j=1

2(N + 1)(e− e−1) sin( jπ(N+1)−jπ
N+1 )

j2π2 + 1
sin(jπy)

0 = lim
N→∞

∞∑
j=1

2(N + 1)(e− e−1)(sin(jπ) cos( jπ
N+1 )− cos(jπ) sin( jπ

N+1 ))

j2π2 + 1
sin(jπy)

0 = lim
N→∞

∞∑
j=1

2(N + 1)(e− e−1)(−(−1)j sin( jπ
N+1 ))

j2π2 + 1
sin(jπy)
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We use the Taylor expansion of sin( jπ
N+1 ),

0 = lim
N→∞

∞∑
j=1

2(N + 1)(e− e−1)(−(−1)j πj
N+1 )

j2π2 + 1
sin(jπy)

0 = 2

∞∑
j=1

jπ(e−1 − e)(−1)j

j2π2 + 1
sin(jπy)

0 =

∞∑
j=1

jπ(e−1 − e)(−1)j

j2π2 + 1
sin(jπy)

We can observe that
∞∑
j=1

jπ(e−1 − e)(−1)j

j2π2 + 1
sin(jπy)

is the Fourier sine series of sinh y from Part I.
Since

y =
n

N + 1
→ 0 when N → ∞

sinh y = 0 when y = 0

We have
∞∑
j=1

jπ(e−1 − e)(−1)j

j2π2 + 1
sin(jπy) = sinh 0 = 0

Therefore, the value of sinh y when y = 0 is coincide with what we calculate in
(e). It is clear that the Fourier sine series of sinh y is zero when y is fixed as n

1+N .
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