
Parsing expression grammar
In computer science, a parsing expression grammar (PEG), is a type of analytic formal
grammar, i.e. it describes a formal language in terms of a set of rules for recognizing strings in the
language. e formalism was introduced by Bryan Ford in 2004[1] and is closely related to the
family of top-down parsing languages introduced in the early 1970s. Syntactically, PEGs also look
similar to context-free grammars (CFGs), but they have a different interpretation: the choice
operator selects the first match in PEG, while it is ambiguous in CFG. is is closer to how string
recognition tends to be done in practice, e.g. by a recursive descent parser.

Unlike CFGs, PEGs cannot be ambiguous; if a string parses, it has exactly one valid parse tree. It is
conjectured that there exist context-free languages that cannot be recognized by a PEG, but this is
not yet proven.[1] PEGs are well-suited to parsing computer languages (and artificial human
languages such as Lojban), but not natural languages where the performance of PEG algorithms is
comparable to general CFG algorithms such as the Earley algorithm.[2]

Definition
Syntax

Semantics

Operational interpretation of parsing expressions

Examples

Implementing parsers from parsing expression grammars

Advantages

Disadvantages
Memory consumption

Indirect left recursion

Expressive power

Ambiguity detection and influence of rule order on language that is
matched

Bottom-up PEG parsing

See also

References

External links

Contents

Definition

Formally, a parsing expression grammar consists of:

A finite set N of nonterminal symbols.

A finite set Σ of terminal symbols that is disjoint from N.

A finite set P of parsing rules.

An expression eS termed the starting expression.

Each parsing rule in P has the form A ← e, where A is a nonterminal symbol and e is a parsing
expression. A parsing expression is a hierarchical expression similar to a regular expression, which
is constructed in the following fashion:

1. An atomic parsing expression consists of:

any terminal symbol,

any nonterminal symbol, or

the empty string ε.

2. Given any existing parsing expressions e, e1, and e2, a new parsing
expression can be constructed using the following operators:

Sequence: e1 e2

Ordered choice: e1 / e2

Zero-or-more: e*

One-or-more: e+

Optional: e?

And-predicate: &e

Not-predicate: !e

e fundamental difference between context-free grammars and parsing expression grammars is
that the PEG's choice operator is ordered. If the first alternative succeeds, the second alternative is
ignored. us ordered choice is not commutative, unlike unordered choice as in context-free
grammars. Ordered choice is analogous to so cut operators available in some logic programming
languages.

e consequence is that if a CFG is transliterated directly to a PEG, any ambiguity in the former is
resolved by deterministically picking one parse tree from the possible parses. By carefully choosing
the order in which the grammar alternatives are specified, a programmer has a great deal of
control over which parse tree is selected.

Like boolean context-free grammars, parsing expression grammars also add the and- and not-
syntactic predicates. Because they can use an arbitrarily complex sub-expression to "look ahead"
into the input string without actually consuming it, they provide a powerful syntactic lookahead

Syntax

Semantics

and disambiguation facility, in particular when reordering the alternatives cannot specify the exact
parse tree desired.

Each nonterminal in a parsing expression grammar essentially represents a parsing function in a
recursive descent parser, and the corresponding parsing expression represents the "code"
comprising the function. Each parsing function conceptually takes an input string as its argument,
and yields one of the following results:

success, in which the function may optionally move forward or consume one
or more characters of the input string supplied to it, or

failure, in which case no input is consumed.

An atomic parsing expression consisting of a single terminal (i.e. literal) succeeds if the first
character of the input string matches that terminal, and in that case consumes the input character;
otherwise the expression yields a failure result. An atomic parsing expression consisting of the
empty string always trivially succeeds without consuming any input.

An atomic parsing expression consisting of a nonterminal A represents a recursive call to the
nonterminal-function A. A nonterminal may succeed without actually consuming any input, and
this is considered an outcome distinct from failure.

e sequence operator e1 e2 first invokes e1, and if e1 succeeds, subsequently invokes e2 on the
remainder of the input string le unconsumed by e1, and returns the result. If either e1 or e2 fails,
then the sequence expression e1 e2 fails (consuming no input).

e choice operator e1 / e2 first invokes e1, and if e1 succeeds, returns its result immediately.
Otherwise, if e1 fails, then the choice operator backtracks to the original input position at which it
invoked e1, but then calls e2 instead, returning e2's result.

e zero-or-more, one-or-more, and optional operators consume zero or more, one or more, or
zero or one consecutive repetitions of their sub-expression e, respectively. Unlike in context-free
grammars and regular expressions, however, these operators always behave greedily, consuming as
much input as possible and never backtracking. (Regular expression matchers may start by
matching greedily, but will then backtrack and try shorter matches if they fail to match.) For
example, the expression a* will always consume as many a's as are consecutively available in the
input string, and the expression (a* a) will always fail because the first part (a*) will never leave
any a's for the second part to match.

e and-predicate expression &e invokes the sub-expression e, and then succeeds if e succeeds
and fails if e fails, but in either case never consumes any input.

e not-predicate expression !e succeeds if e fails and fails if e succeeds, again consuming no
input in either case.

Operational interpretation of parsing expressions

Examples

is is a PEG that recognizes mathematical formulas that apply the basic five operations to non-
negative integers.

In the above example, the terminal symbols are characters of text, represented by characters in
single quotes, such as '(' and ')'. e range [0-9] is also a shortcut for ten characters,
indicating any one of the digits 0 through 9. (is range syntax is the same as the syntax used by
regular expressions.) e nonterminal symbols are the ones that expand to other rules: Value,
Power, Product, Sum, and Expr. Note that rules Sum and Product don't lead to desired le-
associativity of these operations (they don't deal with associativity at all, and it has to be handled
in post-processing step aer parsing), and the Power rule (by referring to itself on the right) results
in desired right-associativity of exponent. Also note that a rule like Sum ← Sum (('+' /
'-') Product)? (with intention to achieve le-associativity) would cause infinite recursion, so
it cannot be used in practice even though it can be expressed in the grammar.

e following recursive rule matches standard C-style if/then/else statements in such a way that
the optional "else" clause always binds to the innermost "if", because of the implicit prioritization
of the '/' operator. (In a context-free grammar, this construct yields the classic dangling else
ambiguity.)

e following recursive rule matches Pascal-style nested comment syntax, (* which can (*
nest *) like this *). e comment symbols appear in single quotes to distinguish them
from PEG operators.

e parsing expression foo &(bar) matches and consumes the text "foo" but only if it is
followed by the text "bar". e parsing expression foo !(bar) matches the text "foo" but only if
it is not followed by the text "bar". e expression !(a+ b) a matches a single "a" but only if it is
not part of an arbitrarily long sequence of a's followed by a b.

e parsing expression ('a'/'b')* matches and consumes an arbitrary-length sequence of a's
and b's. e production rule S ← 'a' ''S''? 'b' describes the simple context-free "matching
language" . e following parsing expression grammar describes the classic non-
context-free language :

Expr ← Sum
Sum ← Product (('+' / '-') Product)*
Product ← Power (('*' / '/') Power)*
Power ← Value ('^' Power)?
Value ← [0-9]+ / '(' Expr ')'

S ← 'if' C 'then' S 'else' S / 'if' C 'then' S

Begin ← '(*'
End ← '*)'
C ← Begin N* End
N ← C / (!Begin !End Z)
Z ← any single character

S ← &(A 'c') 'a'+ B !.
A ← 'a' A? 'b'

Any parsing expression grammar can be converted directly into a recursive descent parser.[3] Due
to the unlimited lookahead capability that the grammar formalism provides, however, the resulting
parser could exhibit exponential time performance in the worst case.

It is possible to obtain beer performance for any parsing expression grammar by converting its
recursive descent parser into a packrat parser, which always runs in linear time, at the cost of
substantially greater storage space requirements. A packrat parser[3] is a form of parser similar to a
recursive descent parser in construction, except that during the parsing process it memoizes the
intermediate results of all invocations of the mutually recursive parsing functions, ensuring that
each parsing function is only invoked at most once at a given input position. Because of this
memoization, a packrat parser has the ability to parse many context-free grammars and any
parsing expression grammar (including some that do not represent context-free languages) in
linear time. Examples of memoized recursive descent parsers are known from at least as early as
1993.[4] is analysis of the performance of a packrat parser assumes that enough memory is
available to hold all of the memoized results; in practice, if there is not enough memory, some
parsing functions might have to be invoked more than once at the same input position, and
consequently the parser could take more than linear time.

It is also possible to build LL parsers and LR parsers from parsing expression grammars, with
beer worst-case performance than a recursive descent parser, but the unlimited lookahead
capability of the grammar formalism is then lost. erefore, not all languages that can be expressed
using parsing expression grammars can be parsed by LL or LR parsers.

Compared to pure regular expressions (i.e. without back-references), PEGs are strictly more
powerful, but require significantly more memory. For example, a regular expression inherently
cannot find an arbitrary number of matched pairs of parentheses, because it is not recursive, but a
PEG can. However, a PEG will require an amount of memory proportional to the length of the
input, while a regular expression matcher will require only a constant amount of memory.

Any PEG can be parsed in linear time by using a packrat parser, as described above.

Many CFGs contain ambiguities, even when they're intended to describe unambiguous languages.
e "dangling else" problem in C, C++, and Java is one example. ese problems are oen resolved
by applying a rule outside of the grammar. In a PEG, these ambiguities never arise, because of
prioritization.

B ← 'b' B? 'c'

Implementing parsers from parsing expression grammars

Advantages

Disadvantages

Memory consumption

PEG parsing is typically carried out via packrat parsing, which uses memoization[5][6] to eliminate
redundant parsing steps. Packrat parsing requires storage proportional to the total input size,
rather than the depth of the parse tree as with LR parsers. is is a significant difference in many
domains: for example, hand-wrien source code has an effectively constant expression nesting
depth independent of the length of the program—expressions nested beyond a certain depth tend
to get refactored.

For some grammars and some inputs, the depth of the parse tree can be proportional to the input
size,[7] so both an LR parser and a packrat parser will appear to have the same worst-case
asymptotic performance. A more accurate analysis would take the depth of the parse tree into
account separately from the input size. is is similar to a situation which arises in graph
algorithms: the Bellman–Ford algorithm and Floyd–Warshall algorithm appear to have the same
running time () if only the number of vertices is considered. However, a more precise
analysis which accounts for the number of edges as a separate parameter assigns the Bellman–Ford
algorithm a time of , which is quadratic for sparse graphs with .

A PEG is called well-formed[1] if it contains no le-recursive rules, i.e., rules that allow a
nonterminal to expand to an expression in which the same nonterminal occurs as the lemost
symbol. For a le-to-right top-down parser, such rules cause infinite regress: parsing will
continually expand the same nonterminal without moving forward in the string.

erefore, to allow packrat parsing, le recursion must be eliminated. For example, in the
arithmetic grammar above, it would be tempting to move some rules around so that the precedence
order of products and sums could be expressed in one line:

In this new grammar, matching an Expr requires testing if a Product matches while matching a
Product requires testing if an Expr matches. Because the term appears in the lemost position,
these rules make up a circular definition that cannot be resolved. (Circular definitions that can be
resolved exist—such as in the original formulation from the first example—but such definitions are
required not to exhibit pathological recursion.) However, le-recursive rules can always be
rewrien to eliminate le-recursion.[2][8] For example, the following le-recursive CFG rule:

can be rewrien in a PEG using the plus operator:

e process of rewriting indirectly le-recursive rules is complex in some packrat parsers,
especially when semantic actions are involved.

Indirect left recursion

Value ← [0-9.]+ / '(' Expr ')'
Product ← Expr (('*' / '/') Expr)*
Sum ← Expr (('+' / '-') Expr)*
Expr ← Product / Sum / Value

string-of-a ← string-of-a 'a' | 'a'

string-of-a ← 'a'+

With some modification, traditional packrat parsing can support direct le recursion,[3][9][10] but
doing so results in a loss of the linear-time parsing property[9] which is generally the justification
for using PEGs and packrat parsing in the first place. Only the OMeta parsing algorithm[9]

supports full direct and indirect le recursion without additional aendant complexity (but again,
at a loss of the linear time complexity), whereas all GLR parsers support le recursion.

PEG packrat parsers cannot recognize some unambiguous nondeterministic CFG rules, such as the
following:[2]

Neither LL(k) nor LR(k) parsing algorithms are capable of recognizing this example. However, this
grammar can be used by a general CFG parser like the CYK algorithm. However, the language in
question can be recognised by all these types of parser, since it is in fact a regular language (that of
strings of an odd number of x's).

It is an open problem to give a concrete example of a context-free language which cannot be
recognized by a parsing expression grammar.[1]

LL(k) and LR(k) parser generators will fail to complete when the input grammar is ambiguous. is
is a feature in the common case that the grammar is intended to be unambiguous but is defective.
A PEG parser generator will resolve unintended ambiguities earliest-match-first, which may be
arbitrary and lead to surprising parses.

e ordering of productions in a PEG grammar affects not only the resolution of ambiguity, but
also the language matched. For example, consider the first PEG example in Ford's paper[1] (example
rewrien in pegjs.org/online notation, and labelled G1 and G2):

G1: A = "a" "b" / "a"

G2: A = "a" / "a" "b"

Ford notes that e second alternative in the laer PEG rule will never succeed because the first choice
is always taken if the input string … begins with 'a'..[1] Specifically, (i.e., the language
matched by G1) includes the input "ab", but does not. us, adding a new option to a PEG
grammar can remove strings from the language matched, e.g. G2 is the addition of a rule to the
single-production grammar A = "a" "b", which contains a string not matched by G2.
Furthermore, constructing a grammar to match from PEG grammars G1 and G2 is
not always a trivial task. is is in stark contrast to CFG's, in which the addition of a new
production cannot remove strings (though, it can introduce problems in the form of ambiguity),
and a (potentially ambiguous) grammar for can be constructed

Expressive power

S ← 'x' S 'x' | 'x'

Ambiguity detection and influence of rule order on language
that is matched

A pika parser[11] uses dynamic programming to apply PEG rules boom-up and right to le, which
is the inverse of the normal recursive descent order of top-down, le to right. Parsing in reverse
order solves the le recursion problem, allowing le-recursive rules to be used directly in the
grammar without being rewrien into non-le-recursive form, and also conveys optimal error
recovery capabilities upon the parser, which historically proved difficult to achieve for recursive
descent parsers.

Compiler Description Language (CDL)

Formal grammar

Regular expression

Top-down parsing language

Comparison of parser generators

Parser combinator

Python

1. Ford, Bryan (January 2004). "Parsing Expression Grammars: A Recognition
Based Syntactic Foundation" (https://bford.info/pub/lang/peg.pdf) (PDF).
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM. pp. 111–122. doi:10.1145/964001.964011 (h
ttps://doi.org/10.1145%2F964001.964011). ISBN 1-58113-729-X.

2. Ford, Bryan (September 2002). "Packrat parsing: simple, powerful, lazy,
linear time, functional pearl" (http://pdos.csail.mit.edu/~baford/packrat/icfp0
2/packrat-icfp02.pdf) (PDF). ACM SIGPLAN Notices. 37 (9).
doi:10.1145/583852.581483 (https://doi.org/10.1145%2F583852.581483).

3. Ford, Bryan (September 2002). Packrat Parsing: a Practical Linear-Time
Algorithm with Backtracking (http://pdos.csail.mit.edu/~baford/packrat/thesi
s) (Thesis). Massachusetts Institute of Technology. Retrieved 2007-07-27.

4. Merritt, Doug (November 1993). "Transparent Recursive Descent" (http://com
pilers.iecc.com/comparch/article/93-11-012). Usenet group comp.compilers.
Retrieved 2009-09-04.

5. Ford, Bryan. "The Packrat Parsing and Parsing Expression Grammars Page" (h
ttps://bford.info/packrat/). BFord.info. Retrieved 23 Nov 2010.

S → start(G1) | start(G2)

Bottom-up PEG parsing

See also

References

6. Jelliffe, Rick (10 March 2010). "What is a Packrat Parser? What are
Brzozowski Derivatives?" (https://web.archive.org/web/20110728124552/htt
p://broadcast.oreilly.com/2010/03/what-is-a-packrat-parser-what.html).
Archived from the original (http://broadcast.oreilly.com/2010/03/what-is-a-pa
ckrat-parser-what.html) on 28 July 2011.

7. for example, the LISP expression (x (x (x (x))))

8. Aho, A.V.; Sethi, R.; Ullman, J.D. (1986). Compilers: Principles, Techniques,
and Tools. Boston, MA, USA: Addison-Wesley Longman.

9. Warth, Alessandro; Douglass, James R.; Millstein, Todd (January 2008).
"Packrat Parsers Can Support Left Recursion" (http://www.vpri.org/pdf/tr2007
002_packrat.pdf) (PDF). Proceedings of the 2008 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation. PEPM '08.
ACM. pp. 103–110. doi:10.1145/1328408.1328424 (https://doi.org/10.1145%
2F1328408.1328424). Retrieved 2008-10-02.

10. Steinmann, Ruedi (March 2009). "Handling Left Recursion in Packrat Parsers"
(https://web.archive.org/web/20110706232049/http://n.ethz.ch/~ruediste/pa
ckrat.pdf) (PDF). n.ethz.ch. Archived from the original (http://n.ethz.ch/~rued
iste/packrat.pdf) (PDF) on 2011-07-06.

11. Hutchison, Luke A. D. (2020). "Pika parsing: parsing in reverse solves the left
recursion and error recovery problems". arXiv:2005.06444 (https://arxiv.org/
abs/2005.06444).

Converting a string expression into a lambda expression using an expression
parser (https://web.archive.org/web/20131103083443/http://mathosproject.c
om/updates/convert-a-string-expression-into-a-lambda-expression/)

The Packrat Parsing and Parsing Expression Grammars Page (http://bford.info
/packrat/)

The constructed language Lojban has a fairly large PEG grammar (http://ww
w.digitalkingdom.org/~rlpowell/hobbies/lojban/grammar/) allowing
unambiguous parsing of Lojban text.

An illustrative implementation of a PEG in Guile scheme (https://www.gnu.or
g/software/guile/manual/html_node/PEG-Parsing.html)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Parsing_expression_grammar&
oldid=1027475900"

This page was last edited on 8 June 2021, at 04:38 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms
may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a
registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

External links

