
C Piscine
C 05

Summary: this document is the subject for the C 05 module of the C Piscine @ 42.

Contents
I Instructions 2

II Foreword 4

III Exercise 00 : ft_iterative_factorial 6

IV Exercise 01 : ft_recursive_factorial 7

V Exercise 02 : ft_iterative_power 8

VI Exercise 03 : ft_recursive_power 9

VII Exercise 04 : ft_fibonacci 10

VIII Exercise 05 : ft_sqrt 11

IX Exercise 06 : ft_is_prime 12

X Exercise 07 : ft_find_next_prime 13

XI Exercise 08 : The Ten Queens 14

1

Chapter I

Instructions

• Only this page will serve as reference: do not trust rumors.

• Watch out! This document could potentially change before submission.

• Make sure you have the appropriate permissions on your files and directories.

• You have to follow the submission procedures for all your exercises.

• Your exercises will be checked and graded by your fellow classmates.

• On top of that, your exercises will be checked and graded by a program called
Moulinette.

• Moulinette is very meticulous and strict in its evaluation of your work. It is entirely
automated and there is no way to negotiate with it. So if you want to avoid bad
surprises, be as thorough as possible.

• Moulinette is not very open-minded. It won’t try and understand your code if it
doesn’t respect the Norm. Moulinette relies on a program called norminette to
check if your files respect the norm. TL;DR: it would be idiotic to submit a piece
of work that doesn’t pass norminette’s check.

• These exercises are carefully laid out by order of difficulty - from easiest to hardest.
We will not take into account a successfully completed harder exercise if an easier
one is not perfectly functional.

• Using a forbidden function is considered cheating. Cheaters get -42, and this grade
is non-negotiable.

• You’ll only have to submit a main() function if we ask for a program.

• Moulinette compiles with these flags: -Wall -Wextra -Werror, and uses gcc.

• If your program doesn’t compile, you’ll get 0.

• You cannot leave any additional file in your directory than those specified in the
subject.

• Got a question? Ask your peer on the right. Otherwise, try your peer on the left.

2

C Piscine C 05

• Your reference guide is called Google / man / the Internet /

• Check out the "C Piscine" part of the forum on the intranet, or the slack Piscine.

• Examine the examples thoroughly. They could very well call for details that are
not explicitly mentioned in the subject...

• By Odin, by Thor ! Use your brain !!!

Norminette must be launched with the -R CheckForbiddenSourceHeader
flag. Moulinette will use it too.

3

Chapter II

Foreword

Here are some lyrics extract from the Harry Potter saga:

Oh you may not think me pretty,
But don’t judge on what you see,
I’ll eat myself if you can find
A smarter hat than me.

You can keep your bowlers black,
Your top hats sleek and tall,
For I’m the Hogwarts Sorting Hat
And I can cap them all.

The Sorting Hat, stored in the Headmaster’s Office.
There’s nothing hidden in your head
The Sorting Hat can’t see,
So try me on and I will tell you
Where you ought to be.

You might belong in Gryffindor,
Where dwell the brave at heart,
Their daring, nerve, and chivalry
Set Gryffindors apart;

You might belong in Hufflepuff,
Where they are just and loyal,
Those patient Hufflepuffs are true
And unafraid of toil;

Or yet in wise old Ravenclaw,
If you’ve a ready mind,
Where those of wit and learning,
Will always find their kind;

Or perhaps in Slytherin
You’ll make your real friends,
Those cunning folks use any means

4

C Piscine C 05

To achieve their ends.

So put me on! Don’t be afraid!
And don’t get in a flap!
You’re in safe hands (though I have none)
For I’m a Thinking Cap!

Unfortunately, this subject’s got nothing to do with the Harry Potter saga, which is
too bad, because your exercises won’t be done by magic.

5

Chapter III

Exercise 00 : ft_iterative_factorial

Exercise 00

ft_iterative_factorial
Turn-in directory : ex00/

Files to turn in : ft_iterative_factorial.c
Allowed functions : None

• Create an iterated function that returns a number. This number is the result of a
factorial operation based on the number given as a parameter.

• If the argument is not valid the function should return 0.

• Overflows must not be handled, the function return will be undefined.

• Here’s how it should be prototyped :

int ft_iterative_factorial(int nb);

6

Chapter IV

Exercise 01 : ft_recursive_factorial

Exercise 01

ft_recursive_factorial
Turn-in directory : ex01/

Files to turn in : ft_recursive_factorial.c
Allowed functions : None

• Create a recursive function that returns the factorial of the number given as a
parameter.

• If the argument is not valid the function should return 0.

• Overflows must not be handled, the function return will be undefined.

• Here’s how it should be prototyped :

int ft_recursive_factorial(int nb);

7

Chapter V

Exercise 02 : ft_iterative_power

Exercise 02

ft_iterative_power
Turn-in directory : ex02/

Files to turn in : ft_iterative_power.c
Allowed functions : None

• Create an iterated function that returns the value of a power applied to a number.
An power lower than 0 returns 0. Overflows must not be handled.

• We’ve decided that 0 power 0 will returns 1

• Here’s how it should be prototyped :

int ft_iterative_power(int nb, int power);

8

Chapter VI

Exercise 03 : ft_recursive_power

Exercise 03

ft_recursive_power
Turn-in directory : ex03/

Files to turn in : ft_recursive_power.c
Allowed functions : None

• Create a recursive function that returns the value of a power applied to a number.

• Overflows must not be handled, the function return will be undefined.

• We’ve decided that 0 power 0 will returns 1

• Here’s how it should be prototyped :

int ft_recursive_power(int nb, int power);

9

Chapter VII

Exercise 04 : ft_fibonacci

Exercise 04

ft_fibonacci
Turn-in directory : ex04/

Files to turn in : ft_fibonacci.c
Allowed functions : None

• Create a function ft_fibonacci that returns the n-th element of the Fibonacci
sequence, the first element being at the 0 index. We’ll consider that the Fibonacci
sequence starts like this: 0, 1, 1, 2.

• Overflows must not be handled, the function return will be undefined.

• Here’s how it should be prototyped :

int ft_fibonacci(int index);

• Obviously, ft_fibonacci has to be recursive.

• If the index is less than 0, the function should return -1.

10

Chapter VIII

Exercise 05 : ft_sqrt

Exercise 05

ft_sqrt
Turn-in directory : ex05/

Files to turn in : ft_sqrt.c
Allowed functions : None

• Create a function that returns the square root of a number (if it exists), or 0 if the
square root is an irrational number.

• Here’s how it should be prototyped :

int ft_sqrt(int nb);

11

Chapter IX

Exercise 06 : ft_is_prime

Exercise 06

ft_is_prime
Turn-in directory : ex06/

Files to turn in : ft_is_prime.c
Allowed functions : None

• Create a function that returns 1 if the number given as a parameter is a prime
number, and 0 if it isn’t.

• Here’s how it should be prototyped :

int ft_is_prime(int nb);

0 and 1 are not prime numbers.

12

Chapter X

Exercise 07 : ft_find_next_prime

Exercise 07

ft_find_next_prime
Turn-in directory : ex07/

Files to turn in : ft_find_next_prime.c
Allowed functions : None

• Create a function that returns the next prime number greater or equal to the number
given as argument.

• Here’s how it should be prototyped :

int ft_find_next_prime(int nb);

13

Chapter XI

Exercise 08 : The Ten Queens

Exercise 08

The Ten Queens
Turn-in directory : ex08/

Files to turn in : ft_ten_queens_puzzle.c
Allowed functions : write

• Create a function that displays all possible placements of the ten queens on a
chessboard which would contain ten columns and ten lines, without them being
able to reach each other in a single move, and returns the number of possibilities.

• Recursivity is required to solve this problem.

• Here’s how it should be prototyped :

int ft_ten_queens_puzzle(void);

• Here’s how it’ll be displayed :
$>./a.out | cat -e
0257948136$
0258693147$
...
4605713829$
4609582731$
...
9742051863$
$>

• The sequence goes from left to right. The first digit represents the first Queen’s
position in the first column (the index starting from 0). The Nth digit represents
the Nth Queen’s position in the Nth column.

• The return value must be the total number of displayed solutions.

14

	Instructions
	Foreword
	Exercise 00 : ft_iterative_factorial
	Exercise 01 : ft_recursive_factorial
	Exercise 02 : ft_iterative_power
	Exercise 03 : ft_recursive_power
	Exercise 04 : ft_fibonacci
	Exercise 05 : ft_sqrt
	Exercise 06 : ft_is_prime
	Exercise 07 : ft_find_next_prime
	Exercise 08 : The Ten Queens

